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FOREWORD TO THE REISSUED EDITION 

The purpose of the IEEE Press Series on Electromagnetic Wave Theory is to publish 
books of long-term archival significance in electromagnetics. Included are new titles as 
well as reprints and revisions of recognized classics. The book Foundations for Micro
wave Engineering, by Robert E. Collin, is by any measure such a classic. The original 
edition of the book appeared in 1966 and remained in print until the appearance of the 
second edition in 1992, a span of 26 years. 

In the second edition. Professor Collin completely updated and modernized his book 
to include the many advances that had occurred in microwave engineering since the 
appearance of the original edition. That the second edition has gone out of print has 
caused concern among many of my colleagues in the IEEE Antennas and Propagation 
Society (APS) and the IEEE Microwave Theory and Techniques Society (MTT). We at 
the IEEE Press are delighted to be able lo overcome this difficulty by introducing a 
reprint of the second edition into our Series on Electromagnetic Wave Theory. The book 
is a thorough and in-depth exposition on microwave engineering. Furthermore, it will 
make an excellent companion to Professor Collin's book, Field Theory- of Guided Waves, 
also included in the series. 

Professor Collin has been a valued colleague for many years. He is the author or 
coauthor of five books and more than 150 technical papers. His contributions to 
electromagnetics span a wide range of subjects and have brought him international re
spect and many awards. Among these are election to the National Academy of Engineer
ing, the IEEE Electromagnetics Field Award, the IEEE/APS Distinguished Career Award, 
an IEEE/APS Schelkunoff Prize Paper Award, and the IEEE Third Millennium Medal. 

It is with pleasure that I welcome this book into the series. 

Donald G. Dudley 
University of Arizona 

Series Editor 
IEEE Press Series on Electromagnetic Wave Theory 
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CHAPTER 

1 
INTRODUCTION 

The purpose of this introductory chapter is to provide a short, and admit
tedly incomplete, survey of what the microwave engineering field encom
passes. Section 1.2 presents a brief discussion of many of the varied and 
sometimes unique applications of microwaves. This is followed by a third 
section in which an attempt is made to show in what ways microwave 
engineering differs from the engineering of communication systems at lower 
frequencies. In addition, a number of microwave devices are introduced to 
provide examples of the types of devices and circuit elements that are 
examined in greater detail later on in the text. 

1 MICROWAVE F R E Q U E N C I E S 

The descriptive term microwaves is used to describe electromagnetic waves 
with wavelengths ranging from 1 cm to 1 m. The corresponding frequency 
range is 300 MHz up to 30 GHz for 1-cm-wavelength waves. Electromag
netic waves with wavelengths ranging from 1 to 10 mm are called millime
ter waves. The infrared radiation spectrum comprises electromagnetic waves 
with wavelengths in the range 1 am (10 6 m) up to 1 mm. Beyond the 
infrared range is the visible optical spectrum, the ultraviolet spectrum, and 
finally x-rays. Several different classification schemes are in use to designate 
frequency bands in the electromagnetic spectrum. These classification 
schemes are summarized in Tables 1.1 and 1.2. The radar band classifica
tion came into use during World War II and is still in common use today 
even though the new military band classification is the recommended one. 

In the UHF band up to around a frequency of 1 GHz, most communi
cations circuits are constructed using lumped-parameter circuit compo-

I 
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PREFACE 

The first edition of Foundations for Microwave Engineering was published 
in 1966. The text has remained continuously in use since that time, but it 
has become clear that it no longer gives an adequate account of modern 
microwave engineering practice. Since the publication of the first edition 
there has been a dramatic advance in the microwave field brought about by 
the development of solid state transistors that can provide amplification and 
signal generation well into the millimeter wavelength region. Along with the 
widespread use of solid state devices, compatible transmission line struc
tures and passive components were developed that could be integrated with 
the solid state devices into compact miniaturized microwave systems. These 
developments made it mandatory that the text be thoroughly revised if it 
were to continue serving the needs of the student and the practicing 
microwave engineer. 

In the revised addition I have adhered to the same general philosophy 
that governed the preparation of the first edition. Fundamental principles 
are stressed and complete derivations are provided for all significant formu
las and relationships. All important fundamental concepts and principles 
are covered to the extent possible within a text of reasonable size. The 
applications of basic theory and principles are illustrated through detailed 
analysis of a large number of important components that find widespread 
use in practical microwave systems. 

Chapter 1 is an updated introductory chapter. Chapter 2 is essentially 
the same as in the original edition and provides a comprehensive summary 
of basic electromagnetic theory that is needed as background for proper 
understanding of the rest of the text. Many students will already have 
knowledge of this material before they pursue a course in microwave 
engineering. For these students, Chapter 2 will serve as a concise reference 
or review of familiar material. 

Chapter 3 is very different from that in the first edition. The first part 
of this chapter provides a more basic introduction to waves on transmission 

xv 
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lines using distributed circuit models. The propagation of pulse signals is 
also covered. The second part of this chapter is a long section covering the 
characteristics of planar transmission lines, such as microstrip lines, cou
pled microstrip lines, strip lines, and coplanar lines or waveguides. The 
treatment is considerably broader than what is available in any other 
current text. Most of the formulas for the quasi-TEM mode parameters are 
derived using conformal mapping methods in a new Appendix III and are 
not just quoted from the literature. Several new formulas for attenuation 
have been derived as well as suitable modifications of existing formulas to 
account for anisotropic substrates. The last part of the chapter covers the 
basic properties of rectangular and circular waveguides, as in the original 
edition. 

Chapter 4 develops the basic microwave circuit theory and includes 
detailed discussions of the impedance, admittance and scattering matrix 
descriptions of microwave junctions. New material has been added on signal 
flow graphs and the generalized scattering matrix for power waves. The 
material on small aperture coupling has been updated to include radiation 
reaction that will account for power transmission through an aperture and 
thereby lead to physically meaningful equivalent circuits for small aper
tures. 

Chapter 5 treats a number of topics related to impedance matching 
and transformations. The old topic of impedance matching with lumped 
reactive elements has been revived because this is now frequently used in 
microwave integrated circuits. The design of complex load terminations has 
also been included because this is required for microwave solid state ampli
fier design. The available power at any point in a lossless reciprocal network 
is an invariant quantity. This concept is explained in terms of the impedance 
mismatch factor. The invariance of the impedance mismatch factor places 
an important constraint on the design of interstage matching networks in a 
microwave amplifier and is used in Chapter 10 in the design of microwave 
amplifiers. The last part of Chapter 5 discusses multisection quarter-wave 
transformers and tapered transmission lines. A new example of a microstrip 
half-wave filter design based on the quarter-wave transformer as a proto
type circuit has been included. 

A variety of passive components are described along with detailed 
analysis in Chapter 6. In addition to those components described in the 
original edition, new material has been added on coupled-microstrip-line 
directional couplers, the branch-line coupler, hybrid junctions, and the 
Wilkinson power divider. New material on electronic controlled attenuators 
and phase shifters has also been added. 

Chapter 7 on resonators has been expanded to include new material on 
microstrip resonators and dielectric resonators. The old material on 
Fabry-Perot resonators has been deleted in order to make room for a short 
section on cavity perturbation theory. 

Chapter 8 on periodic structures and filters now includes a detailed 
treatment of gap-coupled and edge-coupled microstrip filters. The treatment 
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of admittance and impedance inverters was rewritten in order to more fully 
explain the use of inverters in filter design. 

Apart from a brief discussion of gyratron tubes, Chapter 9 on mi
crowave tubes remains essentially the same as in the first edition. 

The old Chapter 10 on masers has been replaced by a new chapter on 
microwave solid state amplifier design. This chapter gives a complete discus
sion of the scattering matrix approach to small signal narrow band amplifier 
design. The treatment is self-contained and all important relations for gain, 
stabihty, and low noise design are derived. A design strategy for low noise 
single stage and double stage amplifiers is developed along with considera
tions for the necessary tradeoffs that must be made between input and 
output VSWR, gain, low noise figure, and stability. 

The original Chapter 11 on parametric amplifiers has been retained 
without any change. 

A new Chapter 12 on oscillators and mixers has been added. This 
chapter is of limited scope because of the need to keep the overall length of 
the text within reasonable bounds. Solid state oscillators using Gunn de
vices and IMPATT diodes are described in a qualitative way only. An 
introduction to transistor oscillator design based on small signal scattering 
matrix parameters is provided. Included in this discussion is the relation
ship between the two-port and three-port scattering matrix description of a 
transistor because this is needed in order to efficiently analyze the effect of 
an impedance inserted in series with one of the transistor leads for feedback 
purposes, 

Many textbooks provide introductory treatments of diode mixers with
out any consideration of the embedding network. Such treatments do not 
provide a good understanding of diode mixers because it is the impedance 
properties of the embedding network that determine the diode voltages at 
the various harmonic frequencies. The introductory treatment of diode 
mixers in Chapter 12 does include the embedding network and this should 
provide the student with a more complete understanding of mixer analysis 
and design. The last part of the chapter describes the harmonic balancing 
method for the analysis of mixers. 

I have tried to provide a broad, comprehensive, and self-contained 
treatment of the fundamental theory and principles, and the methods of 
analysis and design that are the foundations for microwave engineering. 
There are, of course, limitations because all books must have a finite length. 
Many references have been included for the benefit of the reader who 
wishes to pursue a given topic in greater depth or refer to the original 
papers that a lot of the material has been based on. This text, in many 
respects, is a compilation of the work of a great many people. Unfortu
nately, it has not been possible to always give proper credit to those who 
were the originators of new concepts and the inventors of new devices. 

It is my belief that the revised edition will prove to be useful for both 
senior elective as well as beginning graduate level courses in microwave 
engineering, and will also serve as a useful reference source on fundamental 
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TABLE 1.1 
F r e q u e n c y b a n d d e s i g n a t i o n 

Frequency 
band Des igna t ion Typical service 

3-30 kHz Very low frequency 
(VLF) 

Navigation, sonar 

30-300 kHz Low frequency Radio beacons, navigational 
(LF) aids 

300-3.000 kHz Medium frequency AM broadcasting, maritime 
(MF) radio. Coast Guard commun

ication. direction finding 
3-30 MHz High frequency Telephone, telegraph, and 

(HF) facsimile; shortwave 
international broadcasting; 
amateur radio; citizen's 
band; ship-to-coast and ship-
to-aircraft communication 

30-300 MHz Very" high frequency Television. FM broadcast. 
(VHF) air-traffic control, police. 

taxicab mobile radio, 
navigational aids 

300-3,000 MHz Ultrahigh frequency Television, satellite com
(UHF> munication. radiosonde, 

surveillance radar, 
navigational aids 

3-30 GHz Superhigh frequency Airborne radar, microwave 
(SHF) links, common-carrier land 

mobile communication, satellite 
communication 

30-300 GHz Extreme high fre
quency (EHF) 

Radar, experimental 

TABLE 1.2 
Mic rowave f requency b a n d d e s i g n a t i o n 

Microwave band designation 

Frequency Old New 

500-1.000 MHz VHF C 
1-2 GHz L D 
2 - 3 GHz S E 
3-4 GHz s F 
4 - 6 GHz G G 
6-8 GHz c H 
8-10 GHz x I 

10-12.4 GHz X J 
12.4-18 GHz Ku J 
18-20 GHz K J 
20-26.5 GHz K 8 
26.5-40 GHz Ka K 
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principles for the practicing microwave engineer. There is clearly much 
more material in the revised edition than can be covered in a one semester 
course. The last four chapters alone would provide sufficient material for a 
one semester course on active microwave circuits. 

As an instructor I have always believed thai it was very important to 
fully understand where formulas came from and how they are derived in 
order to present the material to students in a meaningful way. It is for this 
reason that I have attempted to make the text self-contained. In presenting 
many of the topics to undergraduate students 1 will only outline the basic 
approach used and will omit the details. It is my hope that other instructors 
will also view the detailed derivations that are provided in the text as a 
useful source of information in preparing a microwave engineering course 
and not as material that must always be presented in class. A number of 
topics that can be omitted in an undergraduate course are identified by a 
star. The problems based on these sections are also identified by a star. 

In recent years the microwave engineering course that I have taught to 
seniors at Case Western Reserve University has drawn heavily on the 
material in Chapters 3 through 5, which is very basic core material. In 
addition, topics have been selected from Chapters 6 and 7 on components 
and resonators in order to illustrate the application of basic microwave 
circuit theory. The last quarter of the semester has been generally devoted 
to microwave solid state amplifier design along with a brief coverage of 
oscillators and mixers. 

A better selection of problems and a solutions manual has been 
prepared for the revised edition. Over the past several years I have also 
prepared a number of short stand alone computer programs that provide 
useful tools to remove the drudgery of solving many of the homework 
problems. These programs are included on a floppy disk along with user 
instructions as part of the solutions manual. The programs cover the 
calculation of the characteristics of various planar transmission lines, in
cluding attenuation; the cutoff frequency, propagation constant, and attenu
ation of the dominant mode in rectangular and circular waveguides; 
impedance transformation along a transmission line; input and output 
impedances, admittances, and reflection coefficients for a linear two-port, 
which can be described in terms of impedance, admittance, or scattering 
matrix parameters; double-stub and lumped element impedance matching 
with frequency scans; two-port and three-port scattering matrix parameters 
for a transistor; and a rather long program that implements a design 
strategy for low noise one- and two-stage microwave amplifiers with various 
imposed constraints. Students have generally found these programs to be of 
significant help in problem solving. They have enjoyed working with the 
microwave amplifier design program. Without a computer program, the 
design of a microwave amplifier using potentially unstable devices and 
subject to various constraints on gain, noise figure, and input and output 
VSWR, is not feasible for students to carry out. The scope of each program 
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has been purposefully limited in order to ensure that the student will be 
fully aware of the solution strategy involved. 

Many users of the first edition have provided me with helpful com
ments on the original material. In addition, I have received many helpful 
comments and suggestions from the following reviewers of the materia! for 
the revised edition. They are Chin-Lin Chen, Purdue University; M. Yousif 
El-Ibiary, University of Oklahoma; Irving Kaufman, Arizona State Univer
sity; Stuart Long, University of Houston; Glenn S. Smith, Georgia Institute 
of Technology; and Robert J. Weber. Iowa State University. For the most 
part then- suggestions and recommendations have been incorporated. 

The new material for the revised edition was typed by Sue Sava. I 
would like to acknowledge the professional skill with which she prepared 
this material as well as her willingness to rearrange her schedule so as to 
meet various deadlines. 

The last acknowledgment is to my wife Kathleen, who was willing to 
give up many other activities so that the revision could be carried out. Her 
encouragement and support of the project never faltered, and without it the 
revision could not have been undertaken. 

Robert E. Collin 
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nenta. In the frequency range from 1 up to 100 GHz. lumped circuit 
elements are usually replaced by transmission-line and waveguide compo
nents. Thus by the term microwaue engineering we shall mean generally 
the engineering and design of information-handling systems in the fre
quency range from 1 to 100 GHz corresponding to wavelengths as long as 30 
cm and as short as 3 mm. At shorter wavelengths we have what can be 
called optical engineering since many of the techniques used are derived 
from classical optical techniques. The characteristic feature of microwave 
engineering is the short wavelengths involved, these being of the same order 
of magnitude as the circuit elements and devices employed. 

The short wavelengths involved in turn mean that the propagation 
time for electrical effects from one point in a circuit to another point is 
comparable with the period of the oscillating currents and charges in the 
system. As a result, conventional low-frequency circuit analysis based on 
Kirchhoffs laws and voltage-current concepts no longer suffices for an 
adequate description of the electrical phenomena taking place. It is neces
sary instead to cany out the analysis in terms of a description of the electric 
and magnetic fields associated with the device. In essence, it might be said, 
microwave engineering is applied electromagnetic fields engineering. For 
this reason the successful engineer in this area must have a good working 
knowledge of electromagnetic field theory. 

There is no distinct frequency boundary at which lumped-parameter 
circuit elements must be replaced by distributed circuit elements. With 
modern technological processes it is possible to construct printed-circuit 
inductors that are so small that they retain their lumped-parameter charac
teristics at frequencies as high as 10 GHz or even higher. Likewise, optical 
components, such as parabolic reflectors and lenses, are used to focus 
microwaves with wavelengths as long as 1 m or more. Consequently, the 
microwave engineer will frequently employ low-frequency lumped-parame
ter circuit elements, such as miniaturized inductors and capacitors, as well 
as optical devices in the design of a microwave system. 

MICROWAVE A P P L I C A T I O N S 

The great interest in microwave frequencies arises for a variety of reasons. 
Basic among these is the ever-increasing need for more radio-frequency-
spectrum space and the rather unique uses to which microwave frequencies 
can be applied. When it is noted that the frequency range 109 to 1012 Hz 
contains a thousand sections like the frequency spectrum from 0 to 109 Hz, 
the value of developing the microwave band as a means of increasing the 
available usable frequency spectrum may be readily appreciated. 

At one time (during World War II and shortly afterward), microwave 
engineering was almost synonymous with radar (flAdio Detection And 
Ranging) engineering because of the great stimulus given to the develop
ment of microwave systems by the need for high-resolution radar capable of 
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detecting and locating enemy planes and ships. Even today radar, in its 
many varied forms, such as missile-tracking radar, fire-control radar, 
weather-detecting radar, missile-guidance radar, airport traffic-control radar, 
etc., represents a major use of microwave frequencies. This use arises 
predominantly from the need to have antennas that will radiate essentially 
all the transmitter power into a narrow pencil-like beam similar to that 
produced by an optical searchlight. The ability of an antenna to concentrate 
radiation into a narrow beam is limited by diffraction effects, which in turn 
are governed by the relative size of the radiating aperture in terms of 
wavelengths. For example, a parabolic reflector-type antenna produces a 
pencil beam of radiated energy having an angular beam width of 
140°/(Z)/A0), where D is the diameter of the parabola and A0 is the 
wavelength. A 90-cm (about 3 ft) parabola can thus produce a 4.7° beam at 
a frequency of 10'" Hz, i.e., at a wavelength of 3 cm. A beam of this type can 
give reasonably accurate position data for a target being observed by the 
radar. To achieve comparable performance at a frequency of 100 MHz would 
require a 300-ft parabola, a size much too large to be carried aboard an 
airplane. 

In more recent years microwave frequencies have also come into 
widespread use in communication links, generally referred to as microwave 
links. Since the propagation of microwaves is effectively along line-of-sight 
paths, these links employ high towers with reflector or lens-type antennas 
as repeater stations spaced along the communication path. Such links are a 
familiar sight to the motorist traveling across the country because of their 
frequent use by highway authorities, utility companies, and television net
works. A further interesting means of communication by microwaves is the 
use of satellites as microwave relay stations. The first of these, the Telstar, 
launched in July 1962, provided the first transmission of live television 
programs from the United States to Europe. 

Since that time a large number of satellites have been deployed for 
communication purposes, as well as for surveillance and collecting data on 
atmospheric and weather conditions. For direct television broadcasting the 
most heavily used band is the C band. The up-link frequency used is in the 
5.9- to 6.4-GHz band and the receive or down-link frequency band is 
between 3.7 and 4.2 GHz. For home reception an 8-ft-diameter parabolic 
reflector antenna is commonly used. A second frequency band has also been 
allocated for direct television broadcasting. For this second band the up-link 
frequency is in the 14- to 14.5-GHz range and the down-link frequencies are 
between 10.95 and 11.2 GHz and 11.45 and 11.7 GHz. In this band a 
receiving parabolic antenna with a 3-ft diameter is adequate. At the present 
time this frequency band is not being used to any great extent in the United 
States. It is more widely used in Europe and Japan. 

Terrestrial microwave links have been used for many years. The TD-2 
system was put into service in 1948 as part of the Bell Network. It operated 
in the 3.7- to 4.2-GHZ band and had 480 voice circuits, each occupying a 
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3.1-kHz bandwidth. In 1974, the TN-1 system operating in the 10.7- to 
11.7-GHz band was put into operation. This system had a capacity of 1,800 
voice circuits or one video channel with a 4.5-MHz bandwidth. Since that 
time the use of terrestrial microwave links has grown rapidly. 

At the present time most communication systems are shifting to the 
use of digital transmission, i.e., analog signals are digitized before transmis
sion. Microwave digital communication system development is progressing 
rapidly. In the early systems simple modulation schemes were used and 
resulted in inefficient use of the available frequency spectrum. The develop
ment of 64-state quadrature amplitude modulation (64-QAM) has made it 
possible to transmit 2,016 voice channels within a single 30-MHz RF 
channel. This is competitive with FM analog modulation schemes for voice. 
The next step up is the 256-QAM system which is under development. 

For the ready processing and handling of a modulated carrier, modula
tion sidebands can be only a few percent of the carrier frequency. It is thus 
seen that the carrier frequency must be in the microwave range for efficient 
transmission of many television programs over one link. Without the devel
opment of microwave systems, our communications facilities would have 
been severely overloaded and totally inadequate for present operations. 

Even though such uses of microwaves are of great importance, the 
applications of microwaves and microwave technology extend much further, 
into a variety of areas of basic and applied research, and including a number 
of diverse practical devices, such as microwave ovens that can cook a small 
roast in just a few minutes. Some of these specific applications are briefly 
discussed below. 

Waveguides periodically loaded with shunt susceptance elements sup
port slow waves having velocities much less than the velocity of light, and 
are used in linear accelerators. These produce high-energy beams of charged 
particles for use in atomic and nuclear research. The slow-traveling electro
magnetic waves interact very efficiently with charged-particle beams having 
the same velocity, and thereby give up energy to the beam. Another 
possibility is for the energy in an electron beam to be given up to the 
electromagnetic wave, with resultant amplification. This latter device is the 
traveling-wave tube, and is examined in detail in a later chapter. 

Sensitive microwave receivers are used in radio astronomy to detect 
and study the electromagnetic radiation from the sun and a number of radio 
stars that emit radiation in this band. Such receivers are also used to detect 
the noise radiated from plasmas (an approximately neutral collection of 
electrons and ions, e.g., a gas discharge). The information obtained enables 
scientists to analyze and predict the various mechanisms responsible for 
plasma radiation. Microwave radiometers are also used to map atmospheric 
temperature profiles, moisture conditions in soils and crops, and for other 
remote-sensing applications as well. 

Molecular, atomic, and nuclear systems exhibit various resonance 
phenomena under the action of periodic forces arising from an applied 
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electromagnetic field. Many of these resonances occur in the microwave 
range; hence microwaves have provided a very powerful experimental probe 
for the study of basic properties of materials. Out of this research on 
materials have come many useful devices, such as some of the nonreciprocal 
devices employing ferrites, several solid-state microwave amplifiers and 
oscillators, e.g., masers, and even the coherent-light generator and amplifier 
(laser). 

The development of the laser, a generator of essentially monochro
matic (single-frequency) coherent-light waves, has stimulated a great inter
est in the possibilities of developing communication systems at optical 
wavelengths. This frequency band is sometimes referred to as the ultrami-
crowave band. With some modification, a good deal of the present mi
crowave technology can be exploited in the development of optical systems. 
For this reason, familiarity with conventional microwave theory and devices 
provides a good background for work in the new frontiers of the electromag
netic spectrum. 

The domestic microwave oven operates at 2,450 MHz and uses a 
magnetron tube with a power output of 500 to 1000 W. For industrial 
heating applications, such as drying grain, manufacturing wood and paper 
products, and material curing, the frequencies of 915 and 2,450 MHz have 
been assigned. Microwave radiation has also found some application for 
medical hyperthermia or localized heating of tumors. 

It is not possible here to give a complete account of all the applications 
of microwaves that are being made. The brief look at some of these, as given 
above, should convince the reader that this portion of the radio spectrum 
offers many unusual and unique features. Although the microwave engi
neering field may now be considered a mature and well-developed one, the 
opportunities for further development of devices, techniques, and applica
tions to communications, industry, and basic research are still excellent. 

1.3 MICROWAVE C I R C U I T E L E M E N T S 
A N D A N A L Y S I S 

At frequencies where the wavelength is several orders of magnitude larger 
than the greatest dimensions of the circuit or system being examined, 
conventional circuit elements such as capacitors, inductors, resistors, elec
tron tubes, and transistors are the basic building blocks for the information 
transmitting, receiving, and processing circuits used. The description or 
analysis of such circuits may be adequately carried out in terms of loop 
currents and node voltages without consideration of propagation effects. 
The time delay between cause and effect at different points in these circuits 
is so small compared with the period of the applied signal as to be negligible. 
It might be noted here that an electromagnetic wave propagates a distance 
of one wavelength in a time interval equal to one period of a sinusoidally 
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time-varying applied signal. As a consequence, when the distances involved 
are short compared with a wavelength A0 (A0 = velocity of light/frequency), 
the time delay is not significant. As the frequency is raised to a point where 
the wavelength is no longer large compared with the circuit dimensions, 
propagation effects can no longer be ignored. A further effect is the great 
relative increase in the impedance of connecting leads, terminals, etc., and 
the effect of distributed (stray) capacitance and inductance. In addition, 
currents circulating in unshielded circuits comparable in size with a wave
length are very effective in radiating electromagnetic waves. The net effect 
of all this is to make most conventional low-frequency circuit elements and 
circuits hopelessly inadequate at microwave frequencies. 

If a rather general viewpoint is adopted, one may classify resistors, 
inductors, and capacitors as elements that dissipate electric energy, store 
magnetic energy, and store electric energy, respectively. The fact that such 
elements have the form encountered in practice, e.g., a coil of wire for an 
inductor, is incidental to the function they perform. The construction used 
in practical elements may be considered just a convenient way to build these 
devices so that they will exhibit the desired electrical properties. As is well 
known, many of these circuit elements do not behave in the desired manner 
at high frequencies. For example, a coil of wire may be an excellent inductor 
at 1 MHz, but at 50 MHz it may be an equally good capacitor because of the 
predominating effect of interturn capacitance. Even though practical low-
frequency resistors, inductors, and capacitors do not function in the desired 
manner at microwave frequencies, this does not mean that such energy-dis
sipating and storage elements cannot be constructed at microwave frequen
cies. On the contrary, there are many equivalent inductive and capacitive 
devices for use at microwave frequencies. Their geometrical form is quite 
different, but they can be and are used for much the same purposes, such as 
impedance matching, resonant circuits, etc. Perhaps the most significant 
electrical difference is the generally much more involved frequency depen
dence of these equivalent inductors and capacitors at microwave frequen
cies. 

Low-frequency electron tubes are also limited to a maximum useful 
frequency range bordering on the lower edge of the microwave band. The 
limitation arises mainly from the finite transit time of the electron beam 
from the cathode to the control grid. When this transit time becomes 
comparable with the period of the signal being amplified, the tube ceases to 
perform in the desired manner. Decreasing the electrode spacing permits 
these tubes to be used up to frequencies of a few thousand megahertz, but 
the power output is limited and the noise characteristics are poor. The 
development of new types of tubes for generation of microwave frequencies 
was essential to the exploitation of this frequency band. Fortunately, several 
new principles of operation, such as velocity modulation of the electron 
beam and beam interaction with slow electromagnetic waves, were discov
ered that enabled the necessary generation of microwaves to be carried out. 
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(a) id) (c) 

FIGURE 1.1 
Some common transmission lines, (a) Two-conductor line; (b) coaxial line; (c) shielded strip 
line. 

These fundamental principles with applications are discussed in a later 
chapter. 

For low-power applications microwave tubes have been largely re
placed by solid-state devices, such as transistors and negative resistance 
diodes. However, for high-power applications microwave tubes are still 
necessary. 

One of the essential requirements in a microwave circuit is the ability 
to transfer signal power from one point to another without radiation loss. 
This requires the transport of electomagnetic energy in the form of a 
propagating wave. A variety of such structures have been developed that can 
guide electromagnetic waves from one point to another without radiation 
loss. The simplest guiding structure, from an analysis point of view, is the 
transmission line. Several of these, such as the open two-conductor line, 
coaxial line, and shielded strip line, illustrated in Fig. 1.1, are in common 
use at the lower microwave frequencies. 

At the higher microwave frequencies, notably at wavelengths below 
10 cm, hollow-pipe waveguides, as illustrated in Fig. 1.2, are often preferred 
to transmission lines because of better electrical and mechanical properties. 
The waveguide with rectangular cross section is by far the most common 
type. The circular guide is not nearly as widely used. 

U l (*) (<r) 

FIGURE 1.2 
Some common hollow-pipe waveguides, (a) Rectangular guide; (6) circular guide; (c) ridge 
guide. 
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The ridge-loaded rectangular guide illustrated in Fig. 1.2c is some
times used in place of the standard rectangular guide because of better 
impedance properties and a greater bandwidth of operation. In addition to 
these standard-type guides, a variety of other cross sections, e.g., elliptical, 
may also be used. 

Another class of waveguides, of more recent origin, is surface wave
guides. An example of this type is a conducting wire coated with a thin layer 
of dielectric. The wire diameter is small compared with the wavelength. 
Along a structure of this type it is possible to guide an electromagnetic 
wave. The wave is bound to the surface of the guide, exhibiting an ampli
tude decay that is exponential in the radial direction away from the surface, 
and hence is called a surface wave. Applications are mainly in the millime
ter-wavelength range since the field does extend a distance of a wavelength 
or so beyond the wire, and this makes the effective guide diameter some
what large in the centimeter-wavelength range. A disadvantage of surface 
waveguides and open-conductor transmission lines is that radiation loss 
occurs whenever other obstacles are brought into the vicinity of the guide. 

The development of solid-state active devices, such as bipolar transis
tors and, more notably, field-effect transistors (FET), has had a dramatic 
impact on the microwave engineering field. With the availability of mi
crowave transistors, the focus on waveguides and waveguide components 
changed to a focus on planar transmission-line structures, such as mi-
crostrip lines and coplanar transmission lines. These structures, shown in 
Fig. 1.3, can be manufactured using printed-circuit techniques. They are 
compatible with solid-state devices in that it is easy to connect a transistor 
to a microstrip circuit but difficult to incorporate it as part of a waveguide 
circuit. By using gallium-arsenide material it has been possible to design 
field-effect transistors that provide low noise and useful amplification at 
millimeter wavelengths. At the lower microwave frequencies hybrid inte
grated microwave circuits are used. In hybrid circuit construction the 
transmission lines and transmission-line components, such as matching 
elements, are manufactured first and then the solid-state devices, such as 
diodes and transistors, are soldered into place. The current trend is toward 
the use of monolithic microwave integrated circuits (MMIC) in which both 
the transmission-line circuits and active devices are fabricated on a single 
chip. A variety of broadband MMIC amplifiers have been designed. The 
development of MMIC circuits for operation at frequencies up to 100 GHz is 
well under way. 

A unique property of the transmission line is that a satisfactory 
analysis of its properties may be carried out by treating it as a network with 
distributed parameters and solving for the voltage and current waves that 
may propagate along the line. Other waveguides, although they have several 
properties similar to transmission lines, must be treated as electromagnetic 
boundary-value problems, and a solution for the electromagnetic fields must 
be determined. Fortunately, this is readily accomplished for the common 
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Ground plane 

(a) 

(6) 

FIGURE 1.3 
(a) microstrip transmission line; (b) coplanar transmission line. 

waveguides used in practice. For waveguides it is not possible to define 
unique voltage and current that have the same significance as for a trans
mission line. This is one of the reasons why the field point of view is 
emphasized at microwave frequencies. 

Associated with waveguides are a number of interesting problems 
related to methods of exciting fields in guides and methods of coupling 
energy out. Three basic coupling methods are used: (1) probe coupling, (2) 
loop coupling, and (3) aperture coupling between adjacent guides. They are 
illustrated in Fig. 1.4, and some of them are analyzed later. These coupling 

(a) (/>) (c) 

FIGURE 1.4 
Basic methods of coupling energy into and out of waveguides, (a) Probe coupling; (6) loop 
coupling; (c) aperture coupling. 
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FIGURE 1.5 
Waveguide-to-coaxial-line transitions that use probe coupling as shown in Fig. 1.4a. (Photo
graph courtesy of Ray Moskaluk, Hewlett. Packard Company.) 

devices are actually small antennas that radiate into the waveguide. A 
photograph of a waveguide-to-coaxial -line transition is shown in Fig. 1.5. 

Inductive and capacitive elements take a variety of forms at microwave 
frequencies. Perhaps the simplest are short-circuited sections of transmis
sion line and waveguide. These exhibit a range of susceptance values from 
minus to plus infinity, depending on the length of the line, and hence may 
act as either inductive or capactive elements. They may be connected as 
either series or shunt elements, as illustrated in Fig. 1.6. They are com
monly referred to as stubs and are widely used as impedance-matching 
elements. In a rectangular guide thin conducting windows, or diaphragms, 
as illustrated in Fig. 1.7, also act as shunt susceptive elements. Their 

(a) (b) (c) 

FIGURE 1.6 
Stub-type reactive elements, (a) Series element; (6) shunt element; (c) waveguide stub. 
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Shunt susceptive elements in a waveguide. F IGURE 1.8 
(a) Inductive window; (6) capacitive win- Cylindrical cavity aperture coupled to 
dow. rectangular waveguide. 

inductive or capacitive nature depends on whether there is more magnetic 
energy or electric energy stored in local fringing fields. 

Resonant circuits are used bath at low frequencies and at microwave 
frequencies to control the frequency of an oscillator and for frequency 
filtering. At low frequencies this function is performed by an inductor and 
capacitor in a series or parallel combination. Resonance occurs when there 
are equal average amounts of electric and magnetic energy stored. This 
energy oscillates back and forth between the magnetic field around the 
inductor and the electric field between the capacitor plates. At microwave 
frequencies the LC circuit may be replaced by a closed conducting enclo
sure, or cavity. The electric and magnetic energy is stored in the field within 
the cavity. At an infinite number of specific frequencies, the resonant 
frequencies, there are equal average amounts of electric and magnetic 
energy stored in the cavity volume. In the vicinity of any one resonant 
frequency, the input impedance to the cavity has the same properties as for 
a conventional LC resonant circuit. One significant feature worth noting is 
the very much larger Q values that may be obtained, these being often in 
excess of 104, as compared with those obtainable from low-frequency LC 
circuits. Figure 1.8 illustrates a cylindrical cavity that is aperture coupled to 
a rectangular waveguide. Figure 1.9 is a photograph of a family of wave
guide low-pass filters. The theory and design of microwave filters is given in 
Chap. 8. A photograph of a family of waveguide directional couplers is 
shown in Fig. 1.10. The design of directional couplers is covered in Chap. 6. 
The photograph in Fig. 1.11 shows a family of coaxial-line GaAs diode 
detectors. 

When a number of microwave devices are connected by means of 
sections of transmission lines or waveguides, we obtain a microwave circuit. 
The analysis of the behavior of such circuits is carried out either in terms of 
equivalent transmission-line voltage and current waves or in terms of the 
amplitudes of the propagating waves. The first approach leads to an equiva
lent-impedance description, and the second emphasizes the wave nature of 
the fields and results in a scattering-matrix formulation. Both approaches 
are used in this book. Since transmission-line circuit analysis forms the 
basis, either directly or by analogy, for the analysis of all microwave circuits, 



F I G U R E 1.9 
A family of waveguide low-pass filters for various microwave frequency bands. (Photographs 
courtesy of Ray Moskaluk, Hewlett Packard Company.) 

FIGURE 1.10 

A family of waveguide directional couplers for various microwave frequency bands. (Photo
graphs courtesy of Ray Moskaluk, Hewlett Packard Company.) 

1 3 
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FIGURE 1.11 
Coaxial-line GaAs diode detectors for various 
microwave frequency bands. (Photographs 
courtesy of Ray Moskaluk, Hewlett Packard 
Company.) 

a considerable amount of attention is devoted to a fairly complete treatment 
of this subject early in the text. This material, together with the field 
analysis of the waves that may propagate along waveguides and that may 
exist in cavities, represents a major portion of the theory with which the 
microwave engineer must be familiar. 

The microwave systems engineer must also have some understanding 
of the principles of operation of various microwave tubes, such as klystrons, 
magnetrons, and traveling-wave tubes, and of the newer solid-state devices, 
such as masers, parametric amplifiers, and microwave transistors. This is 
required in order to make intelligent selection and proper use of these 
devices. In the text sufficient work is done to provide for this minimum level 
of knowledge of the principles involved. A treatment that is fully adequate 
for the device designer is very much outside the scope of this book. 

Solid-state oscillators for use as local oscillators in receiver front ends 
have largely replaced the klystron. Solid-state oscillators for low-power 
transmitters are also finding widespread use. Thus the future for microwave 
engineering is clearly in the direction of integrated solid-state circuits and 
the development of the necessary passive components needed in these 
circuits, which are also compatible with the fabrication methods that are 
used. 

In the light of the foregoing discussion, it should now be apparent that 
the study of microwave engineering should include, among other things, at 
least the following: 

1. Electromagnetic theory 

2. Wave solutions for transmission lines and waveguides 
3. Transmission-line and waveguide circuit analysis 
4. Resonators and slow-wave structures 
5. Microwave oscillators and amplifiers 
6. Antennas 
7. Microwave propagation 
8. Systems considerations 
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FIGURE 1.12 
A microwave network analyzer 
used to measure scattering ma
trix parameters. (Photographs 
courtesy of Ray Moskaluk, 
Hewlett Packard Company.) 

Apart from the last three, these are the major topics covered in the text. It 
is not possible to discuss in any great detail more than a few of the many 
microwave devices available and in current use. Therefore only a selected 
number of them are analyzed, to provide illustrative examples for the basic 
theory being developed. The available technical literature may be, and 
should be, consulted for information on devices not included here. Appropri
ate references are given throughout the text. 

The number of topics treated in this text represents a good deal more 
than can be covered in a one-semester course. However, rather than limit 
the depth of treatment, it was decided to separate some of the more 
specialized analytical treatments of particular topics from the less analytical 
discussion. These specialized sections are marked with a star, and can be 
eliminated in a first reading without significantly interrupting the continu
ity of the text.t The student or engineer interested in the design of 
microwave devices, or in a fuller understanding of various aspects of mi
crowave theory, is advised to read these special sections. 

As in any engineering field, measurements are of great importance in 
providing the link between theory and practice at microwave frequencies. 

I Problems based on material in these sections are also marked by a star. 
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Space does not permit inclusion of the subject of microwave measurements 
in this text. A number of excellent texts devoted entirely to microwave 
measurements are available, and the reader is referred to them. 

There are a variety of commercially available instruments that enable 
microwave measurements to be carried out automatically with computer 
control. The photograph in Fig. 1.12 shows a network analyzer equipped to 
measure the scattering-matrix parameters of a microwave device. The scat
tering-matrix parameters, as a function of frequency, can be displayed on a 
Smith chart. The scattering-matrix parameters are commonly used in place 
of the usual impedance and admittance parameters to characterize a mi
crowave device and are described in Chap. 4. 
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CHAPTER 

2 
ELECTROMAGNETIC 

THEORY 

MAXWELL'S EQUATIONS 
Electric and magnetic fields that vary with time are governed by physical 
laws described by a set of equations known collectively as Maxwell's equa
tions- For the most part these equations were arrived at from experiments 
carried out by several investigators. It is not our purpose here to justify the 
basis for these equations, but rather to gain some understanding of their 
physical significance and to learn how to obtain solutions of these equations 
in practical situations of interest in the microwave engineering field. The 
electric field f and magnetic field SB are vector fields and in general have 
amplitudes and directions that vary with the three spatial coordinates x, y, 
z and the time coordinate tf\ In mks units, which are used throughout, the 
electric field is measured in volts per meter and the magnetic field in webers 
per square meter. Since these fields are vector fields, the equations govern
ing their behavior are most conveniently written in vector form.t 

The electric field g and magnetic field & are regarded as fundamental 
in that they give the force on a charge q moving with velocity v; that is, 

F = 9 ( f + v X ^ ) (2.1) 

tBoIdface script type is used to represent vector fields having arbitrary time dependence. 
Boldface roman type is used later for the phasor representation of fields having sinusoidal time 
dependence. 
t i t is assumed that the reader is familiar with vector analysis. However, for convenient 
reference, a number of vector formulas and relations are summarized in App. I. 

1 7 
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where F is the force in newtons, g is the charge measured in coulombs, and 
v is the velocity in meters per second. This force law is called the Lorentz 
force equation. In addition to the % and 3S fields, it is convenient to 
introduce two auxiliary field vectors, namely, the electric displacement 91 
and the magnetic intensity %?. These are related to % and £8 through the 
electric and magnetic polarization of material media, a topic covered in the 
next section. In this section we consider fields in vacuum, or free space, 
only. In this case the following simple relationships hold: 

1 
%f =—SS (2.2a) 

Ma 

3 = e o r (2.26) 

where /x0 = 4TT X 10 ~7 H / m and is called the permeability of vacuum, and 
e0 = 1 0 - 9 / 3 6 i r = 8.854 X 10" 1 2 F / m and is known as the permittivity of 
vacuum. 

One of the basic laws of electromagnetic phenomena is Faraday's law, 
which states that a time-varying magnetic field generates an electric field. 
With reference to Fig. 2.1, let C denote an arbitrary closed curve that forms 
the boundary of a nonmoving surface S. The time rate of change of total 
magnetic flux through the surface S is d(js& • dS)/dt. According to Fara
day's law, this time rate of change of total magnetic flux is equal to the 
negative value of the total voltage measured around C. The later quantity is 
given by -#CJT • d\. Hence the mathematical statement of Faraday's law is 

<£r-dl= - — [&-dS (2.3) 
Tc St Js 

The line integral of £ around C is a measure of the circulation, or "curling 
up," of the electric field in space. The time-varying magnetic field may be 
properly regarded as a vortex source that produces an electric field having 
nonzero curl, or circulation. Although (2.3) is in a form that is readily 
interpreted physically, it is not in a form suitable for the analysis of a 
physical problem. What is required is a differential equation that is equiva
lent to (2.3). This equation may be obtained by using Stokes' theorem from 
vector analysis, which states that the line integral of a vector around a 
closed contour C is equal to the integral of the normal component of the 

FIGURE 2.1 
DIustration of Faraday's law. 
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curl of this vector over any surface having C as its boundary. The curl of a 
vector is written V X S" (App. I), and hence (2.1) becomes 

d i*-d\= f V x g • dS = - — [a-dS 
J* at Jfi 

Since S is completely arbitrary, the latter two integrals are equal only if 
9M 

V X * = - — (2.4) 

which is the desired differential equation describing Faraday's law. The curl 
is a measure of the circulation of a vector field at a point. 

Helmholtz's theorem from vector analysis states that a vector field is 
completely denned only when the curl, or circulation, of the field, and also 
its divergence, are given at every point in space. Now the divergence (or 
convergence) of field lines arises only if a proper source (or sink) is available. 
The electric field, in addition to having a curl produced by the vortex source 
-BSS/dt, has a divergence produced by electric charge. Gauss' law states 
that the total flux of 9i = e 0 f from a volume V is equal to the net charge 
contained within V. If p represents the charge density in coulombs per cubic 
meter, Gauss' law may be written as 

6e0&-dS= f PdV (2.5) 
rS Jv 

This equation may be converted to a differential equation by using the 
divergence theorem to give 

6 e0g • d S = f V • s0& dV= { pdV 
JS Jy Jy 

Since V is arbitrary, it follows that 

V • €(,£"= V -as =p (2.6) 

where V -31 is the divergence of 9>, that is, a measure of the total outward 
flux of 9) from a volume element, divided by the volume of the element, as 
this volume shrinks to zero. Since both the curl and divergence of the 
electric field are now specified, this field is completely determined in terms 
of the two sources, HSff/dt and p. 

To complete the formulation of electromagnetic phenomena, we must 
now relate the curl and divergence of the magnetic field to their sources. 
The vortex source that creates the circulation, or curl, of the magnetic field 
-** is the current. By current is meant the total current density, the 
conduction current density f measured in amperes per square meter, the 
displacement current density d^/Ht, and the convection current pv consist
ing of charge in motion if present. Convection current is not included in this 
chapter. However, in the chapter dealing with microwave tubes, convection 
current plays a central role and is discussed in detail there. The displace
ment current density flS/dt was first introduced by Maxwell, and leads to 
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the possibility of wave motion, as will be seen. Mathematically, the circula
tion of 3f around a closed contour C bounding a surface S as in Fig. 2.1 is 
given by 

r c <>a> r 
&>%• • d\ = / — • dS + I/-clS (2 7} 
~c JS M Js ' 

Application of Stokes' law to the left-hand side yields 

I V xjr-dS= / — • dS+ \jr 
Js

 Js ot V 

from which it may be concluded that 

dS 

(131 
V X / = - + / (2.8) 

Since magnetic charge, as the dual of electric charge, does not exist in 
nature, it may be concluded that the divergence of 38 is always zero; i.e., the 
flux lines of 38 are always closed since there are no charges for them to 
terminate on. Thus the net flux of 38 through any closed surface S is 
always zero; i.e., just as much flux enters through the surface as leaves it. 
Corresponding to (2.5) and (2.6), we thus have 

i*m dS = 0 (2.9) 

V-& = 0 (2.10) 

Conduction current, of density f, is the net flow of electric charge. 
Since charge is conserved, the total rate of flow of charge out of a volume V 
is equal to the time rate of decrease of total charge within V, as expressed fay 
the equation 

<(>S- dS= - - / PdV (2.11) 

This is the continuity equation, and it may be converted to a differential 
equation by using the divergence theorem in the same manner as was done 
to derive (2.6) from (2.5). It is readily found that 

V -f + ^ = 0 (2.12) 
ot 

This equation may also be derived from (2.8) and (2.6). Since the divergence 
Of the curl of any vector is identically zero, the divergence of (2.8) yields 

<9V -3J 

° = ̂ - + V^ 
Using (2.6) converts this immediately into the continuity equation (2.12). If 
the displacement current density d3/tit had not been included as part of 
the total current density on the right-hand side of (2.8), that equation would 

i 
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have led to the conclusion that V •/ = 0, a result inconsistent with the 
continuity equation unless the charge density was independent of time. 

In summary, the four equations, known as Maxwell's equations, that 
describe electromagnetic phenomena in vacuum are 

dSS 
V x f = - — (2.13a) 

at 
~>9> 

V X ^ = - + / (2.136) 

V-&=p (2.13c) 

V - ^ = 0 (2.13d) 

where in (2.136) the convection current pv has not been included. The 
continuity equation may be derived from (2.136) and (2.13c), and hence 
contains no additional information. Although -d£J8/dt may be regarded as a 
source for i>, and H3i/dt as a source of %", the ultimate sources of an 
electromagnetic field are the current f and charge p. For time-varying 
fields, that charge density p which varies with time is not independent of 

f since it is related to the latter by the continuity equation. As a conse
quence, it is possible to derive the time-varying electromagnetic field from a 
knowledge of the current density / alone. 

It is not difficult to show in a qualitative way that (2.13a) and (2.136) 
lead to wave propagation, i.e., to the propagation of an electromagnetic 
disturbance through space. Consider a loop of wire in which a current 
varying with time flows as in Fig. 2.2. The conduction current causes a 
circulation, or curling, of the magnetic field around the current loop as in 
Fig. 2.2a (for clarity only a few flux lines are shown). The changing 
magnetic field in turn creates a circulating, or curling, electric field, with 
field lines that encircle the magnetic field lines as in Fig. 2.26. This 
changing electric field creates further curling magnetic field lines as in Fig. 
2.2c, and so forth. The net result is the continual growth and spreading of 
the electromagnetic field into all space surrounding the current loop. The 

(al (b) 

T> drfi (rrh n 
FIGURE 2.2 

<*• x— -^y The growth or generation of an 
l f l g electromagnetic wave from a 

3C current loop. 
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disturbance moves outward with the velocity of light. A little thought will 
show that the same characteristic mutual effect between two quantities 
must always exist for wave motion. That is, quantity A must be generated 
by quantity B, and vice versa. For example, in an acoustical wave the excess 
pressure creates a motion of the adjacent air mass. The motion of the air 
mass by virtue of its inertia in turn creates a condensation, or excess 
pressure, farther along. The repetition of this process generates the acousti
cal wave. 

For the most part, as at lower frequencies, it is sufficient to consider 
only the steady-state solution for the electromagnetic field as produced by 
currents having sinusoidal time dependence. The time derivative may then 
be eliminated by denoting the time dependence of all quantities as eJal and 
representing all field vectors as complex-phasor space vectors independent 
of time. Boldface roman type is used to represent these complex-phasor 
space vectors. For example, the mathematical representation for the electric 
field ^(x,y, z, t) will be E{x,y,z)eJ"''. Each component of E is in general 
complex, with a real and imaginary part; thus 

E = a r ( £ , r + jExl) + a v ( £ v r +jEyt) + a , ( E „ +jEzi) (2.14) 

where the subscript r refers to the real part and the subscript / refers to 
the imaginary part. Each component is allowed to be complex in order to 
provide for an arbitrary time phase for each component. This may be seen 
by recalling the usual method of obtaining g" from its phasor representa
tion. That is, by definition, 

Z(x,y,z,t) = R e [ E ( x , y , 2 ) e ^ ' ] (2.15) 

Thus Ex = Re[(Exr+jExl)e->«'] 

= VExr + Wi COS(iOt + <J>) 

where <b = t an"HE x i /E x r ) . Unless Ex had both an imaginary part jExi 

a real part Exr, the arbitrary phase angle <t> would not be present. As 
general rule, the time factor eJmt will not be written down when the phase 
representation is used. However, it is important to remember both the 
that such a time dependence is implied and also the rule (2.15) for obtair 
the physical field vector from its phasor representation. The real 
imaginary parts of the space components of a vector should not be confus 
with the space components; for example, Exr and Exi are not two 
components of Ex since the component ax Ex is always directed along the 
axis in space, with the real and imaginary parts simply accounting for 
arbitrary time phase or origin. 

A further point of interest in connection with the phasor represent 
tion is the method used for obtaining the time-average value of a fie 
quantity. 
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For example, if 

r= aJ.E1cos(«j« + 6-i) + a.yE^cos(o}t + <£2) + azE3cos(w< + 0 3 ) 

the time-average value of \<g I is 

1 fT 
— I % -gdt 

1 r 
= — f [Efcos2(cot + <t>x) + Ef cos2(«* + <f>2) 

+E$cos(wt 4- <f>3)] dt 

= ±(E? + Ei + EZ) (2.16) 

where T is the period, equal to 2ir/w. The same result is obtained by simply 
taking one-half of the scalar, or dot, product of E with the complex 
conjugate E*; thus 

! * £ = |E • E* = | [ ( J £ , + E* ) + ( 4 , . + 2 $ ) + (C + *S) ] (2-17) 

since E , E * = ( E , r +./E_r,XEIr - . / « * ) = E*r + g £ , etc. This is equal to 
(2.16), since £? = E%. + E*„ etc. 

By using the phasor representation, the time derivative d/dt may be 
replaced by the factor jm since deJ"'/dt =jweJ"1'. Hence Maxwell's equa
tions, with steady-state sinusoidal time dependence, become 

V X E - -jcoB (2.18a) 

V x H = J a , D + J (2.186) 

V - D = p (2.18c) 

V - B = 0 • (2.l8aT) 

CONSTITUTIVE RELATIONS 

In material media the auxiliary field vectors & and 91 are defined in terms 
of the polarization of the material and the fundamental field quantities 38 
and g. The relationships of & to 38 and of & to f are known as 
constitutive relations, and must be known before solutions for Maxwell's 
equations can be found. 

Consider first the electric case. If an electric field & is applied to a 
material body, this force results in a distortion of the atoms or molecules in 
such a manner as to create effective electric dipoles with a dipole moment 
3* per unit volume. The total displacement current is the sum of the 
vacuum displacement current de0g/dt and the polarization current d3"/dt. 
To avoid accounting for the polarization current d9"/U explicitly, the 
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i<-p = qx 

-1 
FIGURE 2.3 
Model for determining the po
larization of an atom. 

displacement vector 3> is denned as 

91 = e0g +&> (2.19) 

whence the total displacement current density can be written as 33i/dt. 
For a great many materials the polarization & is in the direction of 

the electric field <g*, although rarely will £P have the same time phase as &. 
A simple classical model will serve to illustrate this point. Figure 2.3a 
shows a model of an atom consisting of a nucleus with charge q surrounded 
by a spherically symmetrical electron cloud of total charge -q. The applica
tion of a field I? displaces the electron cloud an effective distance A: as in 
Fig. 2.36. This displacement is resisted by a restoring force kx proportional 
to the displacement (Prob. 2.1). In addition, dissipation, or damping, effects 
are present and result in an additional force, which we shall assume to be 
proportional to the velocity. If m is the effective mass of the electron cloud, 
the dynamical equation of motion is obtained by equating the sum of the 
inertial force md2x/dt2, viscous force tni> dx/dt, and restoring force kx to 
the applied force -q%\ thus 

d2x dx 
m—nr + mv—r + kx = -c dt2 dt 

(2.20) 

When I? = Ex cos <ot, the solution for x is of the form x = -A cosicot + <£)• 
If Ex cos wi is represented by the phasor Ex, and x by the phasor X, 

the solution for X is readily found to be 

J \ . — <> . • 
—o) m +j(oum + k 

and hence 

x = Re(Xejul) =Acos(o>t + 4>) 

where 
(q/m)Ex 

where 
[ ( y - ^ ) 2 + <oV>]1/2 

(l)U 

d> — t a n 2 2 
O) — CUQ 

and we have replaced k/m by w0. 
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The dipole moment is px, where 

q*Ex 

- oil) + o 
px = -qx = — TTTj cos(a>* + *) (2.21) 

>,[{OJ2-O>1) -

For N such atoms per unit volume the polarization per unit volume is 
<PX = Npx and the displacement &x is given by 

Nq2Ex 
3X = e0Ex. cos tot H r p ^ cos( (ot + 4>) 

mUaj2 - (olf + w V j 

This equation may also be put into the following form: 

[eQ(v2
Q - w2) + Nq2/m\2 + (a>ve0) ®* = EX 

2 . , , 2 > ' / 2 

2 \ 2 i < . , . . \ 2 ( w 2 ~G>2) +(U>1>) 
cos(tot - B) (2.22) 

Oil' _ 0)U 
where 6 = tan —5 5 - tan —5 = —-= 

wl - o>i m% - or + Nqz/e0m 

Two points are of interest in connection with (2.22). One is the linear 
relationship between & and §*, and hence between S> and £\ The second is 
the phase lag in 3 relative to W whenever damping forces are present. 

The phase difference between £?, W, and 3 makes it awkward to 
handle the relations between these quantities unless phasor representation 
is used. In phasor representation (2.21) and (2.22) become 

9 2 £, 
(a>'o — w2 + j<>iv)m 

(2.23) 

e0(wo - a,2 +jwf) + Nq2/m 

Dx = _H 2 [ H-^—Ex (2.24) 
io0 — to + ja)v 

In general, for linear media, we may write 

P = *o*,E (2.25) 
where xe

 xs a complex constant of proportionality called the electric suscep
tibility. The equation for D becomes 

D = «0E + P = e 0 ( l +Xe)E 
= eE = ere0E = (e'-je")E (2.26) 

where e = e0(l + %e) is called the permittivity, and er = e /e 0 , the dielectric 
constant of the medium. Note that e is complex whenever damping effects 
are present and that the imaginary part is always negative. A positive 
imaginary part would imply energy creation instead of energy loss. [The 
reader may verify from (2.22) that 0 is always positive.] 

Loss in a dielectric material may also occur because of a finite conduc
tivity a. The two mechanisms are indistinguishable as far as external effects 
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related to power dissipation are concerned. The curl equation for H may be 
written as 

V X H = jw(e'-je")E + <TE 

where J = crE is the conduction current density in the material. We may 
also write 

V X H =jio e'-j[e" + - E = jwe'E + (we" + cr)E (2.27) 

where by e" + cr/io may be considered as the effective imaginary part of the 
permittivity, or we" + a as the total effective conductivity. 

The loss tangent of a dielectric medium is defined by 

+ cr 
tan <5, = 

we 
(2.28) 

Any measurement of tan 5, always includes the effects of finite conductivity 
cr. At microwave frequencies, however, we" is usually much larger than a 
because of the large value of w. 

Materials for which P is linearly related to E and in the same direction 
as E are called linear isotropic materials. Nonlinear effects generally occur 
only for very large applied fields, and as a consequence are rarely encoun
tered in microwave work. However, nonisotropic material is of some impor
tance. If the crystal structure lacks spherical symmetry such as that in a 
cubic crystal, it may be anticipated that the polarization per unit volume 
will depend on the direction of the applied field. In Fig. 2.4 a two-dimen
sional sketch of a crystal lacking cubic symmetry is given. The polarization 
produced when the field is applied along the x axis may be greater than that 
when the field is applied along the y or z axis because of the greater ease of 
polarization along the x axis. In this case we must write 

DT = exxEx Dy = eyyEy D, = e E (2.29) 

where exx, eyy and ezz are, in general, all different. The dielectric constants 
erx = e*xAo> erv = evyAo> *r* = e « A o a™ known as the principal dielectric 
constants, and the material is said to be anisotropic. If the coordinate 
system used had a different orientation with respect to the crystal structure, 

C B T - -

6--
— & " -

-4>- - & ' FIGURE 2.4 
A noncubic crystal exhibiting anisotropic effects. 
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the relation between D and E would become 

Dx = exxEx + exyEy + exzE2 

Dy = eyxEx + eyyEy + zyzEz 

Dt = e!XEx + ezyEy + ezzEz 

or in matrix form, 

\DA \£xx exy 
e «l \EX 

D> = f.v* eyy *y* % 
Dz . € « *m €". E; 

(2.30) 

Only for a particular orientation of the coordinate system does (2.30) reduce 
to (2.29). This particular orientation defines the principal axis of the medium. 
For anisotropic media the permittivity is referred to as a tensor permittivity 
(a tensor of rank 2 may be represented by a matrix). For the most part the 
materials dealt with in this text are isotropic. Nevertheless, an awareness of 
the existence of anisotropic media and of the nature of the constitutive 
relations for such media is important. 

For the magnetic case, H is defined by the constitutive relation 

M o H = B - /x0M (2.31) 

where M is the magnetic dipole polarization per unit volume. For most 
materials (ferromagnetic materials excluded), M is linearly related to B and 
hence to H. By convention this is expressed by the equation 

M = * m H (2.32) 

where x„, is called the magnetic susceptibility. Substituting (2.32) into 
(2.31) gives 

B = M o (M + H) = M o ( l + A - m ) H = AtH (2.33) 

where fj. = fi0(l + xm) is called the permeability. 
As in the electric case, damping forces cause p. to be a complex 

parameter with a negative imaginary part; that is, M = M ~JfJ-"- Also, there 
are magnetic materials that are anisotropic; in particular, ferrites are 
anisotropic magnetic materials of great usefulness at microwave frequen
cies. These exhibit a tensor permeability of the following form: 

Mi jfJ-2 0 1 

[ M ] = -VM2 Mi 0 (2.34) 

0 0 M a 

when a static magnetic field is applied along the axis for which the perme
ability is fj.3. A discussion of ferrites and their uses is presented later; so 
further comments on their anisotropic properties is deferred until then. 

In Sec. 2.1 care was taken to write Maxwell's equations in a form valid 
not only in vacuum but also in material media. Thus (2.13) and (2.18) are 
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valid in general, but with the constitutive relations of this section replacing 
the free-space relations (2.2). Note, however, that it is not possible to write, 
in general, constitutive relations of the form & = eg", £& = p.St, when 2 
and &, and likewise S8 and St, are not in time phase. For arbitrary time 
dependence we must write instead 3 = e„l? + 9", .<% = n0(M' +J?) and 
relate & and Jt to S and St through the dynamical equation of motion 
governing the polarization mechanism. This difficulty may be circumvented 
by using the phasor representation for which relations such as D = eE are 
perfectly valid because the complex nature of e accounts for the difference 
in time phase.! It should be pointed out, however, that for many materials 
used at frequencies up to and including microwaves, the losses are so small 
that 3 and %, and also St and .5?, are very nearly in time phase. In such 
cases constitutive relations such as 3 = ei>, 9S = p.St apply with negligible 
error. Significant departure in time phase between 3 and W or £8 and 
St occurs only in the vicinity of a natural resonance frequency of the 
equation of motion for the polarization. 

2 .3 S T A T I C F I E L D S 

For electric and magnetic fields that are independent of time, the electric 
and magnetic fields are not coupled, and likewise the current and charge are 
not coupled. Putting all time derivatives equal to zero in (2.13) yields^ 

V x E = 0 (2.35a) 

V • eE = p (2.356) 

V X H = J (2.36a) 

V • B = 0 (2.366) 

V • J = 0 (2.36c) 

The last equation is the continuity equation for the special case dp/dt = 0. 
The static electric field has zero curl, or circulation, and this means 

that the line integral of E around any arbitrary closed contour is zero. This 
property is just the condition that permits E to be derived from the gradient 
of a scalar potential function Q> that is, since V X V<J> is identically zero, we 
may put 

E = - V O (2.37) 

tThe situation here is like that encountered in ac circuit analysis, where in phasor notation the 
voltage V equals the current / multiplied by the impedance Z; that is, V = IZ. An Ohm's law 
of this sort cannot be written for the physical voltage and current, for if V= Re(VeJ"') = 

Vcos uti, then J* = rM/e-""') = [V/(R2 + X2)>/z]coa(.ojt - rf.), where i> = t a n - \X/R1-
Clearly, V cannot be equated to J multiplied by a constant because of the difference in phase. 
±For static fields we are using boldface roman type to represent the physically real vector fields-
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• » / 
x = a 

<j> = 0 / = 0 
FIGURE 2.5 
A simple potential problem. 

Substituting (2.37) into (2.356) and assuming that e is a constant indepen
dent of the coordinates give 

- V - E = V 2 4 > = - - (2.38) 

This equation is known as Poisson's equation. When p = 0, Laplace's 
equation 

V2<t> = 0 (2.39) 

is obtained. The basic field problem in electrostatics is to solve Poisson's or 
Laplace's equation for a potential function $ that satisfies specified bound
ary conditions. 

As a simple example consider two infinite conducting planes at x = 0, a, 
as in Fig. 2.5. Let charge be distributed with a density p = pQx between the 
two plates.t It is required to find a <1> which is a solution of Poisson's 
equation and which equals zero on the plane x = 0 and V on the plane 
x = a. The potential will depend on x only; so (2.38) becomes 

d 2 * 
'dxT •Pa' 

Integrating this equation twice gives <t> = - p 0 x 3 / 6 e 0 + C,* + C2. Impos
ing the boundary conditions at x = 0, a yields 0 = C2, 

Poa 

tThe example is somewhat artificial since the assumed charge distribution is not a stable one; 
i.e., the electric field it produces would cause the charge distribution to change. 
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and hence C2 = 0, C, = V/a + p 0 a 2 / 6 e 0 . The solution for <t> is thus 

p0x
3 p0a

2x V 
4> = _ —— + _ + % 

6e0 6e0 a 

The electric field between the two plates is 

'Po* 2 _ Po^_ _ V\ 

i 2e0 6e0 a J 

The solution for the electrostatic field is greatly facilitated by introduc
tion of the scalar potential 4>. For the same reason it is advantageous to 
introduce a potential function for the solution of magnetostatic problems. 
Since B always has zero divergence, it may be derived from the curl of a 
vector potential A; that is, 

B = V x A (2.40) 

This makes the divergence of B vanish identically because the divergence 
the curl of a vector is identically zero. Using (2.40) in (2.36a) and assuming 
that p. is constant yields the equation 

A vector identity of use here i s V X V x A = V V - A - V 2 A . The divergence 
of A may be placed equal to zero without affecting the value of B derived 
from the curl of A, and hence the equation for A is 

V 2 A= - M J (2.41) 

This equation is a vector Poisson's equation. In rectangular coordinates, 
(2.41) represents three scalar Poisson's equations, the first being 

*'K = -fiJK (2.42) 

In a curvilinear coordinate system, such as a cylindrical coordinate system, 
(2.41) cannot be written in such a simple component form. The reason ' 
that, for example, V 2 a r Ar does not equal a rV

2A r because, even though the 
unit vector ar is of constant length, its orientation varies from point to 
point since it is always directed along the radius vector from the origin to 
the point under consideration. The evaluation of V2A in curvilinear coordi
nates is made by using the vector identity quoted above to give V2A = W • 
A - V X V X A. These latter operations are readily carried out. 

The interest in static field solutions at microwave frequencies arises 
because the field distribution over a cross-sectional plane of a transmission 
line is a static field distribution and because static field solutions are good 
approximate solutions to the actual fields in the vicinity of obstacles that ar -
small compared with the wavelength. The potential theory introduced above 
may be extended to the time-varying case also, and this is done in a 
following section. 

E = -V4> = - a , — = a 
i)x 
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WAVE EQUATION 
For convenience, the two curl equations are repeated here: 

V x r = ——- (2.43a) 
at 

33! 
V X / = — (2.436) 

at 
where it is assumed for the present that the current density J is zero in the 
region of interest. These equations, together with the assumed constitutive 
relations S = eg, £8 = \x&, may be combined to obtain a separate equation 
for each field. The curl of (2.43a) is 

V x V X f = = - p . 
dt at 

Using (2.436) and expanding V X V x ? now yields 

d2g 
v v - r - v 2 r= -/«•-, 

Since p is assumed zero and e is taken as a constant, V • ^ == 0, and we 
obtain 

V 2 f - lie—£ = 0 (2.44) 

which is a three-dimensional wave equation. The velocity of propagation v is 
equal to (p .e) _ 1 / 2 . In free space v is equal to the velocity of light c. To 
illustrate the nature of the solutions of (2.44), consider a case where g has 
only an x component and depends only on the z coordinate. In this instance 

d2Zx d2Zx 

Any function of the form f(z - vt) is a solution of this equation since 

and hence 

dz2 dt2 d(vtf 

d2f i o2f _ 

This solution is illustrated in Fig. 2.6 and clearly represents a disturbance 
propagating in the positive z direction with velocity v. An equally vahd 
solution is f(z + vt) and represents a disturbance propagating in the 
negative z direction. 
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/ ( / 

nz-vt 

Az-vt2) 
FIGURE 2.6 
Propagation of a disturbance f(z - vt). 

By eliminating the electric field, it is readily found that the magnetic 
field %" also satisfies the wave equation (2.44). In practice, however, we 
solve the wave equation for either «? or ^ and then derive the other field by 
using the appropriate curl equation. When constitutive relations such as 
9> = e& and £8 =» (i*? cannot be written, the polarization vectors & and 
J! must be exhibited explicitly in Maxwell's equations. Wave equations for 
f and 2? may still be derived, but 9> and Jt will now enter as equivalent 
sources for the field (which they actually are). The derivation is left as a 
problem at the end of this chapter. 

For harmonic time dependence, the equation obtained in place of 
(2.44) is 

V2E + A2E = 0 (2.45) 

where fe2 «• co2fie. This equation is referred to as the Helmholtz equation, or 
reduced wave equation. The constant k is called the wave number and may 
be expressed in the form 

. to f 2v 
k = toy fie = — = 2ir— *• 

v v A 

(2-46) 

where the wavelength A is equal to v/f. In free space the wave number will 
be written as k0, and is equal to wy^o^o = 2ir/A0. The magnetic field H, as 
may be surmised, satisfies the same reduced wave equation. 

In a medium with finite conductivity <r, a conduction current / = 
a£ will exist, and this results in energy loss because of Joule heating. The 
wave equation in media of this type has a damping term proportional to cr 
and the first time derivative of the field. In metals, excluding ferromagnetic 
materials, the permittivity and permeability are essentially equal to their 
free-space values, at least for frequencies up to and including the microwave 
range. Thus Maxwell's curl equations become 

V x r = - Mo 
AT 

V X / = e n — •7F+** 
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Elimination of X" in the same manner as before leads to the following wave 
equation for &: 

V2i? - n0cr— - n0e0^- = 0 (2.47) 

The magnetic field -#* also satisfies this equation. For the time-harmonic 
case damping effects enter in through the complex nature of e and /x, and 
hence the wave number k. It should be recalled here that, as shown by 
(2.27), a finite conductivity cr is equivalent to an imaginary term in the 
permittivity e. In the present case the equivalent permittivity is e = e0 — 
jcr/u> and the Helmholtz equation is 

V2E + w2ji0ej 1 -j— IE = 0 (2.48) 
I wf0 ; 

In metals the conduction current o-E is generally very much larger than the 
displacement current we0E, so that the latter may be neglected. For exam
ple, a is equal to 5.8 X 107 S / m for copper, and at a frequency of 1010 Hz, 
a/e0 = 0.55, which is much smaller than tr. Only for frequencies in the 
optical range will the two become comparable. Thus (2.47) may be simpli
fied to 

V2g- - M o<r— = 0 (2.49) 

and (2.48) reduces to 

V 2 E - > M 0 ° - E = 0 (2.50) 

Equation (2.49) is a diffusion equation similar to that which governs the 
flow of heat in a thermal conductor. 

E N E R G Y A N D P O W E R 

When currents exist in conductors as a result of the application of a suitable 
potential source, energy is expended by the source in maintaining the 
currents. The energy supplied by the source is stored in the electric and 
magnetic fields set up by the currents or propagated (radiated) away in the 
form of an electromagnetic wave. Under steady-state sinusoidal time-vary
ing conditions, the time-average energy stored in the electric field is 

1 r 1 r 
W = R e - / E - D * d V = - / c ' E - E * r f V (2.51a) 

4 •'v 4 -V 
If e is a constant and real, (2.51a) becomes 

We=^-(E-E*dV (2.516) 
4 Jv 
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The time-average energy stored in the magnetic field is given by 
1 t l r 

W„, = Re - / H* • B dV = - / ii'H • H* dV (2.52a) 
4 Jv 4 J\f 

which, for ii real and constant, becomes 

Wm=jfH-H*dV (2.526) 

These expressions for We and Wm are valid only for nondispersive media, 
i.e., media for which e and ti can be considered independent of w in the 
vicinity of the angular frequency w with which the fields vary. In general, 
when the losses are small, so that e" •« e' and /x" <sc it, we have 

1 , dwe' 
Wc= - / E - E * - -dV (2.53a) 

4 -V <'a> 
1 - SOJU! 

Wm=- / H - H * — d V (2.536) 

for the time-average stored electric and magnetic energy. 
The above equations for the time-average energy in a dispersive 

medium may be established by considering a classical model of the polariza
tion mechanism similar to that discussed in Sec, 2.2. In a unit volume let 
the effective oscillating charge of the dipole distribution be —a with an 
effective mass m. Let the damping force be equal to mu times the velocity 
of the charge. This damping force takes account of collision effects and loss 
of energy by radiation from the oscillating charge. The equation of motion 
for the polarization charge displacement u is 

d2u du 

dt2 dt 

where u is parallel to the direction of the field ?\ In this equation k is 
elastic constant giving rise to the restoring force. This constant arises from 
the Coulomb forces acting on the displaced charge, and hence is of electrical 
origin. The dipole polarization 3" is -qu, and the polarization current 

f = d.9>/dt. Introducing the polarization current into the equation of 
motion gives 

m dfB mu k rt 

q1 dt o / p q J 

This equation is formally the same as that which describes the current in a 
series LCR circuit with an applied voltage 7? equal to W and with 

m, mv q2 

q2 Q k 

An equivalent circuit describing the polarization is illustrated in Fig. 2.7. 
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Jp ° r$VW' WV 
L R 

c FIGURE 2.7 
Equivalent circuit For polarization current. 

a time dependence e-""' is assumed and phasor notation is used, 

R-JX 
JP-EY-EWTX^ 

where Y is the input admittance and X = c>L - 1 /wC Since P = e0xeE 
and Jp =j(oP, we see that 

ft>e0A-e = <»e0{x'e -JX'e) = ~JY = 

and hence 

-X-jR 

R2 + X2 

-X 

R2Txi "We = D 2 , Y 2 (2.54a) 

The time-average power loss associated with the polarization is the 
same as the power loss in R in the equivalent circuit. This is given by 

1 R 
__ p p * 
2 R2 + X2 

Pi = ^E*-^—-, = -EE*o>eQx"e (2-55) 

per unit volume. This equation shows that (Df0^ = we" is an equivalent 
conductance. The time-average energy stored in the system is of two forms. 
First there is the kinetic energy of motion, that is, \m(du/dt)2 averaged 
over a cycle, and this is equal to the magnetic energy stored in the inductor 
in the equivalent circuit. This time-average kinetic energy per unit volume 
is given by 

I 

4" 4~ R2~X'< 
Um - -Upj; = -EE--^~—-2 (2 .56a) 

The second form of stored energy is the potential energy associated with the 
charge displacement. The time-average value of this energy is equal to the 
time-average electric energy stored in the capacitor C in the equivalent 
circuit, and is given by 

The total time-average energy stored per unit volume is U = Um + Ue. Note 
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that U is not given by \EE*e0x'e- The latter expression gives 

= -EK 
4 

l / w 2 C - L 

fl2 + X2' = u-u 
or the difference between the potential and kinetic energy stored. 

To obtain an expression for the total stored energy, note that 

d 

do) 
1 -

2X-L + l/<o2C 

R2+X2 \" R2 + X2 

and we then have 1 - 2X2/(R2 + X2) 

d 

R2 + X 2 

For a low-loss system, R2 <s X2, 
— 1; so 

d I -X 

d^xWTx2 

Multiplying this expression by \EE* now gives the total 
energy stored, as comparison with (2.56a) and (2.56b) shows. Thus the final 
expression for the time-average electric energy stored in a volume V is given 

-(<»«OA£) = 
L + l / w 2 C 

R2 + X2 

time-average 

by the volume integral of U = Ue + U„ 
e0(E - E * ) / 4 a n d i s 

W. 

-L 
4 

E • E 

plus the free-space energy density 

E*\dV 

dV 
fl«>toX'e 

iu> 

since e 
A 

1 ,- d(oe' 
= - / E - E * dV 

4 -fy do) 
= e0(l + x'*)- This equation is the result given earlier by (2.53a). 
similar type of model may be used to establish (2.536) for 

average stored magnetic energy. It should be pointed out that under ti 
varying conditions the average stored energy associated with either electric 
or magnetic polarization includes a kinetic-energy term. This term is negh" 
gible at low frequencies and also when e' and /j.' are essentially independent 
of ft> for the range of a> of interest. When this energy is not negligible, the 
modified expressions for stored energy must be used. 

Although (2.53) is more general than (2.51) and (2.52), we shall, in | 
majority of instances, use the latter equations for the stored energy. 
thereby tacitly assume that we are dealing with material that is nondisf 
sive or very nearly so. 

The time-average power transmitted across a closed surface S is g" 
by the integral of the real part of one-half of the normal component of tt 
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complex Poynting vector E X H*; that is, 

1 , 
P = R e - ^ E X H * • dS (2.57) 

The above results are obtained from the interpretation of the complex 
Poynting vector theorem, which may be derived from Maxwell's equations 
as follows: If the divergence of E X H*, that is, v" • E X H*. is expanded, we 
obtain 

V • E X H* = (V X E) • H* - (V x H*) • E 

From Maxwell's equations V X E = -jwB and V X H* = - j w D * + J*, 
and hence 

V • E X H* = - j w B • H* +jwD* • E - E • J* 

The integration of this equation throughout a volume V bounded by a 
closed surface S gives the complex Poynting vector theorem; i.e., 

I f ! i 
- I V • E X H* dV = - A E X H* • rfS 
2 JM 2% 

2TS 

to 

2 ~ V ~ 2 V 

(1) , 1 , 

= - j - (B -H* -E-l)*)dV- - E -J*dV 
A Jw 2 J\r 

(2.58a) 

where the divergence theorem has been used on the left-hand side integral. 
The above result may be rewritten as 

1 , , j B • H* E • D* \ 

i , 
+ - / E - J * r f V (2.586) 

2 -'v 

where -dS is a vector element of area directed into the volume V. If the 
medium in V is characterized by parameters e =* e' — je", y. = M' ~ ./M". anc^ 
conductivity o-, the real and imaginary parts of (2.58) may be equated to 
give 

1 

2% v 2 V 
R e - 0 E X H * -(-dS) = - f ( M " H - H * +e"E-E*)dV 

1 t 

+ - aE-E*dV (2 .59a) 
2 j\t V 

1 , , / H • H* E • E* \ 
I m - f h E x H * - ( - d S ) = 2ft> U' 7— -* \ dV (2.596) 

2. 's Jv\ 4 4 / 
Equation (2.59a) is interpreted to state that the real electromagnetic power 
transmitted through the closed surface S into V is equal to the power loss 
produced by conduction current o-E, resulting in Joule heating plus the 
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power loss resulting from polarization damping forces. Note that we" could 
be interpreted as an equivalent conductance, as pointed out in Sec. 2.2. 
equation also shows that /i" and e" must be positive in order to represe-
energy loss, and hence the imaginary parts of e and /J. must be negativ-
Equation (2.596) states that the imaginary part of the complex rate 
energy flow into V is equal to 2w times the net reactive energy Wm — 
stored in the magnetic and electric fields in V. The complex Poynting ve~ 
theorem is essentially an energy-balance equation. 

A result analogous to the above may be derived for a conventio 
network, and serves to demonstrate the validity of the interpretation of 
(2.58). Consider a simple series RLC circuit as in Fig. 2.7. If the current in 
the circuit is 
given by 

/ and the applied voltage is V, the complex input power 

1 1 1 
-VI* = -ZII* = - f f* 
2 2 2 

R +ja,L- — 

The time-average power loss in R, magnetic energy stored in the field 
around L, and electric energy stored in the field associated with C are 
given, respectively, by 

P, = -RII* Wm = -jUl* 
1 11* 

W„ = -4 w2C 

since the voltage across C is I/coC. Hence 

^VI*=±ZII*~P, + 2jco(Wm-We) 

which has the same interpretation as (2.58). This equation may also 
solved for the impedance Z to give 

z = \II* 
(2.60) 

and provides a general definition of the impedance of a network in terms of 
the associated power loss and stored reactive energy. The factor \II* in the 
denominator serves as a normalization factor, and is required in order to 
make Z independent of the magnitude of the current at the input to the 
network. 

In the case of a general time-varying field, an expansion of V • W X # 
and substitution from Maxwell's equations (2.13) lead to the following 
Poynting vector theorem for general time-varying fields: 

, / ax M 

+ e0^'— +&-— +&-S\dV 
dt dt 
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Since ^ • dJC/M = \ fl( J? • ^)/dt, etc., and the electric and magnetic polar
ization currents are fp = d&>/dt, fm = ix0(d^/dt), we have 

+ \y-{f+Jrp)+%--fm\dV (2.61) 

where - r f S is an element of surface area directed into V. This equation 
states that the rate of energy flow into V is equal to the time rate of change 
of the free-space field energy stored in V plus the rate of energy dissipation 
in Joule heating arising from the conduction current f and, in addition, the 
instantaneous rate of energy supplied in maintaining the polarization cur
rents. If J! and 21?, and also & and #\ are in phase, there is no energy loss 
associated with the polarization currents. If these quantities are not in 
phase, some energy dissipation takes place, leading to increased heating of 
the material. 

If the susceptibilities \e
 an^ Xm

 c a n De considered as constants, so 
that d&>/dt = e0xe(d^/dt) and djt/dt = xJ-d&Zat), then (2.61) becomes 

^rx^.(-rfS) = - / v ( ^ - + ^^)^ + / v f .^v ( 2 .62 ) 

which is the usual form of the Poynting vector theorem. The first term on 
the right is now interpreted as the instantaneous rate of change of the total 
electric and magnetic energy stored in the volume V. 

The susceptibilities can usually be considered as true constants when
ever the inertia] and damping forces are small compared with the elastic 
restoring force in the dynamical equation describing the polarization. For 
example, with reference to (2.54a), this is the case when k is much greater 
than tomi' or o)2m, that is, when 1/ioC is large compared with wL and R, 
so that 

<rt = c = q-

B O U N D A R Y C O N D I T I O N S 

In order to find the proper and unique solutions to Maxwell's equations for 
situations of practical interest (these always involve material bodies with 
boundaries), a knowledge of the behavior of the electromagnetic field at the 
boundary separating material bodies with different electrical properties is 
required. From a mathematical point of view, the solution of a partial 
differential equation, such as a wave equation, in a region V is not unique 
unless boundary conditions are specified, i.e., thfe behavior of the field on the 
boundary of V. Boundary conditions play the same role in the solution of 
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FIGURE 2.8 
A cylindrical cavity partially filled with a dielectric medium. 

partial differential equations that initial conditions play in the solution of 
the differential equations that govern the behavior of electric circuits. 

As an example, consider the problem of finding a solution to Maxwell's 
equations inside a cylindrical cavity partially filled with a dielectric medium 
of permittivity e, as in Fig. 2.8. In practice, the solution is obtained by 
finding general solutions valid in the two regions labeled /?, and R2. These 
general solutions must satisfy prescribed conditions on the metallic bound
aries and in addition contain arbitrary amplitude constants that can be 
determined only from a knowledge of the boundary conditions to be applied 
at the air-dielectric boundary separating regions ff, and R2-

The integral form of Maxwell's equations provides the most convenient 
formulation in order to deduce the required boundary conditions. Consider 
two media with parameters e^itj an^ e2,n2> ^ 'n Fig. 2.9a. If there is no 
surface charge on the boundary, which is the usual case for nonconducting 
media, the integral of the displacement flux over the surface of the small 
"coin-shaped" volume centered on the boundary as in Fig. 2.96 gives, in the 
limit as h tends to zero, 

lim (ft D • d S = D2n AS 
fc-»0'S 

D l n A S = 0 

or D2„ = Dln = n D 2 = n D, (2.63) 

£u 

(a) 

3 ^ 
&l 

le) 

FIGURE 2.9 
Boundary between two different 
media. 
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where n denotes the normal component. The limit h —» 0 is taken so that 
the flux through the sides of the coin-shaped region vanishes. Equation 
(2.63) simply states that the displacement flux lines are continuous in the 
direction normal to the boundary. A similar result clearly must hold also for 
the magnetic flux lines since V • B = 0, and hence, by analogy, 

n - B 2 = n - B 1 (2.64) 

To obtain boundary conditions on the tangential components of the 
electric field E and magnetic field H, the circulation integrals for E and H 
are used. If for the contour C in Fig. 2.9c, the width h is made to approach 
zero, the magnetic flux flowing through this contour vanishes and 

lim (f) E • d l = lim - ja> ( B • rfS = 0 
k-0~C h — 0 JS 

= E.2I M - Elt M 

or Eu = E2l (2.65) 

For the same contour C the total displacement current directed through the 
contour vanishes as h -* 0, so that 

lim <£ H • dl = lim [jut [ D • rfs] = 0 
h-n~c h--o\ Js 1 

= (H2l~Hu)M 

or H2I = Hu (2.66) 

where t denotes the components tangential to the boundary surface. These 
latter relations state that the components of E and H tangent to the 
boundary are continuous across the boundary; i.e., the tangential compo
nents on adjacent sides of the boundary are equal at the boundary surface. 

For the boundary conditions at the surface separating a good conduc
tor (any metal) and free space or air, some simplification is possible. As 
shown in a later section, the electromagnetic field can penetrate into a 
conductor only a minute distance at microwave frequencies. The field 
amplitude decays exponentially from its surface value according to e"u/i', 
where u is the normal distance into the conductor measured from the 
surface, and <5, is called the skin depth. The skin depth is given by 

1/2 

(2.67) 

For copper (a = 5.8 X 107 S /m) at a frequency of 1010 Hz, the skin depth is 
6.6 X 10~5 cm, truly a very small distance. Likewise, the current J = trE is 
concentrated near the surface. As the conductivity is made to approach 
infinity, 8S approaches zero and the current is squeezed into a narrower and 
narrower region and in the limit a —* *> becomes a true surface current. 
Since the skin depth is so small at microwave frequencies for metals, the 
approximation of infinite conductivity may be made with negligible error (an 

S.= 
W/lff 
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£T = aJ, 0 = 0 

FIGURE 2.10 
Boundary- of a perfect conductor. 

exception is when attenuation is to be calculated, since then infinite conduc
tivity implies no loss). For infinite conductivity the field in the conductor 
must be zero. Since the flux lines of B are continuous and likewise since the 
tangential component of E is continuous across the boundary, it is neces
sary that 

n • B = 0 (2.68a) 

E, = n X E = 0 (2.686) 

at the surface of a perfect conductor. This same argument cannot be applied 
to the normal component of D and the tangential component of H because, 
as noted above, a surface current Js will exist on the surface in the limit 
a -* ». Applying Maxwell's equation 

j> H • d\ =jojjV • dS + fj • dS 

to the contour C illustrated in Fig. 2.10 gives 

lim <#H • d\ = H. M = lim (jwD • dS + lim [j • d S 
h-OJr h-0J h-0J 

= lim hJM 
A-0 

JCM 

or in vector form, 
(2.68c) n X H = J , 

Note that the field in the conductor goes to zero, that the total displacement 
current through C vanishes as h. -» 0, but that hj tends to the limiting 
value Js as the conductivity is made infinite and h is made to approach 
zero. Associated with the surface current is a charge of density ps on which 
the normal displacement flux lines terminate. Hence, at the surface of a 
perfect conductor, 

n • D = D„ = Ps (2.68rf) 

When it is desired to take into account the large but finite conductivity 
(as would be the case in attenuation calculations), an impedance boundary 
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condition may be used with little error. The metallic surface exhibits a 
surface impedance Zm, with equal resistive and inductive parts, given by 

1 +j 
Zm = —— (2.69) 

<rds 

At the surface a surface current exists, and the relation between this and 
the electric field tangent to the surface is 

E, = Z,„JS (2.70) 

Note that the tangential electric field cannot be zero for finite conductivity, 
although it may be very small. Now n X H = J s , so that 

E, = ZmJ, = Zmn X H (2.71) 

From (2.69) it is seen that the resistive part of the surface impedance is 
equal to the dc resistance per square of a unit square of metal of thickness 
5S. In a later section the above results are verified; so further comments are 
reserved until then. 

In practice, it suffices to make the tangential components of the fields 
satisfy the proper boundary conditions since, when they do, the normal 
components of the fields automatically satisfy their appropriate boundary 
conditions. The reason is that when the fields are a solution of Maxwell's 
equations, not all the components of the field are independent. For example, 
when the tangential part of the electric field is continuous across a bound
ary, the derivatives of the tangential component of electric field with respect 
to coordinates on the boundary surface are also continuous. Thus the curl of 
the electric field normal to the surface is continuous, and this implies 
continuity of the normal component of B. More specifically, if the xy plane 
is the boundary surface and Ex, Ey are continuous, then i>Ex/dx, 9Ex/dy, 
9Ey/dx, and dEy,/rfy are also continuous. Hence -jtoB, = SE /Hx - dEx/dy 
is continuous. For the same reasons continuity of the tangential compo
nents of H ensures the continuity of the normal component of D across a 
boundary. 

In addition to the boundary conditions given above, a boundary condi
tion must be imposed on the field solutions at the edge of a conducting body 
such as a wedge. The edge condition requires that the energy stored in the 
field in the vicinity of an edge of a conducting body be finite. This limits the 
maximum rate at which the field intensities can increase as the edge is 
approached.t A detailed analysis shows that at the edge of a two-dimen
sional perfectly conducting wedge with an internal angle </>, the field compo
nents normal to the edge must not increase any faster than r", where r is 

t J . Meixner, The Behavior of Electromagnetic Fields at Edges, N.Y. Univ. Inst. Math. Set. 
Res. Rept., vol EM-72. December, 1954. The theory is also discussed in R. E. Collin, "Field 
Theory of Guided Waves." chap. 1, IEEE Press. Piscataway, N.J.. 1991. revised edition. 
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the perpendicular radial distance away from the edge and 

n TT 

2TT - <f> 

where the integer n must be chosen so that a is greater than or equal to — A 
at least. 

When solving for fields in an infinite region of space, the behavior of 
the field at infinity must also be specified. This boundary condition is called 
a radiation condition, and requires that the field at infinity be a wave 
propagating a finite amount of energy outward, or else that the field vanish 
so fast that the energy stored in the field and the energy flow at infinity are 
zero. 

2.7 PLANE WAVES 

In this section and the two following ones we shall introduce wave solutions 
by considering plane waves propagating in free space and reflection of a 
plane wave from a boundary separating free space and a dielectric, or 
conducting, medium. The latter problem will serve to derive the boundary 
conditions given by (2.68) to (2.71) in the preceding section. 

Plane Waves in Free Spaee 

The electric field is a solution of the Helmholtz equation 

r>2E d2E d2E 

This vector equation holds for each component of E, so that 
d2E; d2Ei d2Et 

+ —s- + 3x' 9? 9z* 
+ **£,- = 0 i = x,y,z (2. 

The standard procedure for solving a partial differential equation is the 
method of separation of variables. However, this method does not work for 
all types of partial differential equations in all various coordinate systems, 
and when it does not work, a solution is very difficult, if not impossible, to 
obtain. For the Helmholtz equation the method of separation of variables 
does work in such common coordinate systems as rectangular, cylindrical, 
and spherical. Hence this method suffices for the class of problems discussed 
in this text. The basic procedure is to assume for the solution a product ot 
functions each of which is a function of one coordinate variable only-
Substitution of this solution into the partial differential equation then 
separates the partial differential equation into three ordinary differentia1 

equations which may be solved by standard means. 
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In the present case let Ex = f(x)g(y)h(z). Substituting this expression 
into (2.72) gives 

ghf" + fhg" + fgh" + klfgh = Q 

where the double prime denotes the second derivative. Dividing this equa
tion by fgh gives 

f" g" h" 

7 + 7 + 7 T + * " = 0 (2-73> 
Each of the first three terms in (2.73), such as f"/f, is a function of a single 
independent variable only, and hence the sum of these terms can equal a 
constant -kl only if each term is constant. Thus (2.73) separates into three 
equations: 

f" g" h" 

f g h 

X i + * * V = 0 — + ^ = 0 — +**/ , = < ) (2.74) 
d*f . d2g , d*h 

where kx, ft", k\ are called separation constants. The only restriction so far 
on k\, ky, k'l is tha t their sum must equal &jj, that is, 

k\ + k'\ + k\ = k\ (2.75) 

so that (2.73) will be satisfied. 
Equations (2.74) are simple-harmonic differential equations with expo

nential solutions of the form e±jk'x, e±jk'y, e ' jk=*. As one suitable solution 
for Ex we may therefore choose 

Ex = Ae-Jk''-Jk>y-jk<! (2.76) 

where A is an amplitude factor. This solution is interpreted as the x 
component of a wave propagating in the direction specified by the propaga
tion vector 

k = aA + aA + aA (*•"") 
because the scalar product of k with the position vector 

r = axx + a v y + atz 

equals kxx + kyy + kzz and is k0 times the perpendicular distance from 
the origin to a plane normal to the vector k, as illustrated in Fig. 2.11. The 
k vector may also be written as k — nk0, where n is a unit vector in the 
direction of k and k0 is the magnitude of k by virtue of (2.75). 

Although (2.76) gives a possible solution for Ex, this is not the 
complete solution for the electric field. Similar solutions for Ev and E, may 
be found. The three components of E are not independent since the diver
gence relation V • E = 0 must hold in free space. This constraint means 
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F I G U R E 2 . i l 
Wustration of plane normal to vector k. 

that only two components of E can have arbitrary amplitudes. However, for 
V • E to vanish everywhere, all components of E must have the same spatial 
dependence, and hence appropriate solutions for Ey and E, are 

Ey = Be~ikr E2 = Ce-jkr 

with B and C amplitude coefficients. Let E„ be the vector axA + a v B + 
a z C; then the total solution for E may be written in vector form as 

E = E„e-- 'k- r (2.78) 

The divergence condition gives 

V - E = V • E 0 e ^ k - r = E„ • V e " Jk 

or k - E 0 = 0 

V e ^ k r = - / k • E n e - - ' k ' r = 0 

(2.79) 

since v"e~-/kr = —jke" - , k r , as may be verified by expansion in rectangular 
coordinates. The divergence condition is seen to constrain the amplitudes 
A, B, C so that the vector E0 is perpendicular to the direction of propaga
tion as specified by k. The solution (2.78) is called a uniform plane wave 
since the constant-phase surfaces given by k • r = const are planes and the 
field E does not vary on a constant-phase plane. 

The solution for H is obtained from Maxwell's equation 

V X E = -V'toAt0H 

which gives 

1 .. 1 
H 

1 

V X E0e-ik'r = 

<"Mo 
- k x E „ e ^ k - r = 

Jw^o 

n X E 

E0 x Ve-Jkv 

n X E 

(Vfl0 

y o n X E (2.80) 

where Y0 = v/en/Mo has the dimensions of an admittance and is called the 
intrinsic admittance of free space. The reciprocal Z0 = 1/Y0 is called the 

FIGURE2.il
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FIGURE 2.12 
Space relationship between E, H, and n in a TEM 

intrinsic impedance of free space. Note that H is perpendicular to E and to 
n, and hence both E and H lie in the constant-phase planes. For this reason 
this type of wave is called a transverse electromagnetic wave (TEM wave). 
The spatial relationship between E, H, and n is illustrated in Fig. 2.12. 

The physical electric field corresponding to the phasor representation 
(2.78) is 

E = Re(E0e-jk-r+J°") = E0 cos(k • * - « * ) (2.81) 

where, for simplicity, E0 has been assumed to be real. The wavelength is the 
distance the wave must propagate to undergo a phase change of 2TT. If we 
let A0 denote the wavelength in free space, it follows that 

|k|A0 = k0A0 = 2TT 

so that 

I 

k0 = o>VMoeo = ~ = 
2 -

(2.82) 

This result is the familiar relationship between wavelength A0, frequency 
f = co/2rr, and velocity c in free space. A wavelength in a direction other 
than that along the direction of propagation n may also be denned. For 
example, along the direction of the x axis the wavelength is 

A = 
2TT 

*7 (2.83) 

and since kx is less than k0, A^ is greater than A0. The phase velocity is the 
velocity with which an observer would have to move in order to see a 
constant phase. From (2.81) it is seen that the phase of E is constant as long 
as k • r - wt is constant. If the angle between k and r is 8, then k • r - cot 
~ k0r cos 6 — cot. Differentiating the relation 

gives 

k0rcos 0 - cot = const 

dr co 

~dt " fcocos0 
(2.84) 

for the phase velocity up in the direction r. Along the direction of propaga
tion, cos 6 = 1 and vp = co/k0 = c. In other directions, the phase velocity is 
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FIGURE 2.13 
A wave propagating obliquely to the u axis. 

greater than c. These results may be understood by reference to Fig. 2.13. 
When the wave has moved a distance A0 along the direction n, the 
constant-phase-plane intersection with the u axis has moved a distance 
\u = Aosec0 along the direction u. For this reason the wavelength and 
phase velocity along u are greater by a factor sec 0 than the corresponding 
quantities measured along the direction of propagation n. 

The time-average rate of energy flow per unit area in the direction n is 
given by 

P = | R e E X H* • n = | Re y~0E X (n X E*) • n = \Y0E0 • Eg (2.85) 

The time-average energy densities in the electric and magnetic fields of a 
TEM wave are, respectively, 

U. = ~E • E* = ^ E 0 • E* 

U„ = ^H • H* = ^ y ( ? ( n X E) - ( n x E*) = ^ E 0 • E* = U e 
4 4 4 

and are seen to be equal. Since power is a flow of energy, the velocity vg 

energy propagation is such that 

(Ue+Um)vg=P 

I ' o ^ o ' E 0 YQ 

0 E 0 • E 0 c0 

Thus, for a TEM wave in free space, the energy in the field is transport* 
with a velocity c = 3 X 10 s m / s , which is also the phase velocity. Since 

z-u—u —u u /o 

" ' " K T K T " i , „ E B . E * " - - C (2' 

phase velocity is independent of frequency, a modulated carrier or sign31 

will have all its frequency components propagated with the same velocity c 

Hence the signal velocity is also the velocity of light c. Later on, in the study 
of waveguides, situations arise where the phase velocity is dependent on 
frequency and consequently is not equal to the velocity of energy propaS8 

tion or the signal velocity. 
aga-

[ 
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R E F L E C T I O N F R O M A D I E L E C T R I C I N T E R F A C E 

In Fig. 2.14 the half-space z > 0 is filled with a dielectric medium with 
permittivity e (dielectric constant er = e/e0; index of refraction 77 = y ^ X A 
TEM wave is assumed incident from the region 2 < 0. Without loss in 
generality, the xy axis may be oriented so that the unit vector n : specifying 
the direction of incidence lies in the xz plane. It is convenient to solve this 
problem as two special cases, namely (1) parallel polarization, where the 
electric field of the incident wave is coplanar with n, and the interface 
normal, i.e., lies in the xz plane, and (2) perpendicular polarization, where 
the electric field of the incident wave is perpendicular to the plane of 
incidence as defined by n, and the interface normal, i.e., along the y axis. 
An incident TEM wave with arbitrary polarization can always be decom
posed into a linear sum of perpendicular and parallel polarized waves. The 
reason for treating the two polarizations separately is that the reflection 
and transmission coefficients, to be defined, are different for the two cases. 

P a r a l l e l P o l a r i z a t i o n 

Let the incident TEM wave be 

E,- = E1e--y*°n'"r H, = y o n , X E, (2.87) 

where Ea lies in the xz plane. Part of the incident power will be reflected, 
and the remainder will be transmitted into the dielectric medium. Let the 
reflected TEM wave be 

E r = E2e-jk°n*r H r = y 0 n 2 x E r (2.88) 

where n2 and E2 are to be determined. In the dielectric medium the 
solution for a TEM wave is the same as that in free space, but with e0 

replaced by e. Thus, in place of A0 = co^fi0e0 and Y0 = ^e0/n0, the 

parameters k = oijn0e = -qk0 and Y = yje/n0
 = 1^0 are used, where 77 = 

yjer is the index of refraction. The transmitted wave in the dielectric may be 

A 

FIGURE 2.14 
Plane wave incident on a dielectric interface. 
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expressed by 

E, = E 3 e ^ " ^ r H r = Yn3 X E, (2.89) 

with E3 and n3 as yet unknown. 
The boundary conditions to be applied are the continuity of the 

tangential components of the electric and magnetic fields at the interface 
p)ane z = 0. These components must be continuous for all values of x and y 
on the 2 = 0 plane, and this is possible only if the fields on adjacent sides of 
the boundary have the same variation with x and y. Hence we must have 

k0nlx = k0n2)l = knax = Tlk0n3x (2 .90) 

i.e., the propagation phase constant along x must be the same for all waves. 
Since nly was chosen as zero, it follows that n2y = n3 = 0 also. The unit 
vectors n , , n 2 , n3 may be expressed as 

n , = a , sin 0, + a z cos 0, 

n 2 = a , sin 02 + a . cos 62 

n 3 = ax sin 03 + a z cos &3 

Equation (2.90) gives 

or ei = B2 (2.93 

which is the well-known SnelPs law of reflection; in addition, (2.90) gives 

sin6l, = 7) sin0., (2.92) 

which is also a well-known result specifying the angle of refraction 83 in 
terms of the angle of incidence Bx and the index of refraction 77. 

The incident electric field Es has components Elx = Ex cos &v 

Elz = - E , sin0! 

since n1 • Er must equal zero. Note that Ex is used to denote the mi 
tude of the vector Ex . Since the incident electric field has no y component, 
the reflected and transmitted electric fields also have zero y components.! 
Expressing all fields in component form, i.e., 

E2x = E 2 cos 02 

E2, = E2 sin 02, E3l = E3 cos 63, EZz = -Es sin 03, and imposing the 
boundary condition of continuity of the x component at 2 = 0 yields the 
relation 

E, cos 6, + E2 cos 02 = E3 cos 83 

f If the reflected and transmitted electric fields were assumed to have a v component, 
boundary conditions which must apply would show that these are, indeed, zero. 
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, l / e r _ S i n 2 e \ 

or (El + E2)cosex = Erfl - s in 20 3 = E3 (2.93) 
V 

by using (2.91) and (2.92). Apart from the propagation factor, the magnetic 
field is given by 

H, = * > ! X E , = Y0ay( -nlxEu + nl2Eu) = y 0 a y E , 

H2 = -Y0ayE2 

H 3 = 7 a y £ 3 

and has only a y component. Continuity of this magnetic field at the 
boundary requires that 

Y0(El-E2) = YE, = vY0E3 (2.94) 

If a reflection coefficient l\ and a transmission coefficient 7, are 
introduced according to the following relations: 

amplitude of reflected electric field E2 

amplitude of incident electric field Ex 

amplitude of transmitted electric field E-, 
7 = = —- (2 956) 

1 amplitude of incident electric field Ex 

then the boundary conditions (2.93) and (2.94) may be expressed as 

( C r - s i n 2 0 , ) 1 / a 

1 + T, = 7, — y— (2.96a ) 
77 cos 0 , v ; 

1 - Vx = 777, (2.966) 

These equations may be solved to give the Fresnel reflection and transmis
sion coefficients for the case of parallel polarization, namely, 

fe. - sin2 0.) " - er cos 0, 
T, = -^ Kr^ r- i (2.97a) 

( e r - s i n 2 0 , ) + e r c o s 0 , 

T. = - . „ t l / , (2-976) 
2?7 cos 0j 

(er - s in 2 0, ) l / 2 + ercos0x 

An interesting feature of r\ is that it vanishes for an angle of incidence 
0t = 0ft, called the Brewster angle, where, from (2.97a), 

er - s i n 2 0fc = e2 cos 2 0b 

I *r ) l / 2 

or s i n 0 6 = (2.98) 
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FIGURE 2.15 
Modulus of reflection coefficient at a dielectric in 

^.g terface for er = 2.56, 11", I parallel polarization, |r I 
perpendicular polarization. 

At this particular angle of incidence all the incident power is transmitted 
into the dielectric medium. In Fig. 2.15 the reflection coefficient ["", is 
plotted as a function of 0, for polystyrene, for which er = 2.56. 

2 P e r p e n d i c u l a r P o l a r i z a t i o n 

For perpendicular polarization the roles of electric and magnetic fields are 
interchanged so that the electric field has only a y component. The fields 
may, however, still be expressed in the form given by (2.87) to (2.89), but 
with E[, E2 , and E3 having y components only. As in the previous case, the 
boundary conditions must hold for all values of x and y on the z = 0 plane. 
Therefore Snell's laws of reflection and refraction again result; i.e., (2.91) 
and (2.92) must be satisfied. In place of the boundary conditions (2.93) and 
(2.94), we have 

£, + E, = E.3 (2.99a) 

Y 0 (£ , - E^cosOt = YE 3cos0 3 (2.996) 

Introducing the following reflection and transmission coefficients: 

r2 = 

into (2.99) yields 

1 + T2 = T2 

i - r2 = T2 

( e . - s i n 2 ^ ) 
1/2 

(2.100a) 

(2.1006) 
COS0, 

The Fresnel reflection and transmission coefficients for the case of perpen
dicular polarization thus are 

, 1 / 2 

r2 = 

T2 = 

cost?! - (e f - sin2*^) 

( e , - s i n 2 0 i ) ' / 2 + cos0! 

2cos0 , 

Ur - s i n 2 0 ! ) 1 / 2 + cos0, 

(2.101a) 

(2.1016) 
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A notable difference for this case is the nonexistence of a Brewster angle for 
which T2 vanishes. For comparison with the case of parallel polarization, F2 

is plotted in Fig. 2.15 for er = 2.56. 

R E F L E C T I O N F R O M A C O N D U C T I N G P L A N E 

The essential features of the behavior of the electromagnetic field at the 
surface of a good conductor may be deduced from an analysis of the simple 
problem of a TEM wave incident normally onto a conducting plane. The 
problem is illustrated in Fig. 2.16, which shows a medium with parameters 
e, ix, a filling the half-space z > 0. Let the electric field be polarized along 
the x axis so that the incident and reflected fields may be expressed as 

E; = E1axe~jk°' 

H, = Y0E}aye-jk»z 

E = rE.are+J** i a i ' 

H r = -Y 0 rE 1 a v e + J *»* 

(2.1026) 

where T is the reflection coefficient. 
In the conducting medium the conduction current trE is much greater 

than the displacement current jcoeE, so that Helmholtz's equation reduces 
to (2.50); i.e., 

V2E -jwnaE = 0 

The transmitted field is a solution of 

8s 

Jz 712 -JO>H<T\E, = 0 

since no x or y variation is assumed. The solution for a wave with an x 
component only and propagating in the z direction is 

E, = £ ,a . r e (2.103a) 

fo.^o f, p. o" 

FIGURE 2.16 
A TEM wave incident normally on a conducting plane. 
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with a corresponding magnetic field 

1 y 
H . - - - J V X E , = - BvE3e-" (2.1036) 

1/2 * +J 
where y = (ja>ii<r) = —— (2.104) 

and the skin depth Ss = (w/xir/2) 1 / 2 . The propagation constant y = a + /« 
has equal phase and attenuation constants. In the conductor the fields decay 
by an amount e~l in a distance of one skin depth 8S, which is a very small 
distance for metals at microwave frequencies (about 10 ~5 cm). The intrinsic 
impedance of the metal is Zm, where 

' i n 

(jwn*)l/2 T8S 
(2.105) 

and is very small compared with the intrinsic impedance Z0 = (fi0/e0)
s/2 of 

free space. For example, for copper at 10" MHz, Z,„ = 0.026(1 + j) ft as 
compared with 377 ft for Z0 . Note that (2.1036) may be written as 

H,=:—ayE3e->* = Ym8ivE3e-v* 

which shows that the ratio of the magnitudes of the electric field to 
the magnetic field for a TEM wave in a conductor is the intrinsic imped
ance Z m . 

Returning to the boundary-value problem and imposing the boundary 
conditions of continuity of tangential fields at the boundary plane 2 = 0 give 

(l + r)E1 = Ea = TE1 (2.106a) 

(1 - F)F0JJ, = H, = YmE3 = YmTEx (2.1066) 

where E3/E1 = T, the transmission coefficient. Solving (2.106) for the 
reflection coefficient V and T yields 

f = Zm ~ Z ° (2.107c) 
Zm + Z0 

T = 1 + r = 2Zm (2.1076) 

zm+zQ 
Since \Zm\ is small compared with Z0 , the reflection coefficient I" is almost 
equal to - 1 and the transmission coefficient T is very small. Almost all the 
incident power is reflected from the metallic boundary. As the conductivity 
a- is made to approach infinity, the impedance Zm approaches zero and in 
the limit T = -1 and T = 0. Hence, for a perfect conductor, the tangential 
electric field at the surface is zero and the tangential magnetic field has a 
value equal to twice that of the incident wave. 
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The current density in the conductor is J = o-E, = aTE^a^e yz. The 
total current per unit width of conductor along y is 

,» ,=» aTE,ar 

Js= / Jdz = o - T ^ a , / e~yz dz = A / m 
Jo Jo y 

This result may also be expressed in the following form: 

2aZ2
mEl 

< (Zm+Z0)j<on*' 
(2.108) 

by substituting for T from (2.1076) and replacing y by jiofi/Zm from 
(2.105). As <T -* », the hmiting value of Js becomes 

2E. 
J , = - s - a , = 2 y „ £ i a , (2.109) 

since Zm -* 0 and <rZ*t -»yw/x. This current exists only on the surface of 
the conductor since, as a -» oe, the skin depth 5, -» 0; that is, the field 
decays infinitely fast with distance into the conductor. When a is infinite, 
T = -1 and the total tangential magnetic field at the surface is 2Y u E,a v 

and equal in magnitude to J s . In vector form the boundary conditions at the 
surface of a perfect conductor are thus seen to be 

n X E = 0 (2.110a) 

n x H = J , (2.1106) 

where n is a unit outward normal at the conductor surface. 
For finite conductivity the current density at the surface is crT£, and 

the magnetic field at the surface is YmTE1. In terms of these quantities the 
total current per unit width may be expressed as 

<TTE, aZm 

y y 

In other words, the total current per unit width is equal to the tangential 
magnetic field at the surface. 

The time-average power transmitted into the conductor per unit area 
is given by the real part of one-half of the complex Poynting vector at the 
surface, and is 

P, = | R e E X H* • a2 = ±TT*E1Ef Re Ym = \TT*ExEfads (2.111) 

The reader may readily verify that this is equal to the result obtained from 
a volume integral of J • J* ; that is, 

£o Jo 

Equation (2.111) may be simplified with little error by making the following 



56 FOUNDATIONS FOR MICROWAVE ENGINEERING 

approximation: 

aTT* 

whence (2.111) becomes 

4<rZ.„Z* 

( Z m + Z 0 ) ( Z r a + Z 0 ) * 

4aZ„,Z* 8 

Z 0
2 a8*Z* 

1 (2Y0E1)(2YuEt) 
P<~2 ^ ( 2 1 1 2 > 

Note that 2YQEl is the value of the magnetic field, tangent to the surface 
that would exist if a were infinite. Hence an excellent approximate tech
nique for evaluating power loss in a conductor is to find the tangential 
magnetic field, say Hn that would exist for a perfect conductor, and then 
compute the power loss according to the relation 

P, = \ Re(H,H?Zm) = ±Re(JsJ:Zm) (2.113) 

This procedure is equivalent to assuming that the metal exhibits a surface 
impedance Z„, and the current is essentially the same as that which would 
exist for infinite conductivity. 

The procedure outlined above for power-loss calculations is widely 
used in microwave work. Although the derivation was based on a considera
tion of a very special boundary-value problem, the same conclusions result 
for more complex structures such as conducting spheres and cylinders. In 
general, the technique of characterizing the metal by a surface impedance 
Z„, and assuming that the current J, is the same as that for infinite 
conductivity is valid as long as the conductor surface has a radius of 
curvature at least a few skin depths in magnitude. 

2 . 1 0 P O T E N T I A L T H E O R Y 

The wave solutions presented in the previous sections have all been source-
free solutions; i.e., the nature of the sources giving rise to the field was not 
considered. When it is necessary to consider the specific field generated by a 
given source, as in antenna problems, waveguide and cavity coupling, etc., 
this is greatly facilitated by introducing an auxiliary vector potential func
tion A. As will be seen, the vector potential A is determined by the current 
source, and the total electromagnetic field may be derived from A. 

Since V • B = 0 always, this condition will hold identically if B is 
expressed as the curl of a vector potential A since the divergence of the cur 
of a vector is identically zero. Thus let 

B = V X A (2.114) 

The assumed time dependence ej"' is not written out explicitly in (2.114' 
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since this is a phasor representation. The curl equation for E gives 

V X E = -v'wB = -jcoV X A 

or V X (E + > A ) = 0 

Now the curl of the gradient of a scalar function <I> is identically zero; so the 
general integral of the above equation is 

E + jtoA = -V4> 

or E = -juA - V<f> (2.115) 

Substituting this expression into the V X H equation gives 

V x H = - V X V x A =jaieE + J = w2cA -ju>eV<$ + J (2.116) 

Up to this point the divergences of A and V<t> have not been specified [note 
that (2.114) specifies the curl of A only]. Therefore a relation between V • A 
and $ may be chosen so as to simplify (2.116). Expanding V X V X A to 
give VV • A - V2A enables us to write (2.116) as 

VV • A - V2A = k2A - j ' w e / i V * + /xJ 

where k2 = w2p.e. If now the following condition is specified: 

VV • A = -jo>e/iV<i> 

or V - A = -jcop.e<P (2.117) 

this equation simplifies to 

V2A + k2A = -IMJ (2.118) 

Thus A is a solution of the inhomogeneous Helmholtz equation, the current 
J being the source term. The condition imposed on V • A and <t> in (2.117) is 
called the Lorentz condition in honor of the man first to propose its use. 

In the preceding derivation three of Maxwell's equations have been 
used and are therefore satisfied. The fourth equation, V • D = p, must also 
hold, and this will be shown to be the case provided the Lorentz condition is 
obeyed. Hence the three equations (2.114), (2.115), and (2.118), together 
with the Lorentz condition (2.117), are fully equivalent to Maxwell's equa
tions. To verify the equation V • D = p, take the divergence of (2.115) to 
obtain 

V - e E = - y W V • A - e V2<t> (2.119) 

where e is a constant. Using the Lorentz condition yields 

V - A 1 1 
V • D = -jcoeV • A - V 2 — : = V • (V2A + A2A) = - — V • J 

-JtO/J. JOJ/l JIO 

by using (2.118) and noting that V2V • A = V • V2A; that is, these differen
tial operators commute. Now V • J = -jcop from the continuity equation; 
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so we obtain 

VD = - — (-jcop)=p 

If, instead of eliminating <$> in (2.119), V • A is eliminated by use of the 
Lorentz condition, we get 

or 

V • D = p = -jcue{ -jojfie<l>) - e V2<t> 

V2<1> + £2<T> = — (2.120) 

Hence the scalar potential <P is a solution of the inhomogeneous scalar 
Helmholtz equation, with the charge density p as a source term. 

For the time-varying field, J and p are not independent, and hence the 
field can be determined in terms of A and J alone. The scalar potential can 
always be found from the Lorentz relation, and p from the continuity 
equation, but explicit knowledge of these is not required in order to solve 
radiation problems. For convenience, the pertinent equations are summa
rized here: 

B = V X A (2.121a) 

E = -jioA - V4> = -j'aiA + 
VV • A k2A + VV • A 

(2.1216) 

V2A + k2A = - M J (2.121c) 

where the Lorentz condition was used to eliminate V<P in (2.1216). Note 
that, in rectangular coordinates, (2.121c) is three scalar equations of the 
form 

V2AX + k2Ax = -fiJx 

but that, in other coordinate systems, V2A must be expanded according to 
the relation V2A = V V - A - V x V x A . 

The simplest solution to (2.121c) is that for an infinitesimal current 
element J(x',y', z') = J ( r ' ) located at the point x',y', z', as specified by the 
position vector r' = axx' + ayy' + azz', as in Fig. 2.17. This solution is 

A ( x , y , z ) = A ( r ) = — J ( r ' ) - — dV (2.1& 
4ir ti 

*,y.z) 

FIGURE 2.17 
Coordinates used to describe vector potential 
a current sheet. 
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where R = |r — r ' | is the magnitude of the distance from the source point 
to the field point at which A is evaluated; i.e., 

.1 /2 
R=[(x-x')2

 + (y-y'f + (z-z,)2\ 

and J(r ' ) rfV' is the total source strength. In terms of this fundamental 
solution, the vector potential from a general current distribution may be 
obtained by superposition. Thus, adding up all the contributions from each 
infinitesimal current element gives 

,-jkR -J*|r-
A(r) = — / J(x\y,z')—-dx-dy'dz'= — / J ( r ' ) - dV 

4ir JV R 4-TT Jy \r — r I 
(2.123) 

where the integration is over the total volume occupied by the current. Note 
that the solution for A as given by (2.122) is a spherical wave propagating 
radially outward from J and with an amplitude falling off as 1/R. The 
solution (2.123) is a superposition of such elementary spherical waves. 

*2.11 DERIVATION OF SOLUTION 
FOR VECTOR POTENTIAL 

In this section a detailed derivation of the solution to the inhomogeneous 
Helmholtz equation for a unit current source is given. A unit source is a 
source of unit strength, localized at a point in space (a familiar example is a 
point charge). Such a unit source in a three-dimensional space is a general
ization of a unit current impulse localized at a time /' along the time 
coordinate. A current pulse is represented by the Dirac delta function 
8(t - t') in circuit theory, where 8(t - t') has the property 

8(t -t') = 0 t * f (2.124a) 

and at t = t' it becomes infinite but is integrable to give 

( '5(t - t')dt = 1 (2.1246) 

A further property is that, for any function f(t) which is continuous at t\ 

I' +rnt)8(t-?)dt=nn 
J 4' _ -

(2.124c) 

This result follows since r can be chosen so small that, in the interval 
t' - T < t < t' + T, the function fit) differs by a vanishing amount from 
fit') since f(t) is continuous at t'. Hence (2.124c) may be written as 

f(f)[ T8(t-t')dt=f(t') 

by virtue of (2.1246). 
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As the preceding discussion has shown, the delta function is a conve 
nient mathematical way to represent a source of unit strength localized at 
point along a coordinate axis, in the above example along the time axis. In 

an AT-dimensional space a product of N delta functions, one for each 
coordinate, may be used to represent a unit source. Thus, in three dimen 
sions, a unit source is represented by 

8(x-x-)8(y-y')8(z-z-) = S(r - r ' ) (2.125) 

where Sir — r ' ) is an abbreviated notation for the product of the three 
one-dimensional delta functions. The source function Sir — r ' ) has the 
following properties: 

5 ( r - r ' ) = 0 r # r ' (2.126a) 

(J 
/F(r)8(r-r')iV-P<-") * ' " V (2.126c) 
-V \ 0 r ' not in V 

where F is an arbitrary vector (or scalar) function that is continuous at r', 
that is. at x',y',z'. These properties follow from the properties of the 
one-dimensional delta functions that make up Sir — r'X 

A unit current source directed along the unit vector a at r' may be 
expressed as J = a6Xr — r')- The vector potential is a solution of 

V2A + k2A = -/xa<5(r - r ' ) (2.127) 

Since the current is in the direction a, the vector potential must also be in 
this direction, and hence A = Aa . Equation (2.127) may therefore be writ
ten as a scalar equation: 

V2A + k2A = -ti8(r - r') (2.128) 

At all points r # r ' , A is a solution of 

V2A + k2A = 0 (2.129) 

If the source point r' is considered as the origin in a spherical coordinate 
system, then, since no angle variables occur in the source term in (2.128), 
the solution for A must have spherical symmetry about the source point r • 
Thus, in terms of the spherical radial coordinate R = | r - r' I, which is the 
radial distance from the origin at r', (2.129) is a function of R only and may 
be written as 

R2 dR\ dR) 

d2A 2 dA _ n / n j 
o r + + k2A = 0 (2.1« 

dR2 R dR K 

after expressing the independent part of V2 in spherical coordinates. 
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anticipation of a spherical-wave solution, let A = f(R)e jkR. Substitution 
in (2.130) leads to the following equation for f(R): 

d2f / 2 \df 2jk 

which is readily verified to have the solution f «= C/R, where C is an 
arbitrary constant. Consequently, the solution to (2.129) is A = Ce~jkR/R. 
This solution is singular at R = 0, and the singularity must correspond to 
that of the source term at this point. 

To determine the constant C, integrate (2.128) throughout a small 
sphere of radius r0 centered on r' and use the delta-function property 
(2.1266) to obtain 

[2vT f\v2A + k2A)R2 sine dedcbdR 
'0 J0 

- I (V2A + k2A) dV = -n[8(r- r')dV= -u 
Jv Jv 

Now the integral of the term k2R2A, which is proportional to R2, will 
vanish as r0 tends to zero. Hence, for sufficiently small r0, 

f VlAdV = -a 
-V 

Since V2A = V • VA, the divergence theorem may be used to give 

j V2AdV = <p VA • dS = j) VA • a rr0
2rfft 

since dS = arr£ dfl, where dil is an element of solid angle. Since A is a 
function of R only, VA = ar(dA/dR), and hence 

n r „ t 9A dA 
r2(h VA • ar d f l = r0

26 —- rffl = ^r2— = ~n 
• 'S • ' S « • « " • " 

Evaluating dA/dR for R = r0 shows that 

<?A /£ e~-'*ro \ 

o 
4ir/"°25fl = -4irCr* r2 

in the limit as r0 tends to zero. Hence 4irC = jx, or C = U /4TT, in order for 
the singularity in the solution for A to correspond to that for a unit source. 

The above solution for the vector potential from a unit source, namely, 

M e-jklr-r'< 
A(r ) = - : -a (2.131) 

47r | r - r | 

is clearly a function of both the source point and field point. Since (2.131) is 
the solution for a unit source, it is often called a Green's function and 
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denoted by the symbol G as 

G ( r l r ' ) = G ( r | r ' ) a = G ( x , y , z\x',y\ z ' )a = 
H e 

AIT \T 

-y*|r-r ' | 

7T* (2. 132, 

because, by definition, a Green's function is the solution of a different 
equation for a unit source. 

The vector potential from a general current distribution may now 
expressed in the form 

, - / * f r - r ' i 

A(r) = — / J ( r ' ) - dV = f J ( r ' )G( r | r ' ) dV (2. 
ATT

 Jv r — r -V 
133) 

since any current distribution J may be considered as a sum of weight 
unit sources. 

2 .12 L O R E N T Z R E C I P R O C I T Y T H E O R E M 

The Lorentz reciprocity theorem is one of the most useful theorems in £ 
solution of electromagnetic problems, since it may be used to deduce 
number of fundamental properties of practical devices. It provides the basi 
for demonstrating the reciprocal properties of microwave circuits and 
showing that the receiving and transmitting characteristics of antennas are 
the same. It also may be used to establish the orthogonality properties of 
the modes that may exist in waveguides and cavities.t Another impo: 
use is in deriving suitable field expansions (analogous to a Fourier seri 
expansion) for the fields radiated or coupled into waveguides and cavities 
probes, loops, or coupling apertures. 

To derive the theorem, consider a volume V bounded by a clo: 
surface S as in Fig. 2.18. Let a current source J, in V produce a fie: 
E, , H, , while a second source J2 produces a field E 2 , H 2 . These fields satisfy 
Maxwell's equations; so 

V x E , = - j 'w/ iH, V X H, =jcoeEi + J, 

V x E2 = -jojfiH2 V X H2 = j W E 2 + J2 

Expanding the relation V • (E, X H2 - E2 X H, ) and using Maxwell's equs 
tion show that 

V - ( E , X H 2 - E 2 X H , ) 

= ( F x E , ) - H 2 - ( V X H 2 ) -E, - (V xE2) • H, + ( V X H , ) • 

- J 2 ' E j + «Ji • E 2 
(2.134) 

t i n any waveguide or cavity an infinite number of field solutions are possible. Any one sow . 
is called a mode for the same reason that the various solutions for vibrating strings 
membranes are called modes. Orthogonality of modes is discussed in Sec. 3.14. 
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FIGURE 2.18 
Illustration of the Lorentz reciprocity theorem. 

Integrating both sides over the volume V and using the divergence theorem 
give 

( V - ( E , x H 2 - E 2 X H . ) d V = d>(E. X H 2 - E , x H , | -ndS 
Jv Ts 

= / ' ( E 2 - J j - E , - J2)dV (2.135) 
Jv 

where n is the unit outward normal to S. 
Equation (2.135) is the basic form of the Lorentz reciprocity theorem.! 

For a number of typical situations that occur, the surface integral vanishes. 
If S is a perfectly conducting surface, then n X E, = n X E, = 0 on S. 
Since El X H2 • n = (n X E,) • H2 , etc., the surface integral vanishes in 
this case. If the surface S is characterized by a surface impedance Z„„ then, 
according to (2.71), 

E / = - Z „ , n x H or n X E = -Zmn X (n X H) 

[note that in (2.71) n points into the region occupied by the field, and hence 
the minus sign is used here, since n is directed out of V]. Consequently, 

( n x E , ) - H 2 - ( n x E 2 ) • H , 

= - Z m [ n X (n X B J ] • H 2 + Z m [n x (n x H 2 ) ] • H t 

= Zm(n X H.,) • (n x H, ) - Z m (n X H , ) • (n x H 2 ) = 0 

and the surface integral vanishes again. 

t in anisotropic media with nonsymmetric permittivity or permeability tensors, a modified form 
must be used. See, for example, R. F. Harrington and A. T. Villeneuve, Reciprocity Relations 
for Gyrotropic Media, IRE Trans., vol. MTT-6, pp. 308-310. July, 1958. 
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Another example where the surface integral vanishes is when <J • 
chosen as a spherical surface at infinity for which n = a r . The radiated fi i"8 

at infinity is a spherical TEM wave for which 

H = Y a r X E = I - I a r x E 

Therefore 

(n x E.) • H 2 - ( n x E 2 ) • H , = Y(a r x E,) • ( a r X E 2 ) 

- F ( a r X E 2 ) • ( a r X E l ) = 0 

and the surface integral vanishes. 
Actually, for any surface S which encloses all the sources for the field 

the surface integral will vanish. This result may be seen by applying (2.135) 
to the volume V bounded by S and the surface of a sphere of infinite radius. 
There are no sources in this volume, and since the surface integral over the 
surface of the sphere with infinite radius is zero, we must have, from 
(2.135), 

6 (Ej X H 2 - E 2 X H J • ( - n ) dS = 0 
Ts 

= (f) (E , X H 2 - E 2 X B y • n dS 
~s 

Hence the surface integral taken over any closed surface S surrounding all 
the sources vanishes. 

When the surface integral vanishes, (2.135) reduces to 

(Er J2dV= (E2- J,dV (2.136) 

If J, and J2 are infinitesimal current elements, then 

E 1 ( r 2 ) - J 2 ( r 2 ) = E 2 ( r 1 ) - J 1 ( r 1 ) (2-13?) 

which states that the field Ex produced by Jx has a component along J2 t h a 

is equal to the component along J, of the field radiated by J2 when Ji a" 
J2 have unit magnitude. The form (2.137) is essentially the reciprocity 
principle used in circuit analysis except that E and J are replaced by 
voltage V and current /. The applications of the reciprocity theorem * 
illustrated at various points throughout the text and hence are not dis
cussed further at this time. 
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2 .1 . An atom of atomic number Z has a nuclear charge Ze and Z electrons 
revolving around it. As a model of this atom, consider the nucleus as a point 
charge and treat the electron cloud as a total charge - Z e distributed uniformly 
throughout a sphere of radius r0. When an external field E is applied, the 
nucleus is displaced an amount x. Show that a restoring force x(Ze)2/4wrye0 

is produced and must be equal to ZeE. Thus show that the induced dipole 
moment is p = 4—e0rftE and is linearly related to E. 

2.2. In a certain material the equation of motion for the polarization is 

d'l.9> 

IF 
d.96 

V— + u>%& = 2e0<ogr 

where W is the total field in the dielectric. Find the relation between & and W 
when r = Re(£e-""") and E is real. If w0 = 10" and v = 10"\ over what 
frequency range can a relationship such as 2 = eg = e,,^ +.9" be written if it 
is assumed that the criterion to be used is that the phase difference between $ 
and % should not exceed 5°? Plot the magnitude and phase angle of the 
dielectric constant er = e/e0 = (e' - je")/e() as a function of at. 

2.3. A dielectric material is characterized by a matrix (tensor) permittivity 

yy 

exz 
« 0 

<=y? — 
f.~ 4 

7 3 - 2 v ^ 5 

3 7 - 2 v
/ 0 " 

-2 /6T5 -2v /0!5 10 

when referred to the xyz coordinate frame. If the coordinate axis is rotated into 
the principal axis u, v, w, the permittivity is exhibited in diagonal form: 

H = 
s«« 0 

0 em 

0 0 

0 
0 

Find the principal axis and the values of the principal dielectric constants 
euu/e0, etc. 

Hint: By definition, along a principal axis a scalar equation such as 
A, = e

uuEu holds. In general, if D is directed along a principal axis, then 

\DX] 7 3 -2V/0JT] \E'~ \E, 
Dy 

e 0 

4 
3 7 -2/61* Ey = A E 

D> -2vfr5 -2v^5 10 E, B, 

or in words, when D is directed along a principal axis, it is related to E by a 
scalar constant A. The above constitutes a set of three homogeneous equations, 
of which the first is 
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Verify that, for a solution, the following determinant must vanish: 

= 0 

This cubic equation gives three roots for A, which may be identified 
« W * a » e w w F o r ^ o n e r o o t . s a y euw t h e components of a vector dir~ 
along the corresponding principal axis are proportional to the cofactors 
above determinant. This type of problem is called a matrix eigenvalue prob 
The A's are the eigenvalues. 

7 - 4A/e0 3 -2v /0!5 

3 7 - 4A/e0 -2v/olf 
-2\Z6~lf - 2v^5 " 10 - 4A/«0 

Answer: 3e„ = 2«n 

Unit vectors along the principal axis are 

*« - 0 .5a, 

a„ = 0.5a 

0.5av - \fo.5a. 

+ 0.5a y + '0.5 a , 

= /0 .5 a. - / 0 . 5 a , 

2.4. In the interior of a medium with conductivity a and permittivity e, free c 
is distributed with a density p0(x,y,z) at time t = 0. Show that the 
decays according to 

Poe -*/» e 

a 
Evaluate the relaxation time T for copper for which a = 5.8 x 107 S /m, e j 
Find r for sea water also for which <r = 4 S / m and € = 80«0 . If the relaxati 
time is short compared with the period of an applied time-harmonic field, th 
will be negligible accumulation of free charge and V • D may be assumed to 
zero. What is the upper frequency limit for which this is true in the case 
copper and sea water, i.e., the frequency for which T is equal to the period? 

Hint: Use the continuity equation, Ohm's law, and the divergence 
tion for D. 

2.5. Show that, when the relaxation time for a material is small compared with 
period of the time-harmonic field, the displacement current may be neglected 
comparison with the conduction current. 

2.6. Consider two concentric spheres of radii a and b. The outer sphere is kept at 
potential V, and the inner sphere at zero potential. Solve Laplace's equation 
spherical coordinates to find the potential and electric field between the spn 
Take b > a. 

2.7. Solve Laplace's equation to find the potential and electric field between 
coaxial cylinders of radii a and b if the center cylinder is kept at a potenti 
and the outer cylinder at zero potential. Take b > a. 

2.8. Derive (2.45) from (2.18). 

2.9. Derive (2.47). 
2.10. Express the scalar Helmholtz equation V20 + fc'-ty = o in cylindrical coo 

nates. If </- = f(<t>)gir)h(z), find the differential equations satisfied by /• 
and h. 
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2.11. When material polarization £P and Jt are explicitly taken into account, show 
that the wave equations satisfied by % and 2? are 

Si* 
V 2 ^ r - M o e 0 — i - = -VV-*+nae0—t--Vx<?-VxS 

a2g <12&> df d 1 VV -g> 

dt at at at e0 e0 

Note that V -3S = 0; so V • JT = -V -JT and V -3 = p; so V • €„£• = p - V • 
.9". Examination of the source terms in the above equations shows that d<P/at 
is a polarization current analogous to conduction current f. 

2.12. Derive (2.62). 

2.13. Between two perfectly conducting coaxial cylinders of radii a and b, b > a, 
the electromagnetic field is given by 

E = a r E 0 r ~ V * ° 2 H = &d,Y0E0r-1e-J''°2 

where k0 = oi(ji0€0)1 ' '2, Y0 = (e 0 / /x 0 ) 1 / 2 . Find the potential difference be
tween the cylinders and the total current on the inner and outer cylinders. 
Express the power in terms of the voltage and current, and show that it is 
equal to that computed from an integration of the complex Poynting vector 
over the coaxial-line cross section. Show that the characteristic impedance of 
the line is V/I = (Z n /2 i7) ln(6/a) = 601n(6/a) , where V is the voltage and / 
is the total current on one cylinder. 

2.14. A round wire of radius r0 much greater than the skin depth <5S has a uniform 
electric field E applied in the axial direction at its surface. Use the surface-im
pedance concept to find the total current on the wire. Show that the ratio of 
the ac impedance of the wire to the dc resistance is 

Evaluate this ratio for copper at f = 106 Hz for a = 5.8 X 107 S /m, r„ = 0.1 
cm, ix = n0. 

2.15. The half-space z > 0 is filled with a material with permittivity e„ and perme
ability ix * /x0. A parallel polarized plane TEM wave is incident at an angle 0„ 
as in Fig. 2.14. Find the reflection and transmission coefficients for the electric 
field. Does a Brewster angle exist for which the reflection coefficient vanishes? 

2.16. Repeat Prob. 2.15 for the case of a perpendicular polarized incident wave. 
Does a Brewster angle exist? If so, obtain an expression for it. 

2.17. The half-space z > 0 is filled with a material with permeability M and permit
tivity e. When a plane wave is incident normally on this material, show that 
the reflection and transmission coefficients are 

Z - Z0 2Z 

r = -—=? T = i + r = z0 z + z0 

where Z = (ix/e)l/1, Z0 = (n0/e0)
1/2. Choose an electric field with an x 

component only. 
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2.18. The half-space z > 0 is filled with a material of permittivity e2 and 
fi = ix0. A second sheet with permittivity e, is placed in front. A plane wavnl 
incident normally on the structure from the left, as illustrated. Verify that th* 
reflection coefficient at the first interface vanishes if el = (€ 2« 0 ) I / 2 and tl 
thickness d = jA 0 (e 0 / e i ) , / B . The electric field may be assumed to have an 
component only. The matching layer is known as a quarter-wave transform 
(actually an impedance transformer). This matching technique is used 
reduce reflections from optical lenses and is called lens blooming, or coated 
lenses. 

ffc. 

FIGURE P2.18 

2.19. In terms of the vector potential A from a short current element A?J0a, 
located at the origin, show that the radiated electric and magnetic fields are 

H 

E = 
r 0&2 jZ0 ijk0 

— + — ja^sinffe Jk"r 

2-n- ku 

I Q A Z J Z Q / 

4IT k0 

- F + - r a r c o s f l e Jk«r 

0 J*o 
r r 2 — ) a,, sin fl e - j * o r 

Hint: Use (2.122) and (2.121), and express A as components in a 
spherical coordinate system r, 0, <#. Note that az = ar cos ff - a„ sin B. 

2.20. A dielectric may be characterized by its dipole polarization P per unit volume 
If p = J = 0 and P is taken into account explicitly, show that, if a vectoi 
potential A is introduced according to B = V X A, then A is a solution of 

v"2A + k%A = -j<onnP 

and that the fields are given by 

VV • A + k'lA 
B = V X A E = 

-7<OMoeo 

Note that a Lorentz condition is used. Thus an electric dipole P is equiv" 
to a current element ; w P , or alternatively, a current element «J && 
considered as an electric dipole P = J//'«». 
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2 

FIGURE P2.21 

2.21. A small current loop constitutes a magnetic dipole M = /Sa , where / is the 
current, S the area of the loop, and a a vector normal to the plane of the loop 
and pointing in the direction that a right-hand screw, rotating in the direction 
of the current, would advance. The field radiated by such a current loop, with 
linear dimensions much smaller than a wavelength, may be obtained by a 
potential theory analogous to that given in Prob. 2.20 by treating the loop as a 
magnetic dipole M. Thus replace B by fiQH + #„M in Maxwell's equation and 
treat M as a source term. Since p is zero, V • D = 0, and this permits D to be 
expressed as D = -V X A m , where Am is a magnetic-type vector potential. 
By paralleling the development in the text for the potential A, show that the 
following relations are obtained: 

v ' 2 A
m + k'fAm = -jiuix0e0M 

D - - V x A , . 

H 
klAm + VV • A, 

Hence, for a z-directed magnetic dipole at the origin, 

jtofi0e0M 
A„, = 

4-n-r 
<-j>i<ir 

from which the fields are readily found. Note that in this problem M repre
sents the magnetic dipoJe source density in Maxwell's equations, but in the 
solution for the vector potential it represents the total magnetic dipole 
strength. It would have been more consistent to use M S(r - r ') to represent 
the source density, where <5(r - r ' ) is the three-dimensional Dirac delta 
function which has the property 

/ S ( r - r-)dV'= 1 r i n V 
Jv 

2.22. Consider an arbitrary current element J, in front of a perfectly conducting 
plane. This current radiates a field E, having zero tangential components on 
the conducting plane. Use the Lorentz reciprocity theorem to show that a 
current J3 parallel to the conducting plane and an infinitesimal distance in 
front of it does not radiate. 
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CHAPTER 

3 
TRANSMISSION LINES 

AND WAVEGUIDES 

This chapter is a long one and for this reason has been divided into three 
parts, namely: 

Par t 1—Waves on transmission lines 
Part 2—Field analysis of transmission lines 

Part 3—Rectangular and circular waveguides 

The three parts are closely related but independent with the exception of 
Sec. 3.7, which is needed as an introduction to both Parts 2 and 3. With the 
exception of this section, the three parts can be studied independently and 
in any order. 

In Part 1 we give an introduction to waves on transmission lines using 
a distributed-circuit model of the transmission line. By using the dis-
tributed-circuit model, we are able to study the excitation and propagation 
of current and voltage waves on a transmission line without the need to 
invoke Maxwell's equations. 

The electrical characteristics of a transmission line such as the propa
gation constant, attenuation constant, characteristic impedance, and the 
distributed-circuit parameters can only be determined from a knowledge of 
the fields surrounding the transmission line. Thus in Part 2 we carry out a 
detailed field analysis of transmission lines. This part also includes an 
extensive discussion of planar transmission-line structures such as the 
microstrip line. 

71 
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Part 3 presents the theory for waves in hollow rectangular and circular 
waveguides (pipes). In the beginning section of Par t 2, we show that 
Maxwell's equations can be separated into equations that describe threa 
types of waves. These are transverse electromagnetic waves (TEM) tran 
verse electric (TE), and transverse magnetic (TM) waves. The TEM wave i 
the principal wave that can exist on a transmission line. The TE and TM 
waves are characterized by having no axial component of electric and 
magnetic field respectively. The TE and TM waves are the fundamental 
wave types that can exist in hollow-pipe waveguides. Hollow-pipe wave-
guides do not support TEM waves. The ability to reduce Maxwell's equa
tions into three set of equations, one set for each wave type, facilitates the 
analysis of transmission lines and waveguides. Thus this decomposition of 
Maxwell's equations is carried out in the first section of Part 2. 

P A R T I 
W A V E S ON T R A N S M I S S I O N LINES 

In this section we introduce the topic of voltage and current waves on a 
two-conductor transmission line by using a distributed-circuit model of the 
transmission line. This allows us to explore a number of fundamental 
properties of one-dimensional waves without having to consider the electro
magnetic fields in detail. The distributed-circuit-model approach has limita
tions and in general must be replaced by a detailed solution for the 
electromagnetic field associated with the guiding structure if we want to 
determine the distributed-circuit parameters. The field analysis of transmis
sion lines is presented in Part 2. 

3.1 WAVES O N A N I D E A L T R A N S M I S S I O N L I N E 

In Fig. 3.1a we show a two-conductor transmission line consisting of 
parallel round conductors (wires). The conductors will be assumed to 
perfect, i.e., have infinite conductivity. The conductors extend from z = « 
infinity, thus forming a semiinfinite transmission line. At 2 = 0 a volt 
generator with internal resistance Rg is connected to the transmission 
The generator produces a voltage 7'git) that is impressed across the tr 
mission line. If the generator is switched on at time t = 0, a current 
will begin to flow into the upper conductor. A return current S\t> 
then flow on the lower conductor since current flow through the gener 
must be continuous. The return current is produced by the action t&j 
electric field established between the two conductors. Since the transffl'1 

line is semiinfinite in length, there is no direct conducting path between 
upper and lower conductors. However, there is a distributed capacitan 
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Ml) 

* * 
.S{t) 

(a) 

./{z.D • IfoTP 1 ~Jr(z.t)+~dz 

FIGURE 3.1 
(a) An ideal two-conductor 
transmission line connected 
to a voltage generator; (b) 
equivalent circuit of a differ
ential section of the trans
mission line with no loss; (c) 
equivalent circuit seen by the 
generator. 

per meter between the two conductors; so we have a capacitive or displace
ment current flowing from the upper conductor to the Jower conductor. 

The electric current results in a magnetic field around the conductors 
and consequently the transmission line will also have a distributed series 
inductance L per meter. We can model a differentia] section dz of this 
transmission line as a series inductance Ldz and a shunt capacitance Cdz 
as shown in Fig. 3.16, If the conductors had finite conductivity, we would 
also need to include a series resistance in the equivalent circuit of a 
differential section. However, we are assuming that the conductors are 
perfect; so the series distributed resistance R per meter is zero. 

Since electrical effects propagate with a finite velocity v (the speed of 
light in vacuum), it should be clear that the voltage 7'(z,t) and current 
J{z, t) at some arbitrary point z on the transmission line will be zero until a 
time z/v has elapsed after switching the generator on. We will show that 
the generator launches voltage and current waves on the transmission line 
that propagate with a finite velocity. The equations that describe these 
waves are established by applying Kirchhoff s circuit laws to the equivalent 
circuit of a differential section of the transmission line, along with a 
specification of the terminal relationships (boundary conditions) that must 
hold at the generator end. 

At some arbitrary point z on the transmission line, let the voltage and 
current be given by 7/'{z, t), ^ ( 2 , t). At a differential distance dz further 

lb) 

(d 
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along, the voltage and current have changed by small amounts (dV/dz) dz 

and (d.f/dz)dz; so the output voltage and current at z + dz will be 

J(z + dz,t) =T(z,t) 
dz 

dz 

d.y(z,t) 
.7{z + dz,t) =.f(z,t) + ; -dz 

dz 
The sum of all potential drops around the circuit must be zero; so we have 

djr BV 
-%-'+ Ldz— + T+ — dz = 0 

dt dz 

or 
dV{z,t) d.S(z,t) 

— Li ~ 
dz dt 

(3.1a) 

The sum of currents flowing into the output node must also be zero; so we 
can write 

dT dJ 
J - Cdz- S - —- dz = 0 

dt dz 

or 
dS(z,t) df'(z,t) 

dz dt 
(3.16) 

These two partial differential equations describe the relationship between 
the voltage and current waves on the transmission line. 

We can obtain an equation for the voltage 7/(z,t) by differentiating 
(3.1a) with respect to z and using (3.1b) to eliminate the current; thus 

d2<r(z,t) d*s ( dH' 
' = -L- = -L\-C-

dz* dzdt dt' 

or 
d2<T(z,t) d2V'(z,t) 

- LC ^ r ^ - = 0 
dz' 

In a similar way we obtain 

LC 

dt' 

d2jr{z,t) 
= 0 

(3.2a) 

(3.26) 
dz* dt2 

The product LC has the dimensions of one over velocity squared. These 
equations are one-dimensional wave equations and describe waves propag8 

ing with a velocityt 

P-JLr 
{LC 

tFor an ideal transmission line in air. v = c -* 3 x 10 m / s , the velocity of light. 
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Consider the equation 

d V 1 d2V 

We can readily show that any two arbitrary functions of the form f+(t -
z/v) and f~(t + z/v) are solutions of this equation. If we let w = t — z/v 
then we have 

df+(t-z/v)^ _ 9f{w) _ df*(w) dw l'T(w) 

dz dz dw dz v dw 

a*r{u>) i *T(">) 
and 

dz2 v2 dw2 

For d2r/dt2 we get d^f'/dw2. Consequently, 

a2f 1 d2f+ d2r I 1 
- - ^ =o dz2 v2 dt2 dw2 I v2 v2 

so f*U ~ z/v) is clearly a solution of the one-dimensional wave equation, 
as is f~(t + z/v). 

The function f*(t - z/v) is the same as the function f*it) but 
delayed in time by an amount z/v which equals the distance z divided by 
the velocity of propagation v. We interpret this solution as a wave propagat
ing in the positive z direction and identify this solution with a superscript 
+ sign. The other solution represents a wave propagating in the -z 
direction and is identified by the - sign as a superscript. 

The general solution for the voltage waves on the transmission line is 

T\z>t) = V-r[t-Z-^ +Vri( + ̂ j (3.4) 

where V+ and V' are amplitude constants. By using (3.16) we see that 

ay JirJf , St 
— = -clv+— + v~-dz l at at 

If we assume that S is of the form 

s{z)=rr(t~Z-)-rr(t+
z-

then " I ( r £ + J ^ 
dz v \ at at 

upon using 

af* df* d(t + z/v) _ l af 
az a(t + z/v) az v at 

An examination of these equations shows that the assumed solution for 
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J'i.z, t) is compatible with that for the voltage p'Cztt) if we choose 

r= vcv^ /-= ucv-
The parameter vC has the dimensions of an admittance and is also equa] tn 
C/ \lLC = ^C/L . The characteristic admittance Yc of the transmission line 

is defined by this parameter. The reciprocal parameter is called the charan 
teristic or surge impedance of the transmission line. It is given by 

(3. -^=yr 

By using this parameter the solution for the current waves on the transmis
sion line can be expressed in the form 

V- i z\ V- I z 

The negative sign preceding the wave with amplitude V~ indicates a 
reversal in the direction of current flow for the wave propagating in the ~z 
direction. 

For the transmission-line circuit shown in Fig. 3.1, the generator 
launch voltage and current waves propagating in the +2 direction. Since the 
transmission line extends to infinity, no waves propagating in the -2 
direction will be present. Later on we will consider a transmission line that 
is terminated at z => I with either a resistance, capacitance, or a combina
tion of these elements. Waves propagating in both the +z and -z directions 
will then exist. For the present case the voltage and current waves on the 
transmission line are assumed to be 

nzj) = v+r[t-z-) 

s(z,t) = rr[t- -
withV+=7+Z c 

that 
At the generator end z = 0 the terminal conditions require 

•S(0,t) =,Se 

where SB is the current supplied by the generator. These terminal cor 
tions can be expressed in the form 

«z" r ( 0 + v+r<'> 
V* 
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from which we find that 

V^<> = Y±R^ (3.7) 

The voltage wave launched on the transmission line is thus given by 

^^-z^A'-^) (3-8a) 
with a corresponding current wave 

• ^ • < > - v n r ^ - £ (3.86) 

At any point on the transmission line, the voltage waveform is the same as 
that produced by the generator but delayed in time and reduced in ampli
tude by the factor Z,./(Rg + Zc). The voltage reduction is the usual voltage 

t = z/v 

fa) 

S 

XJ 

X7 
X7 

w 

-+-z 

- * - £ 

*? 
z = vt F I G U R E 3.2 

Time-distance and distance-time plots of 
voltage waveform '/^(z, t) on a transmis
sion line for a single-cycle sinusoidal gener
ator voltage pulse. 
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division factor associated with the equivalent circuit shown in Fig. 3.2C p 
the infinite line the generator sees only an equivalent impedance Zc equal t 
the transmission-line characteristic impedance. 

In Fig. 3.2a we show a time-distance plot of the voltage waveform on 
transmission line for the case when the generator produces a single cycle r 
a sinusoidal waveform, i.e., 

7g(t) = V 0 s in / 0 < t < 2TT 

Figure 3.2a shows ^ ( z , / ) as a function of t at various distances z, while 
Fig. 3-26 shows 7''(z,t) as a function of z for various values of t. In the 
latter plot note that the leading edge of the waveform is the initial voltage 
produced by the generator at time t = 0 and hence the waveform appears 
reversed when plotted as a function of z. 

3.2 T E R M I N A T E D T R A N S M I S S I O N L I N E : R E S I S T I V E 
L O A D 

In Fig. 3.3 we show a transmission line terminated at a distance / from 
generator in a load resistance RL. At the load end the terminal conditions 
are 

^ ( M ) = n ^ £ # i (3-9° 

s{i,t)=.yL (3.S 

(6) 

(c) 
FIGURE 3.3 
The terminated transmission 
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If we choose RL equal to the characteristic impedance ZL., then 2^ = 

Jr
LRi=Jri.Zc. For a wave propagating in the +z direction, ^(z,t) = 

ZeJ(z,t\ so that at z = /, T{l,t) = Z^l.t), which satisfies the load 
terminal condition. Thus by choosing RL = Zc the forward propagating 
wave will be completely absorbed by the load resistor and no reflected wave 
will be generated at the load end. Thus, in order to avoid a reflected wave, 
such as a reflected pulse in a digital circuit application, the transmission line 
should be terminated in its characteristic impedance. 

When RL* Zc the terminal conditions at the load end cannot be 
satisfied without introducing a reflected wave. The incident wave at z = Ms 
given by 

where V+ is the amplitude of ?• j relative to 7/g. In order for a reflected 
wave to combine with the incident wave so as to satisfy the terminal 
conditions (3.9), the reflected wave must have the same time dependence as 
that of the incident wave. Hence the form of the reflected wave will be 

/ z 21 

-v-^(< + - - -
The argument must contain the factor t + z/v plus additional delay factors, 
so that at z = I the reflected wave has the form Tg(t - l/v). The reflected 
current wave is given by 

1 

At the load end the total current on the transmission line must equal the 
current Jr

L flowing through RL; thus 

1 / I 

-vr-TyrJt-- = S, 

The total voltage on the transmission line must equal the load voltage; so 

(V~+V-)Vglt--\=VL=.fLRl, 
v . 

When we divide this equation by the first one, we obtain 

V* + V- RL 

V* - V~ == ~Z~ 
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which gives 

V 

RL + Z. 
(3.1 

The parameter TL is called the load voltage reflection coefficient. 
amplitude V~ is that of the reflected voltage wave and V~ is the ampljt* 
of the incident voltage wave. The ratio is determined by the conditions 
the load end only. 

Once a reflected wave has been launched from the load terminatio 
the total voltage on the transmission line will consist of the incident volt 
wave plus the reflected voltage wave until the time at which the refle 
wave reaches the generator end. If the generator internal impedance R 
equals the characteristic impedance Zc, then the reflected wave is absor" 
at the generator end. If Rg # Zc then the reflected wave is reflected at 
generator end to produce another forward propagating wave. For the 
fleeted wave at the generator end, the terminal conditions are obtained 
short-circuiting the voltage generator. Thus the reflected wave sees a termi 
nation R and will be reflected with a reflection coefficient T given by 

! 
Re-Zc 

Ra + Z.. 
(3.11 

As long as the generator continues to produce a voltage 2^(0, it continu 
to launch a first forward propagating wave with voltage ^-(0, t) 
ZcTg(t)/(Rg + Zc) and with current J^(0, t) = Sg. Thus the superposi 
of a reflected wave at the generator end requires the launching of a seco 
forward propagating wave with a voltage amplitude that cancels that of 
reflected wave at the generator terminals, i.e., the generator is treated 
being short-circuited. The second forward propagating wave will also 
dergo reflection at the load termination, so that as time proceeds we will e 
up with a multitude of forward propagating and reflected waves on 
transmission line. This collection of waves can be described as follows: 

v\s,t) = v+vt(t - ^ + rjr^lt + ^ — ) *-i 
+ rgrLv • » ; 

2/ 

+ rgilv
+T-e 

+ r*riv+yt 

t -

t + 

t -

v l 
2 -41 

V 

Z + 4/ 

2/ 
U\t- — 

v 

31 
U\t 

4/ 
U t - + (3.1 

where V+= Zc/(Rg + Zc) and U(t - a) is the unit step function wb» 
equals zero for t < a and equals unity for t SL a. The unit step function & 
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FIGURE 3.4 
Distance-time plot of a pulse 
undergoing multiple reflection 
on a transmission line when 
rL = -Te - 0.5. Reflection at 
the generator end causes a re
versal in the polarity of the 
pulse. 

convenient function to use to specify when a waveform begins. In the case of 
multiple reflected waves on a transmission line, each reflected wave begins 
after time delays of l/u, 2l/v, 3l/v, etc., corresponding to the time delay to 
propagate a certain number of times back and forth between the generator 
end and load end.t The current wave can be obtained by multiplying the 
forward propagating waves by Yc and the backward propagating waves by 
—Y„. When the generator voltage 2^(0 exists for only a finite time interval, 
the total voltage wave on the line will decay toward zero since each 
successive reflected wave is multiplied by a reflection coefficient, either Tt 

or r^, which is less than one in magnitude, and hence successive waves are 
of diminishing amplitude. 

The sequence of multiple reflected waves can be illustrated in a 
distance-time plot. In Fig. 3.4 we show this type of plot for a generator 
producing a rectangular pulse. We have chosen RL = 3ZC and Rg = Z c / 3 
so that YL = 0.5, Yg = - 0.5. When the reflection coefficient is negative, the 

tThe unit step functions were introduced for clarity in describing the physical process but are 
actually not required in (3.12) since 2^(* - T) = 0 for t < T. 
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sign of the reflected voltage wave is reversed and this is illustrated in p-
3.4. In high-speed digital circuits using interconnecting transmission Un 

multiple reflected pulses are undesirable and can be avoided by terminal' 
each transmission line in a resistance equal to its characteristic impedan 

3.3 CAPACITTVE T E R M I N A T I O N 

When the transmission line is terminated in a reactive element such as 
capacitor as shown in Fig. 3.36, the reflected wave will have a waveform 
different from that of the incident wave. The solution for the reflected wave 
is readily found from the condition that the sum of the incident plus 

reflected voltage wave at z = / must satisfy the terminal conditions. The 
incident wave is again chosen to be ¥',(,1, t) = V+7SU - l/v). The reflected 
wave is initiated at time 1I = l/v and will propagate from the point z = i 
toward the generator. Therefore it is of the form 

For a capacitor we require 

SL = c'-~dT = Cl 
d'ni,t) dWr{t-l/v) 

dt dt 

where 7/'r{t - l/v) is the reflected voltage wave at z = I. In addition, we 
the condition 

SL = YC t - ~ 

From these two equations we obtain 

d^t-l/v) 1 / / 

dt cLzc • 

= - v + 
dVJt-l/v) V* 

dt + cLzc 
"K\t (3.13) 

For a specific example we will consider the case when the gen 
produces a rectangular pulse given by 

yg(t) = 1 0<t<T 

erat° r 
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The right-hand side of (3.13) will now become the source function 

1 
V+ 

cLzc 

t- -\-ult T t - -J +slt T 

where 8(t - a) is the Dirac delta function or impulse function that arises 
from the derivative of the rectangular pulse. We can integrate (3.13) by 
introducing the integrating factor e ' / r where T = CLZC. We note that 

d I dVr 1 

dtK r ' \ dt T 

so consequently 

(' —7/-re
,/Tdt = •TU - - ) e ' / r - 7^(0)e'/L' 

J l/v dt \ v j 

= -f 
T H/v 

-vf 

t- - ) - ult T 

'l/v 

V+(el/T - 2e'/UT) 

S\t \-S\t T 

•l/rdt 

>"Tdt 

I I 
- < t < -
V V 

V+(-2e'/"r + 2et,+vT)/"T) t> - + T 

Since we have included the impulse functions as derivatives of the applied 
rectangular pulse, the lower limit of integration is regarded to be just before 
t = l/v and thus 2^0) is equal to zero since it corresponds to 2^(0 - ). 
Hence we obtain 

"H*" r ( 
V + ( l - 2 e - " " - ' ) / " T ) 

V+(-2e'/VT + 2e"+vT,/VT)e-'/r 

1 l
 m 

- < t < - + T 
v v 

I 
t>-+T 

v (3.14) 

At t = l/v the reflected wave has an amplitude equal to - V+ which cancels 
that of the incident pulse. This is consistent with the requirement that 
initially the capacitor CL is uncharged and must have a zero voltage across 
it. The capacitor charges to a final voltage level 

= 2V+(1 -e~T/T) 

K(T) 

file://-/-ult
file:///-S/t
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v -

-• -• 

V 
1 1 *• r L 
I 

T T - r V V 

-V ~ 
y< 1 + r 

FIGURE 3.5 
Incident and reflected voltage waveforms at z = I. 

at t = l/v + T and then discharges toward zero. The apparent discontinu
ous change that occurs in the reflected voltage wave at t = l/v + T is 
caused by the sudden drop to zero volts for the incident pulse, and in order 
to match the voltage across the capacitor, the reflected voltage wave must 
have a positive jump of value V4. The incident and reflected voltage wave
forms at z = I are shown in Fig. 3.5. The reflected voltage waveform will 
propagate toward the generator and will begin to initiate a new forward 
propagating wave at time t = 2l/v. Clearly the capacitor has made a 
significant change in the waveform of the reflected wave. 

The analysis for the case of a capacitor-resistor termination as shown 
in Fig. 3.3c is similar. The terminal conditions are 

^ = ^ G L 

d?y'r 

t- -

t-~ 

so in place of (3.13) we have 

dK i I 1 
dt - 7/-= -

dy\ 

dt cLzc 
C,RL 

r, (3.15) 

The solution is similar to that for (3.13) except that the charging time 
constant is now TX = CLRLZC/(RL + Zc). Initially, Vr has a value equal 
- V * as before. In this case the capacitor charges toward a final voltag 
equal to 

RL-ZA 2RL 
V+\l + 

RL
+Zc RL 

-F* 

determined by the steady-state voltage across RL if CL was absent. 
A' 
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t = l/u + T the capacitor voltage will be 

The reflected-wave voltage at this time will be Vc ~ V*. When t becomes 
greater than l/v + T the incident voltage wave pulse drops to zero volts so 
the reflected-wave voitage jumps to a value equal to Vc and will then decay 
toward zero with a time constant T ( . 

S T E A D Y - S T A T E S I N U S O I D A L WAVES 

When the generator produces a sinusoidal voltage 7/'g(t) = V cos wi, the 
steady-state voltage waves on the transmission line will be of the form 
cos a)(t - z/v) and cos <o(t + z/v). The steady state is achieved, for all 
practical purposes, after a few multiple reflections have occurred, since the 
amplitude of the successive reflected wave decreases quite rapidly because it 
is multiplied by Vg or YL upon each reflection. The solution for steady-state 
sinusoidal waves is most conveniently obtained using phasor analysis. The 
generator voltage is represented by Vge

Jwt. The voltage and current waves 
on the transmission line will then also have an eJ°" time dependence. The 
differential equations (3.1a) and (3.16) now become (the common time 
factor eJUI' is dropped) 

3V(z) 
= -jwLI(z) (3 .16a) 

dz 

dl(z) 
= -jioCV(z) (3.166) 

dz 

where Viz) and I(z) are complex phasor amplitudes. By eliminating the 
current we find that Viz) satisfies the equation 

d2V(z) u>2 

- ^ - + -,V(2)=0 (3.16c) 

The solution for Viz) is of the form 

V(z) = V+e~J^ + V-eJf>z (3.17a) 

with a corresponding solution 

I(z) = I + e - * * - r > * (3.176) 

for the current waves. The constant /3 = io/v is the propagation phase 
constant. As before the current amplitudes are related to the voitage 
amplitudes through the characteristic impedance of the line, i.e., 

r=Ycv+ r=Ycv-
When the time factor is restored, it is readily seen that e' 
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corresponds to a wave propagating in the +z direction, while eJliz+Ju" js 

wave propagating in the -z direction. In the next section we will show that 
for a transmission line with finite conducting wires and possibly als 
surrounded with lossy dielectric materials, the waves attenuate in arnpli 
tude as they propagate. For this case the wave solutions are of the form 

V = V+e-Jf*-°« + Ve*'*" (3.I80) 

/ = r*B-i*— - f > # » * - ( 3 1 8 6 ) 

where a is the attenuation constant. 

3.5 W A V E S O N A L O S S Y T R A N S M I S S I O N L I N E 

Conductors used in a transmission line will always have a finite conductivity 
and will therefore exhibit some series resistance. Furthermore, because of 
the skin effect the current flows in a thin layer at the surface of the 
conductor, the effective thickness of the layer being equal to the skin depth 
8S given by (2/w/iu)i/2 [see (2.104)]. Consequently, the series resistance 
increases with an increase in the frequency of operation. In order to account 
for this resistance, a distributed series resistance R per meter must be 
included in the distributed circuit used to model the transmission line. 

The two conductors in a transmission line are usually maintained 
parallel to each other by supporting them in a dielectric structure. For 
example, a coaxial transmission line is filled with a dielectric medium in 
order to keep the center conductor coaxial with the outer shield. Dielectric 
materials usually have a negligible conductance but do have a small amount 
of dielectric loss due to polarization loss in the dielectric. Consequently, a 
shunt conductance G per meter is added to the distributed circuit to 
account for this loss. Thus, for a lossy transmission line, the equivalent 
circuit of a differentia] length dz is chosen to be that shown in Fig. 3.6. 

If the voltage and current at the input are T(z, t), ,Hz, t) and if the 
voltage and current at the output are 

y+ — dz J + — dz 
dz dz 

I - ^ ' I Ldt Rd; 8 + $d* 
j) ) 3 • o—'060o>—wv 

<T 
i-Gd* \Vt'S7d/ 

FIGURE 3.6 
Equivalent circuit of a differential length of transmission line. 
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then KirchhofFs laws give 

/ 37' \ dS 
yr-\<zr+ — dz = JR dz + Ldz — 

\ dz J dt 

o r - — = - J r R - L — - (3.19a) 
dz dt 

Similarly, 

/ dS \ 37" 
S - \S + -—dz] = 7'Gdz + Cdz — 

\ dz ) dt 

bj d7' 
or — ~-rG-C— (3.196) 

oz ol 
The first equation states that the potential difference between the input and 
output is equal to the potential drop across R and L. The second equation 
states that the output current is less than the input current by an amount 
equal to the shunt current flowing through C and G. Differentiating 
(3.19a) with respect to z and (3.196) with respect to time t gives 

d27' dS d2^ _ __ p r 
**" " dz dtdz i = _ f l — -L^77Z (3 .20a) 

d\y 37^ dlT 
= -G C~5- (3.206) 

dtdz dt dt.2 ' ' 
Using (3.196) and (3.206) in (3.20a) now gives the following equation for 
the line voltage 7': 

d27" I d7; 
R\G%r+C—\ +L 

I 37' d27 

dz2 "{" " at 

d2T dT d2T 

G — + C 
dt 3t2 

or —=- - (RC + LG)— -LC—5- - RG7'= 0 (3.21) 

The current .7 satisfies this one-dimensional wave equation also. If a 
solution in the form of a propagating wave 

^ = R e ( V e _ v z + - ' 0 " ) 

is assumed, substitution into (3.21) shows that the propagation constant y 
must be a solution of 

y2 -j(u( RC + LG) + w2LC - RG = 0 (3.22) 

If only the steady-state sinusoidally time-varying solution is desired, 
phasor notation may be used. If we let V and / represent the voltage and 
current without the time dependence ej°", the basic equations (3.19) may be 
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written as 
dV 

= -(R+jo,L)I 
az 
dl 
- = -(G+jcoC)V 

(3.23a) 

- - - ( u + j ^ ) v ( 3 2 3 6 ) 

The wave equation (3.21) becomes 

-^-(RG-a>2LC)V-jo>(RC + LG)V=0 {3M) 

The general solution to (3.24) is 

V= V+e-v* + V-ey* ( 3 . 2 5 ) 

where y = a + jfi is given by 

y = [-«>2LC + RG +ja>(RC + LG)]1/2 (3.26) 

from (3.22). The constants V* and V~ are arbitrary amplitude constants for 
waves propagating in the +z and -2 directions, respectively. The solution 
for the current I may be found from (3.23a), that is 

7 = f*< r y a - / - e
+ > 2 = „ y

 T ( V - g - ' " - V"ev z) (3.27) 

The parameter 

R+jcoL {R+j(oL\l/2 

Z = = (3.28) 

is the characteristic impedance of the line since it is equal to the ratio 
V+/I+ and V-/r. Note that y = [(R +ju>L)(G +ja>C)]1/2. 

Loss-Free Transmission Line 

For a line without loss, i.e., for which R = G = 0, the propagation con
stant is 

y = , ) 3 = , W L C (3-29) 

and the characteristic impedance is pure real and given by 

z,-/| < 3 - 3 W 

According to the field analysis, /3 is also equal to w(/xe)1/2, and hence 

LC = Me ( 3 3 1 ) 

for a transmission line. This result may also be verified from the solutio 
for L and C, as shown later in the section on transmission-line parameters 
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Using (3.31) in (3.30) shows that the characteristic impedance is also given 
by 

C " V C2 " CV c C 
(3.32) 

where Z is the intrinsic impedance of the medium. The characteristic 
impedance differs from the intrinsic impedance Z by a factor e / C , which is 
a function of the line configuration only. 

Low-Loss Transmission Line 

For most microwave transmission lines the losses are very small; tha t is, 
R « coL and G « toC. When this is the case, the term RG in the expres
sion (3.26) for y may be neglected. A binomial expansion then gives 

, 1 . [R G\ 
y~j*JW + - { W \ - + -\=a+jp (3.33) 

To first order the characteristic impedance is still given by (3.30) or (3.32). 
Thus the phase constant for a low-loss line is 

fi = wvXC 

and the attenuation constant a is 

1 . (R G\ 1 

(3 .34a) 

(3.346) 

where Yc = Zc
 ! = \C/L is the characteristic admittance of the transmis

sion line. 

3.6 T E R M I N A T E D T R A N S M I S S I O N L I N E : 
S I N U S O I D A L WAVES 

In this section the properties of a transmission line terminated in an 
arbitrary load impedance ZL are examined. This will serve to illustrate how 
the forward and backward propagating waves can be combined to satisfy the 
boundary conditions at a termination. Figure 3.7 illustrates schematically a 
transmission line terminated in a load impedance ZL. The line is assumed 
lossless and with a characteristic impedance Zc and a propagation constant 

/ • - / " 

FIGURE 3.7 
Terminated transmission line. 
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y =7/3. It should be noted that at microwave frequencies conventio 
low-frequency resistors, inductors, or capacitors, when connected across th 
two conductors of a transmission line, may behave as impedance eletne ? 
with quite different characteristics from the low-frequency behavior. 

If a voltage wave V+e~JP* with an associated current I'e'J"' • 
incident on the termination, a reflected voltage wave V'eJIS' with a curre '* 
-I~ejp* will, in general, be created. The ratio of the reflected and incident 
wave amplitudes is determined by the load impedance only. At the load th 
total line voltage must equal the impressed voltage across the load and thp 
line current must be continuous through the load. Hence, if ZL is located at 
z = 0, 

V=V++V-=VL ( 3 . 3 5 a ) 

i = r-r=h (3.356) 

But r= FCVT, / " = YCV', and VL/IL = ZL by definition of load impedance. 
Therefore 

V++ V~= VL (3.36a) 

V+-V-=~VL (3.366) 

The ratio of V to V * is usually described by a voltage reflection coefficient 
T defined as 

r, = ~ <3-37> 
In place of (3.36) we may write 

Dividing one equation by the other yields 

1 +rL = ^ (3.38) 

i - rL zc 

The quantity ZL/ZC is called the normalized load impedance (load imped3" 
measured in units of Zc), and (1 + TL)/(l - VL) is then the n 0 " " * ^ 
input impedance seen looking toward_the load at 2 = 0. The norm. a 

load impedance will be expressed as ZL, with the bar on top signiv1 ^_ 
normalized impedance in general. Solving for the voltage reflection c 
cient T gives 

ZL-ZC ZL/ZC - 1 _ ZL - 1 {3.39) 
lL ZL + ZC ZL/ZC + \ ZL + 1 
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Analogous to a voltage reflection coefficient, a current reflection coef
ficient r, could also be introduced. In the present case 

-r Yrv~ 
r = - = - r 
' ' 7+ YV+ L 

In this text, however, only the voltage reflection coefficient will be used; so 
the adjective "voltage" can be dropped without confusion. 

The incident voltage wave can be considered as transmitting a voltage 
V,_ across the load, and a voltage transmission coefficient T can be defined 
as giving VL in terms of V+; thus 

VL = TV+= ( 1 + rL)V^ 

So P- 1 + Tx (3.40) 

A corresponding current transmission coefficient is not used in this book. 
Returning to (3.39), it is seen that if ZL = Zc, the reflection coefficient 

is zero. In this case all the power in the incident wave is transmitted to the 
load and none of it is reflected back toward the generator. The power 
delivered to the load in this case is 

P = i R e ( V 7 * ) = i | V + | 2 F c = i | y j 2 y L (3.41) 

The load is said to be matched to the transmission line when YL = 0. 
If ZL does not equal Zc, the load is mismatched to the line and a 

reflected wave is produced. The power delivered to the load is now given by 

P = | R e ( V t 7 ? ) = | R e [ ( V ^ + V ' ) ( 7 + - 7 - r ] 

= iRe[yc(V
++V-)(V+-V-)*] 

= |Re[Yc |V i]2(l+r,)(l-r / .)*] 

= |y c iv + l 2 ( i - i r j 2 ) (3.42) 

The final result states the physically obvious result that the power delivered 
to the load is the incident power minus that reflected from the load. 

In the absence of reflection, the magnitude of the voltage along the line 
is a constant equal to |V+ |. When a reflected wave also exists, the incident 
and reflected waves interfere to produce a standing-wave pattern along the 
line. The voltage at any point on the line (z < 0) is given by 

v = v + e - r f , +YLV+ejllz 

and has a magnitude given by 

Ivi = IV+I u + rLe*J**\ = iv*MI + r,,e-
2^'i 

where / = -z is the positive distance measured from the load toward the 
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generator, as in Fig. 3.7. Let YL be equal to pej0, where p = | r j ; thent 

IVI = |V + | |1 + pe""-^l>\ 

= \V*\[[1 + pcos{d - 2pl)]2 + p2sin2{e - 2pl)}1/2 

= |V+ |{(1 + pf - 2p [ l - cos(0 - 2 /3 / ) ]} V 2 

= |V+ (1 + p) 2 - 4 p s i n 2 | / 3 / - -
T l / 2 

(3.43) 

This result shows that 1VI oscillates back and forth between maximum 
values of |V*|(1 + p) when fil - 6/2 = mr and minimum values ty*\ 
(1 - p) when pi - 6/2 = mr + TT/2, where n is an integer. These results 
also agree with physical intuition since they state that voltage maxima occur 
when the incident and reflected waves add in phase and that voltage minima 
occur when they add 180° out of phase. Successive maxima and minima are 
spaced a distance d = ir/fi = XTT/2TT = A/2 apart, where A is the wave
length for TEM waves in the medium surrounding the conductors. The 
distance between a maximum and the nearest minimum is A/4. 

Since the current reflection coefficient is equal to - rL the current 
waves subtract whenever the voltage waves add up in phase. Hence current 
maxima and minima are displaced A/4 from the corresponding voltage 
maxima and minima. Figure 3.8 illustrates the voltage and current stand
ing-wave patterns that result when ZL is a pure resistance equal to 3ZC. 

The ratio of the maximum line voltage to the minimum line voltage is 
called the voltage standing-wave ratio S; thus 

| V + | ( l + p ) 1 + p 

I V - l ( l - p ) 1 - p 
(3.44) 

This is a parameter of considerable importance in practice for the following 
reasons: At microwave frequencies instruments for the direct absolute 
measurement of voltage or current are difficult to construct and use. On the 
other hand, devices to measure relative voltage or current (or electric or 
magnetic field) amplitudes are easy to construct. A typical device is a small 
probe inserted into the region of the electric field around a line. The outp 
of the probe is connected to a crystal rectifier, and produces an outpu1 

current which is a measure of the relative electric field or voltage at ti 
probe position. By moving the probe along the line, the standing-wave ra^i 
can be measured directly in terms of the maximum and minimum pr° 

tThe symbol p denotes both charge density and the modulus of the reflection coefficient 
context makes it clear which quantity is under discussion; so confusion should not occur. 
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FIGURE 3.8 
Voltage and current standing-wave patterns on a 
line terminated in a load impedance equal 
to 3Z,.. 

currents. The location of a voltage minimum can also be measured, and this 
permits the phase angle 6 of VL to be calculated. Since p is known from the 
measured value of S, \'L is specified, and the normalized load impedance 
may be calculated from (3.38). 

Although the reflection coefficient was introduced as a measure of the 
ratio of reflected- to incident-wave amplitudes at the load, the definition 
may be extended to give the corresponding voltage ratio at any point on the 
line. Thus, at z = -I, the reflection coefficient is 

! ' ( / ) = 
V-e-jt>' y 

V+e 
= p-2jei = r p-W (3.45) 

where rL = V /V" denotes the reflection coefficient of the load. The nor
malized impedance, seen looking toward the load, at z ~ -I, is 

Z„ = 
V 

~iz,. 

i + i'(0 
i-r(0 

V*eipl + V~e~Jli' 

1 + VLe-2jP' 

i -r ,e-a-«" 
(3.46) 

By replacing YL by (ZL - Ze)/(ZL + Zc) and e±Jpl by cos pi ±j sin pi, this 
result may be expressed as 

Z, = 
Zs* ZL+jZe tan pi 

Zr Ze +jZL tan pi 

A similar result holds for the normalized input admittance; so 

7;„ YL+jYc tan pi YL + j tan pi 
Y.= 

Yc + jYL tan pi 1 + jYL tan pi 

(3.47) 

(3.48) 

Of particular interest are two special cases, namely, pi = TT or I = A/2 and 
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pi = -rr/2 or I = A/4, for which 

/ = 2 > 

zji = 4 

(3.49 «) 

= Z, (3.496, 

The first is equivalent to an ideal one-to-one impedance transform^ 
whereas in the second case the impedance has been inverted with resDerf 
to Zc. 

The terminal conditions at the generator end are readily established bv 
using (3.47) to evaluate the input impedance Z in seen looking toward the 
load at the generator end. If the generator with open-circuit voltage V has 
an internal impedance Zg, then by the usual voltage division formula the 
total transmission-line voltage V at z = — / will be given by 

ft. 
Z;„ + Z„ 

But V is the sum of the forward-propagating-wave and refiected-wave 
voltages at z = -I, that is, 

V= V V " + V~e-jel 

= V+e""(l + TLe-2jf") 

By using this expression we can solve for V^ which is found to be 

(Zin + Zg)(e^ + YLe~M) 

Zin(ZL + Zc)Vg 

2(Z i n + Z8)(ZL cos pi +jZc sin pi) 
(3.50) 

T e r m i n a t e d L o s s y L i n e 

In the case of a lossy line with propagation constant y ~JP + a-
previous equations hold except that jp must be replaced by jp + a< w n e 

a is usually so small that, for the short lengths of line used in Ta0 

experimental setups, the neglect of a is justified. Nevertheless, it is of so 
interest to examine the behavior of a lossy transmission line terminated in 
load ZL. One simplifying assumption will be made, and this is that 
characteristic impedance Zc can still be considered real. This assumption 
certainly valid for low-loss lines of the type used at microwave frequent 
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A detailed calculation justifying this assumption for a typical case is called 
for in Prob. 3.18. 

Clearly, the presence of an attenuation constant a does not affect the 
definition of the voltage reflection coefficient TL for the load. However, at 
any other point a distance / toward the generator, the reflection coefficient 
is now given by 

f(l) =YLe-*W- 2„l (3.51) 

As / is increased, T decreases exponentially until, for large /, it essentially 
vanishes. Thus, whenever a load ZL is viewed through a long section of 
lossy line, it appears to be matched to the line since Y is negligible at the 
point considered. This effect may also be seen from the expression for the 
input impedance, namely, 

1 + rLe-*&-*"' ZL + Zc tanh( jpl + al) 

+ Z Ltznh( jpl + al) 
(3.52) 

which approaches Zc for I. large since tanh x approaches 1 for x large and 
not a pure imaginary quantity. 

The losses also have the effect of reducing the standing-wave ratio S 
toward unity as the point of observation is moved away from the load 
toward the generator. As the generator is approached, the incident-wave 
amplitude increases exponentially whereas the reflected-wave amplitude 
decreases exponentially. The result is a standing-wave pattern of the type 
illustrated in Fig. 3.9. For illustrative purposes a relatively large value of a 
has been assumed here. 

The power delivered to the load is given by 

P, = i Re(VJl) = \\VL\*GL = - | l V + l 2 ( l - i r , | 2 ) (3.53) 

Zc j j / i = 34 

1=T" + 

F I G U R E 3.9 
Voltage standing-wave pattern 
on a lossy transmission line. 
(1) Envelope of incident-wave 
amplitude; (2) envelope of re
flected-wave amplitude; (3) 
standing-wave pattern. 
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as before. At some point z = - 1 , the power directed toward the load i8 

P(l) = ±Re(V7*) = ^\V\2YC = ^ | v + e " ' | 2 [ l - | r ( / ) | 2 ] 

= ~W-\2(e2"l~\rL\2) 
(3.54) 

where i r k " ' has been replaced by ITJ. Of the power given by (3.54) onk, 
that portion corresponding to P, as given by (3.53) is delivered to the load 
The remainder is dissipated in the lossy line, this remainder being given bv 

^ O - ^ - y l ^ l V ' - i ) (3.55) 

PART 2 
F I E L D A N A L Y S I S O F T R A N S M I S S I O N LINES 

The first section of this part will show that Maxwell's equations can be 
reformulated so as to describe three classes of waves, TEM, TE, and TM 
waves. The TEM wave is the principal wave on transmission lines. From the 
solution for the electric and magnetic fields for the TEM wave, we will be 
able to establish that there are unique voltage and current waves associated 
with the TEM wave. We will also be able to evaluate the distributed-circuit 
parameters R, L, C, and G for a transmission line. The field analysis thus 
provides a theoretical basis for treating the transmission line as a dis
tributed circuit. 

After the basic equations for TEM, TE, and TM waves have been 
derived, we present the field analysis for transmission lines that support 
TEM waves. This is followed by several sections dealing with planar trans
mission lines. Many of the planar lines that we examine support only 
quasi-TEM waves but can be analyzed as transmission lines once their 
equivalent distributed-circuit parameters have been determined. 

3 . 7 C L A S S I F I C A T I O N O F WAVE S O L U T I O N S 

The transmission lines and waveguides analyzed in this chapter are 
characterized by having axial uniformity. Their cross-sectional shape &* 
electrical properties do not vary along the axis, which is chosen as t " e 

axis. Since sources are not considered, the electric and magnetic fields 
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solutions of the homogeneous vector Helmholtz equation, i.e., 

V»E + k%E = 0 V2H + k*H = 0 

The type of solution sought is that corresponding to a wave that propagates 
along the z axis. Since the Helmholtz equation is separable, it is possible to 
find solutions of the form f(z)g(x,y), where f is a function of z only and g 
is a function of x and y or other suitable transverse coordinates only. The 
second derivative with respect to z enters into the wave equation in a 
manner similar to the second derivative with respect to time. By analogy 
with e-""' as the time dependence, the z dependence can be assumed to be 
e±jp*. This assumption will lead to wave solutions of the form cos(w< ± pz) 
and sin(w/ ± /3z), which are appropriate for describing wave propagation 
along the z axis. A wave propagating in the positive z direction is repre
sented by e~jP', and ejPz corresponds to a wave propagating in the negative 
z direction. With an assumed z dependence e~jPz, the del operator becomes 
V = V, + Vz = V, ~jfiaz, since Vz = azd/dz. Note that V, is the transverse 
part and equals ax d/dx + ay d/dy in rectangular coordinates. The propaga
tion phase constant fi will turn out to depend on the waveguide configura
tion. 

Considerable simplification of Maxwell's equations is obtained by de
composing all fields into transverse and axial components and separating 
out the z dependence. Thus let (the time dependence eJ'"' is suppressed) 

E ( * , y , 2 ) = E,(x,y,z) + Ez(x,y,z) 

= e(x,y)e~Jli* + ez(x,y)e~Jp! (3.56) 

H(x,y,z) = H,(x,y,z) + Uz(x,y,z) 

= h(x,y)e-#* + hz(x,y)e ^ (3.57) 

where E , ,H , are the transverse (x and y) components, and E>, Hz are the 
axial components. Note also that e(x,y), h{x,y) are transverse vector func
tions of the transverse coordinates only, and ez(x,y),h2(jc,y) are axial 
vector functions of the transverse coordinates. 

Consider the V X E equation, which may be expanded to give 

V x E = (V, - . / / 3 a J X (e + ez)e~^ = -jton0{h + h j e " ^ 

or V, x e -jpaz X e + V, x e2 ~j/3az Xez = - jwM 0h - > M o h = 

The term a; X e, = 0, and V, X e2 = V, X aze, = - a 2 X V,^. Note also 
that V, X e is directed along the z axis only, since it involves factors such as 
a, X a ,̂, ax X ax, ay X ax, and av X av , whereas az X e and V, X e, have 
transverse components only. Consequently, when the transverse and axial 
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components of the above equation are equated, there results 

V, x e = -jun0hz (3.58Q) 

V, x ez -jpat X e = - a , X V,ez - . / /3a , X e = -ju>nQh (3.586) 

In a similar manner the V X H equation yields 

\ X h =jcoe0ez (3.58c) 

a, X V,hz +jpaz X h = -jwe0e (3.58d) 

The divergence equation V • B = 0 becomes 

V • B = V • M o H = (V, -jpa2) • (h + h , ) M o C - - " " 

= ( V , - h - ^ a , - h J M o e ^ = 0 

o r %'h=MK (3.58e) 

Similarly, V • D = 0 gives 

V, • e = j0ez (3.58/-) 

This reduced form of Maxwell's equations will prove to be very useful in 
formulating the solutions for waveguiding systems. 

For a large variety of waveguides of practical interest it turns out that 
all the boundary conditions can be satisfied by fields that do not have all 
components present. Specifically, for transmission lines, the solution of 
interest is a transverse electromagnetic wave with transverse components 
only, that is, Ez = Hz = 0, whereas for waveguides, solutions with Ez = 0 
or Hz = 0 are possible. Because of the widespread occurrence of such field 
solutions, the following classification of solutions is of particular interest. 

1. Transverse electromagnetic (TEM) waves. For TEM waves, Ez = Hz = 0. 
The electric field may be found from the transverse gradient of a scalar 
function * (x ,y ) , which is a function of the transverse coordinates only 
and is a solution of the two-dimensional Laplace equation. 

2. Transverse electric (TE), or H, modes. These solutions have Ez = 0, but 
Hz ¥= 0. All the field components may be derived from the axial compo
nent Hz of magnetic field. 

3. Transverse magnetic (TM), or E, modes. These solutions have Hz = "» 
but Ez ¥= 0. The field components may be derived from Ez. 

In some cases it will be found that a TE or TM mode by itself will not 
satisfy all the boundary conditions. However, in such cases linear combina
tions of TE and TM modes may be used, since such linear combinations 
always provide a complete and general solution. Although other possible 
types of wave solutions may be constructed, the above three types are the 
most useful in practice and by far the most commonly used ones. 
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The appropriate equations to be solved to obtain TEM, TE, or TM 
modes will be derived below by placing E, and Hz, Ez, and Hz. respectively, 
equal to zero in Maxwell's equations. 

For TEM waves e, = hz = 0; SO (3.3) reduces to 

V , x e = 0 (3.59a) 

(iaz X e = wM0h (3.596) 

V, X b = 0 (3.59c) 

/ 3 a z X h = -we0e (3.59d) 

V , - h = 0 (3.59e) 

V , - e = 0 (3.59 f) 

The vanishing of the transverse curl of e means that the line integral of e 
around any closed path in the xy plane is zero. This must clearly be so since 
there is no axial magnetic flux passing through such a contour. Although 
V, X h = 0 when there are no volume currents present, the line integral of 
h will not vanish for a transmission line with conductors on which axial 
currents may exist. This point will be considered again later when transmis
sion lines are analyzed. Equation (3.59a) is just the condition that permits e 
to be expressed as the gradient of a scalar potential. Hence let 

e(x,y) = ~V,<S>(x,y) (3.60) 

Using (3 .59/ ) shows that <t> is a solution of the two-dimensional Laplace 
equation 

V?4>(x,y) = 0 (3.61) 

The electric field is thus given by 

E,{x,y,z) = -V,<i>(x,y)e'^ 

But this field must also satisfy the Helmholtz equation 

V-'E, + k*E, = 0 

Since V = V, -j/3az, V2 = V,2 - (32, that is, the second derivative with 
respect to z gives a factor - / J a , this reduces to 

V?E, + (kl- 0 2 )E , = 0 

or V,[V,24>+ {k2-fi2)<p\ = 0 

This shows that /3 = ±k0 for TEM waves, a result to be anticipated from 
the wave solutions discussed in Chap. 2. The magnetic field may be found 
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from the V X E equation, i.e., from (3.596); thus 

WMo 

*o 
h = a 2 X e = Z 0 h (3.62) 

In summary, for TEM waves, first find a scalar potential <I> which is a 
solution of 

V,24>(*,;y) = 0 (3.63a) 

and satisfies the proper boundary conditions. The fields are then given by 

E = E, = ***** = - V/De*'*'2 (3.636) 

H = H, = ±he*•'*«'* = ±Y0a, X •**-*•• (3.63c) 

where k0 = w(/zoe0) I / 2 , Y0 = (e0//j.0)
1/2, and e~Jk°* represents a wave prop

agating in the + z direction and eJ °* corresponds to wave propagation in 
the — z direction. For TEM waves, Z„ is the wave impedance, and from 
(3.63c) it is seen that, for wave propagation in the + z direction, 

V F" 
7T = - W = zo ( 3 6 4 a ) 

whereas for propagation in the —z direction, 

For transverse electric (TE) waves, hz plays the role of a potential function 
from which the rest of the field components may be obtained. The magnetic 
field H is a solution of 

v"2H + ft2H = 0 

Separating the above equation into transverse and axial parts and replacing 
V2 by V2 - B2 yield 

V2k1(x,y)+k2h;(x,y) = 0 (3.65a) 

V2h + k2h = 0 (3.656) 

where k2 = k\, - B2 and a z dependence e~iliz is assumed. Unlike the case 
of TEM waves, B2 will not equal k% for TE waves. Instead, B is determined 
by the parameter h2 in (3.65a). When this equation is solved, subject to 
appropriate boundary conditions, the eigenvalue k2 will be found to be a 
function of the waveguide configuration. 
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The Maxwell equations (3.58) with es = 0 become 

V, X e = -7'w/i0h2 (3 .66a) 

/3a, X e = co^h (3.666) 

V, X h = 0 (3.66c) 

a, X V,/iz + jpaz x h = -jwe0e (3.66d) 

V,-h=jlih2 (3.66c) 

V, • e = 0 (3.66/") 

The transverse curl of (3.66c) gives 

V, x (V, x h) = V, V, • h - V,2h = 0 

Replacing V, • h by jph2 from (3.58e) and V,2h by -k'f.h from (3.656) leads 
to the solution for h in terms of hz; namely, 

t$ 
h=--^V>; (3.67) 

To find e in terms of h, take the vector product of (3.666) with a;, to obtain 

/3a2 X ( a , X e) = p[(az • e ) a , - ( a , • a j e ] = -jSe = ^ 0 a . . X h 

or e= a ? X h = -— Z,.a, x h (3.68) 

The factor k0Z0/p has the dimensions of an impedance, and is called the 
wave impedance of TE, or H, modes. It will be designated by the symbol Zh, 
so that 

Z, - ^-Z0 (3.69) 

Thus, in component form, (3.68) gives 

T T - - ? - - ^ (3-70) 

for a wave with z dependence e~jliz. 
The remaining equations in the set (3.66) do not yield any new results; 

so the solution for TE waves may be summarized as follows: First find a 
solution for hz, where 

V?hz + k2
chz = Q (3.71a) 

iP 
Then h = - S V » A « (3.716) 

and e = -Zhaz X h (3.71c) 
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where P = (k2 - k2)1/2 and Zh = -^ 

Complete expressions for the fields are 

H = ± h e ' •»• + hjt*** (3.71d) 

E = E, = ee*-** (3.71e) 

Note that in (3.71c?) the sign in front of h is reversed for a wave propagating 
in the —z direction since h will be defined by (3.716), with 3 positive 
regardless of whether propagation is in the +2 or -z direction. The sign in 
front of e does not change since it involves the factor /3 twice, once in the 
expression for h and again in Zh. Only the sign of one of e or h can change 
if a reversal in the direction of energy flow is to occur. That is, the solution 
for a wave propagating in the -z direction can be chosen as E = -eejPz, 
H = (h - hz)e

Jpz or as E = eeJpx, H = ( - h + hz)e
Jliz. One solution is the 

negative of the other. The latter solution is arbitrarily chosen as the 
standard in this text. 

"M Waves 

The TM, or E, waves have h. = 0, but the axial electric field e2 is not zero. 
These modes may be considered the dual of the TE modes in that the roles 
of electric and magnetic fields are interchanged. The derivation of the 
equations to be solved parallels that for TE waves, and hence only the final 
results will be given. 

First obtain a solution for es, where 

V*et + k2ez = 0 (3.72a) 

subject to the boundary conditions imposed. This will serve to determine the 
eigenvalue k2. The transverse fields are then given by 

iB 
E, = e e * * * = - Ta V . 8 * * " (3.726) 

H, = ±he + J0z = ±Yeaz X ee*J0t (3.72c) 

where f3 = (k'l - k2)l/2 and the wave admittance Ye for TM waves is 
given by 

k 
Ye = Z;> = J-Y0 (3.72a-) 

The dual nature of TE and TM waves is exhibited by the relation 

ZeZh - Z0 (3.73) 
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which holds when both types of waves have the same value of p and is 
derivable from (3.69) and (3.72d). The complete expression for the electric 
field is 

E = E, + E, = e e T ^ ± e ; e f * 

= ( - ^ V , e 2 ± e l e ' ^ (3.74) 

It is convenient to keep the sign of e the same for propagation in either 
the +z or -z direction. Since V • E = 0, that is, V, • E, + dEjclz = 0, this 
requires that the z component of electric field be -eze

jliz for a wave 
propagating in the —z direction, because V, • E, does not change sign, 
whereas dEz/^z does, in view of the change in sign in front of ji. The 
transverse magnetic field must also change sign upon reversal of the 
direction of propagation in order to obtain a change in the direction of 
energy flow. For reference, this sign convention is summarized below. The 
transverse variations of the fields are represented by the functions e, h, ez, 
and hz, independent of the direction of propagation. Waves propagating in 
the +2 direction are then given by 

E = E + = (e + « , )*-•* ' (3.75a) 

H = r = ( h + h j e ' ^ (3.756) 

For propagation in the — z direction the fields are 

E - BT= (e - • , ) * * • (3.76a) 

H = H = ( - h + h j e - * * (3.766) 

Additional superscripts ( + ) or ( - ) will be used when it is necessary to 
indicate the direction of propagation. The previously derived equations for 
TEM, TE, and TM modes are valid in a medium with electrical constants 
e, ii, provided these are used to replace e0, n0. A finite conductivity can also 
be taken into account by making e complex, i.e., replacing e by e - ja/co. 

The wave impedance introduced in the solutions is an extremely useful 
concept in practice. The wave impedance is always chosen to relate the 
transverse components of the electric and magnetic fields. The sign is 
always such that if i,j,k is a cyclic labeling of the coordinates 
and propagation is along the positive direction of coordinate k, the ratio 
^,/rlj = (Zw)k is positive. Here (Zu,)k is the wave impedance referred to the 
k axis as the direction of propagation. If i, j, k form an odd permutation of 
the coordinates, then EJH) is negative. The usefulness of the wave-imped
ance concept stems from the fact that the power is given in terms of the 
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transverse fields alone. For example, for TE waves, 

1 t 
P=-RejExK*-azdxdy 

1 , 
= — Re / e X h* • a z dx dy 2 

1 
Re f ZJa, X h) X h* • a, dxdy 

= —— / h • h* dx dy = —~fe-e*dxdy 
2 Js 2 Js 

upon expanding the integrand. Thus the wave impedance enables the power 
transmitted to be expressed in terms of one of the transverse fields alone. A 
further property of the wave impedance, which will be dealt with later, is 
that it provides a basis for an analogy between conventional multiconductor 
transmission lines and waveguides. 

3.8 TRANSMISSION LINES (FIELD ANALYSIS) 

Lossless Transmission Line 

A transmission line consists of two or more parallel conductors. Typical 
examples are the two-conductor hne, shielded two-conductor line, and co
axial line with cross sections, as illustrated in Fig. 3.10. Initially, it will be 
assumed that the conductors are perfectly conducting and that the medium 
surrounding the conductors is air, with e ~ e0, \i ~ fi0. The effect of small 
losses will be considered later. 

When the conductors are completely surrounded by a uniform dielec
tric medium, the principal wave that can exist on the transmission line is a 
TEM wave. The electric field for this wave can be found from the scalar 
potential which is a solution of Laplace's equation in the transverse plane. 
Microstrip lines and other planar transmission lines do not have the dielec
tric medium completely surrounding the conductors and therefore do not 
support a pure TEM wave. In this case it is found that only in the 
low-frequency limit does the dominant mode of propagation approach that 
of a TEM wave. We refer to the principal wave on these lines as a 

O O I O O 1 FIGURE 3.10 
Cross sections of typical trans
mission lines, (a) Two-conduc-
tor line; (6) shielded two-co"" 

(a) (*) (c) ductor line: (c) coaxial line-
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«-/ F IGURE 3.11 
Cross section of a general two-
conductor line showing trans
verse field patterns. 

quasi-TEM wave. The solution for the electric and magnetic fields of 
the quasi-TEM wave requires a separate solution for both the electric and 
magnetic fields in order to determine the distributed-circuit line parameters 
R, L, C, and G. This is because the electric and magnetic fields are no 
longer related in the simple way that they are for the TEM wave. The 
solution for the magnetic field can be found by solving for the vector 
potential function as will be shown later. In this section and the following 
one, we consider only transmission lines that support a TEM wave. 

With reference to Fig. 3.11, let the one conductor be at a potential 
V0 /2 and the other conductor at - V 0 /2 . To determine the field of a TEM 
wave, a suitable potential <I>(A:,y) must be found first. It is necessary that <t> 
be a solution of 

v;2^ = o 

and satisfy the boundary conditions 

on S 2 

on S, 

Since <P is unique only to within an additive constant, we could equally well 
choose <J> = V0 on S2 and <J> = 0 on S1. If a solution for <l> is possible, a 
TEM mode or field solution is also possible. When two or more conductors 
are present, this is always the case. The solution for <t> is an electrostatic 
problem that can be solved when the line configuration is simple enough, as 
exemplified in Fig. 3.10. 

The fields are given by (3.63), and for propagation in the +z direction 
are 

E = E, = ee~jko* = -V,4>e_J'*<>* (3.77a) 

s, 

4> = 

V„ 

H = H, = y ( l a ! X e r ^ 2 (3.776) 



1 0 6 FOUNDATIONS FOR MICROWAVE ENGINEERING 

The line integral of e between the two conductors is 

rS, [% • dl = f 2 - V.cl> • dl 
Js, •'s, 

= ~fs!^dTdl = " [ $ ( S 2 ) - *(S'>J = - y ° I 
Associated with the electric field is a unique voltage wave 

V=V0e~^ (3.78) 

since the line integral of e between Sj and S2 is independent of the path 
chosen because e is the gradient of a scalar potential. 

The line integral of h around one conductor, say S2 , gives 

<f) h • dl = <f) Js dl = I0 

by application of Ampere's law, V X H =j<uT> + J, and noting that there is 
no axial displacement flux Dz for a TEM mode. On the conductors the 
boundary conditions require n X e = 0 and n X h = J s , where n is a unit 
outward normal and Js is the surface current density. Since n and h he in a 
transverse plane, the current J, is in the axial direction. In the region 
remote from the conductors, V, X h = 0, but the line integral around a 
conductor is not zero because of the current that exists. The current on the 
two conductors is oppositely directed, as may be verified from the expression 
n X h = J s . Associated with the magnetic field there is a unique current 
wave 

I = I0e-JI">* (3.79) 

Since the potential <P is independent of frequency, it follows that the 
transverse fields e and h are also independent of frequency and are, in 
actual fact, the static field distributions which exist between the conductors 
if the potential difference is V0 and currents /„, —7„ exist on S2 , Sv 

respectively. The magnetic lines of flux coincide with the equipotential lines, 
since e and h are orthogonal, as seen from (3.776). 

Example 3-1 Coaxial line. Figure 3.12 illustrates a coaxial transmission 
Vine for which the solution for a TEM mode will be constructed. In cylindrical 
coordinates r, <t>, z, the two-dimensional Laplace equation is 

I A I <Tt>\ 1 d 2 * 

r Hr\ dr J r2 d<t>2 

or for a potential function independent of the angular coordinate i}>, 

r dr \ dr 



TRANSMISSION LINES AND WAVEGUIDES 1 0 7 

* = 0 FIGURE 3.12 
Coaxial transmission line. 

Integrating this equation twice gives 

$ = C, In r - C, 

Imposing the boundary conditions 4> = V„ at r = a, <l> = 0 at r = ft, gives 

V0 = C, In a + C2 0 = C, in 6 + C, 

and hence C2 = - C , In ft, C, = V0/[ln(o/ft)], 

)n{r/b) 
* = V0- (3.80) 

'ln(a/ft) 
The electric and magnetic fields of a TEM mode propagating in the +z 

direction are given by (3.77) and are 

E = -a r —e->*<* =• - r - r ^ T T — «"•"" r<?r fn(o/6) r 

_ ! l p .Mo* 
In ( f t / a ) r 

H = y 0 a . X ee J M - y«V» ' * ,. ''.-...-

(3.81a) 

(3.81ft) 
l n ( 6 / a ) r 

The potential difference between the two conductors is obviously V0; so the 
voltage wave associated with the electric field is 

V = V „ e ;*•-• (3.82) 

The current density on the inner conductor is 

Wo a, 
n X H = a r X H e -y*o z 

YgV0tor 
(3.83) 

ln ( f t / a ) a 

The total current, apart from the factor e "•'*"*, is 

In = I a d(b = 
0 a\n(b/a)Jn ln(f t /a) 

The current on the inner surface of the outer conductor is readily shown to be 
equal to I0 also, but directed in the -z direction. The current wave associated 
with the magnetic field is therefore 

I = V - ' * " 2 (3.84) 
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The power, or rate of energy flow, along the line is given by 

1 rhr7.Tr 1 YaVrf rb ,-2~dd>dr 

P = - Re (" E X H* • asdrdt = - 2-^—j f 
2 L in 2 Urr( h/n\Y L 4 2 Ja

Jo 2 fln(6/a)] Ja Jo 

TrY0Vi 
(3.85) 

ln(o/a) 

The power transmitted is seen to be also given, as anticipated, by the expression 

1 1 1 „ 2 r r , 
-Re(V7*) = -V0 / ( 1 = -V0

2 
2 v ' 2 u " 2 u \n(b/a) 

The characteristic impedance of the line is defined by the ratio 

— = Zt. (3.86) 
'o 

in terms of which the power may be expressed as P = jZcI% = %YCVQ, where 
Yc is the characteristic admittance of the line and equal to Zc

 1. The 
characteristic impedance is a function of the cross-sectional shape of the 
transmission line. 

Pransmiss ion L i n e w i t h S m a l l L o s s e s 

Practical transmission lines always have some loss caused by the finite 
conductivity of the conductors and also loss that may be present in the 
dielectric material surrounding the conductors. Consider first the case when 
the conductors are surrounded by a dielectric with permittivity e = e' — je" 
but the conductors are still considered to be perfect. The presence of a lossy 
dielectric does not affect the solution for the scalar potential <P. Conse
quently, the field solution is formally the same as for the ideal line, except 
that ku and Y0 are replaced by k = k0{e'r -je"r)

1/2 and Y = Y0(e'r -je"r)
1/2, 

where the dielectric constant cr = e'r -je"r = e /e 0 . For small losses such 
that e" « e'r, the propagation constant is 

/ e " \ l / 2 e"k 
jk=a+j{3 = y K > 1 / 2 * 0 1 - y - f * / ( 4 ) 1 / 2 * o + - ^ - ? 7 2 

Thus a = 6r ° (3.87o) 
2(€ ' r )

1 / 2 

8 = {e'r)
l/2k0 (3.876) 

where a is the attenuation constant and B is the phase constant. The wave 
consequently attenuates according to e~"z as it propagates in the +z 

direction. 
It will be instructive to derive the above expression for a by means of a 

perturbation method that is widely used in the evaluation of the attenua-

rhr7.Tr
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tion, or damping, factor for a low-loss physicaJ system. This method is based 
on the assumption that the introduction of a small loss does not substan
tially perturb the field from its loss-free value. The known field distribution 
for the loss-free case is then used to evaluate the Joss in the system, and 
from this the attenuation constant can be calculated. In the present case, if 
e" = 0, the loss-free solution is 

E = -V/berm H - Ya2XE 

where k = (e'r)
1/zk0 and Y = (er)

xnY0. When e" is small but not zero, the 
imaginary part of e, that is, e", is equivalent to a conductivity 

a = (oe" = we0e" 

A conductivity a results in a shunt current J ~ ixE between the two 
conductors. The power loss per unit length of line is 

1 , W<E" . 
P,= — - / J- J*dS = —- / E -E*dS (3.88) 

2o Js 2 Js 
where the integration is over the cross section of the line, and the loss-free 
solution for E is used to carry out the evaluation of P,. Since loss is present, 
the power propagated along the line must decrease according to a factor 
e~2"'. The rate of decrease of power propagated along the line equals the 
power loss. If the power at z = 0 is PQ, then at z it is P = P0e~2a*. 
Consequently, 

dP 
-— - Pi = 2aP0e-2"-' = 2aP (3.89) 

which states that the power loss at any plane z is directly proportional to 
the total power P present at this plane. The power propagated along the 
line is given by 

1 , 
P = - Re / E x H* • a , dS 

*• Js 

Y Y 
= - R e / " E x ( a 2 x E * ) • a,dS = -(E • E*dS 

z- Js 2 •'s 

Hence the attenuation a is given by 

P, a we" 
= A, 

IP 2Y 2Y0(e'r)
l/2 ' ° 2 ( 0 ' / 2 

which is the same as the expression (3.87a). For this example the perturba
tion method does not offer any advantage. However, often the field solution 
for the lossy case is very difficult to find, in which case the perturbation 
method is extremely useful and simple to carry out by comparison with 
other methods. The case of transmission lines with conductors having finite 
conductivity is an important example of this, and is discussed below. 
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If the conductors of a transmission line have a finite conductivity, tQev 

exhibit a surface impedance 

Z„,= 111 (3.90) 

where 8S = (2/w/icr) l / 2 is the skin depth (Sec. 2.9). At the surface the 
electric field must have a tangential component equal to ZmJs, where J ;,, 
the surface current density. Therefore it is apparent that an axial com'po. 
nent of electric field must be present, and consequently the field is no longer 
that of a TEM wave. The axial component of electric field gives rise to a 

component of the Poynting vector directed into the conductor, and this 
accounts for the power loss in the conductor. Generally, it is very difficult to 
find the exact solution for the fields when the conductors have finite 
conductivity. However, since \Z„,\ is very small compared with Z0 , the axial 
component of electric field is also very small relative to the transverse 
components. Thus the field is very nearly that of the TEM mode in the 
loss-free case. The perturbation method outlined earlier may be used to 
evaluate the attenuation caused by finite conductivity. 

The current density Js is taken equal to n X H, where n is the unit 
outward normal to the conductor surface and H is the loss-free magnetic 
field. The power loss in the surface impedance per unit length of line is 

. 

p, = - R e Z n6 J , - J ? * 
s2 

R"> J. (n 
-s2 

X H ) ' ( n X f f )dl 

R-*, ' -ri, H 
'S2 

•H*dl (3.91) 

where R„, = l/trSs is the high-frequency surface resistance, and 

(n x H) - ( n x H*) = n • H X (n X H*) 

= n • [ (H • H * ) n - (H • n)H*] = H • H* 

since n • H = 0 for the infinite-conductivity case. The integration is taken 
around the periphery S{ + S2 of the two conductors. The attenuation 
constant arising from conductor loss is thus 

R mYS,+S. H • H* dl 
a = IP 2Zj H • H* dS 

where the power propagated along the line is given by 

(3.92) 

Re - JE X H* • a2 dS = -ZJH • H* dS 

and Z is the intrinsic impedance of the medium; that is, Z = (iJ./e)l/2-
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When bo th dielectric and conductor losses a re present , t h e a t t enua t i on 
cons t an t is the s u m of t h e a t t enua t ion cons tan t s ar is ing from each cause, 
provided both a t t enua t i on cons tan t s are smal l . 

Example 3.2 Lossy coaxial l ine. Let the coaxial line in Fig. 3.12 be filled 
with a lossy dielectric (e = e' — je"), and let the conductors have finite 
conductivity a. For the loss-free case U" = 0, a = «) the fields are given by 
(3.81), with k0 and Y0 replaced by k = {e'/e0)

1/2k0, 

Thus E = — e Jk-- (3.93a) 
l n ( 6 / a ) r ' 

YVU a . 
H = r 7 r r r — e'J <3-936) 

ln (b/a) r ' 
The power propagated along the line is 

1 r2W rb TTYVZ 

The power loss Pn from the lossy dielectric is, from (3.88), 

eve" rh <ye"VU7r 

*—£••*"**•-£(*£) (395a) 

The power loss from finite conductivity is given by (3.91), and is 

R,n Y2VJ , 2 - / 1 

2 [ln(6/a)f -^Cli+»/'* 
RmirY*V* b + a 

[ l n ( 6 / a ) ] 2 ob 

Hence the attenuation constant a for the coaxial line is given by 

Pn + Pn 
° = 2P • 

we" RmY b + a Pn + Pn 
° = 2P • 2Y ' 21n(6/o) ab 

-= ~. -i-
Rm b + a 

(3.95b) 

2 ( e ' r )
, / 2 2 Z l n ( 6 / a ) ab 

For the lossy case the propagation constant is consequently taken as 

a + j/3 = a +jk 

with a given by (3.96). 

(3.96) 
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T R A N S M I S S I O N - L I N E P A R A M E T E R S 

In this section the field analysis to determine the circuit parameters £ o 
C, and G for a transmission line is examined in greater detail. This will 
serve further to correlate the field analysis and circuit analysis of transmis
sion lines. 

Consider first the case of a loss-free line such as that illustrated in Fig 
3.11. When the scalar potential 4> has been determined, the charge density 
on the conductors may be found from the normal component of electric field 
at the surface; that is, ps = en * e = - e n • VO = -ed$>/dn, where e is the 

permittivity of the medium surrounding the conductors. The total charge Q 
per unit length on conductor S2 is 

Q = & en • e dl 

The total charge on the conductor Ss is -Q per meter. The potential of 
is V0, and hence the capacitance C per unit length is 

Q efo n • e dl 
(3.97 C = 

/!? dl 

The total current on S2 is 

l0 = <f)h-dl=(f) Yn-edl 
YQ 

'$•> 

since lh| = Y\e\ = Yn • e at the surface of S2 because the normal compo
nent of h and the tangential component of e are zero at the perfectly 
conducting surface S2 . The characteristic impedance of the Une is given by 

V, V0e eZ 
(3.98) 

A knowledge of the capacitance per unit length suffices to determine the 
characteristic impedance. 

To determine the inductance L per unit length, refer to Fig. 3.13, 
which illustrates the magnetic flux lines around the conductors. Since h & 

/ i j j=0 line 

FIGURE 3.13 
Magnetic flux lines in a transmission line. 
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orthogonal to e, these coincide with the equipotential lines. All the flux lines 
from the $ = 0 to the 4> = V 0 /2 line link the current on S 2 . The flux 
linkage is the total flux cutting any path joining the <t> = 0 line to the 
surface S2 . If a path such as PiS2 or P2S2 is chosen, which is orthogonal to 
the flux lines, this path coincides with a line of electric force. The flux 
cutting such a path is 

<P = f\hdl = fiY[Sa -ed\ = tiY— 
JP, JP,

 2 

since I h | = Y\ e I for a TEM wave. The inductance of one conductor of the 
line is 

T * vV° 

The inductance of both conductors per unit length is twice this value; so 

L = ,MY-^ = liYZe (3.99) 
*o 

From this relation and (3.98) it is seen that Z = \iZc/L = CZc/e, and hence 

_ M y.Zc CZC 
£ — — -

e L e 

which gives 

Z c = y - (3.100) 

Equations (3.98) and (3.99) also show that 

fie = LC (3.101) 

for a transmission line. The above expressions for C and L can also be 
obtained from the definitions based on stored energy. The derivation is left 
as a problem. 

If the dielectric has a complex permittivity e = e' -j(", where e" 
includes the conductivity of the dielectric if it is not zero, the total shunt 
current consists of a displacement current ID and a conduction current Is. 
The current leaving conductor S2 per unit length is 

I = ID + Is =jioe(p e • n dl =joje'(p e • n dl + a>e"(p e • n dl 
Sz S-i Sz 

where the first integral on the right gives the displacement current and the 
second integral gives the conduction current. The total shunt admittance is 
given by Y = jcoC + G = (Is + I/})/V0, and hence it is seen that 

7 , 7S ID coe" G = v = fnvn
 = —C (3102) 
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since jwC = ID/V0 and jcoC/jcoe' = C/e'. This relation shows that Q 
differs from C by the factor toe" /e only. 

The transmission-line loss from finite conductivity may be accounted 
for by a series resistance R per unit length provided R is chosen so that 

The right-hand side gives the total power loss per unit length arising from 
the high-frequency resistance of the conductors. In terms of this quantity 
the resistance R is thus defined as 

R = R»> ,. ,. , J I X2 (3.104) 
(<psJh\dl) 

where Rm = l/(r8s and 8S is the skin depth. 
A further effect of the finite conductivity is to increase the series 

inductance of the line by a small amount because of the penetration of the 
magnetic field into the conductor. This skin-effect inductance L, is readily 
evaluated on an energy basis. The surface impedance Zm has an inductive 
part jXm = j/o-8s equal in magnitude to Rm. The magnetic energy stored 
in Xm is (note that Xm is equivalent to a surface inductance Xm/io = Lm) 

wm = ^6 ufdi 
4w JSt+S2 

4w JSt + Si 4w Rm 4ci> 

by using (3.103) to replace the integral. Defining Ls by the relation 

\LJ2
0 = W,„ 

gives o>Ls - R (3.105) 

The series inductive reactance of the line is increased by an amount equal to 
the series resistance. However, for low-loss lines, R •« OJL, so that Ls -^ *" 
and the correction is not significant for most practical lines. The inductance 
Ls is called the internal inductance since it arises from flux linkage 

internal 
to the conductor surfaces. 

It should not come as a surprise to find that wLs = R since both the 
inductive reactance and resistance arise from the penetration of the current 
and fields into the conductor. The effect of this penetration into the 
conductor by an effective distance equal to the skin depth 5S is correctly 
accounted for in a simplified manner by introduction of the surfa** 
impedance Zm = (1 +j)/a8s. 
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Example 3.3 Coaxial-line parameters. For the coaxial line of Fig. 3.12 
the potential <I> is given by 

* v l n ( r / 6 ) 

The charge on the inner conductor is 

Q = e / " a r • ead<b = e I ad<j> 
Jo Jn dr 

m _=•* r^=J^L 
l n ( a / 6 ) ' o l n ( 6 / a ) 

Hence the capacitance per unit length is 

e Q fer«* 
C=-—= (3.106) 

e V0 \n(b/a) 

since the capacitance arises only from that part of the charge associated with 
e' whereas e" gives rise to the shunt conductance. 

The magnetic field is given by (3.936) as 

YV a 

l n ( 6 / a ) r 

The current I0 is 

, rz*u ^ 2irYVQ 
I„= I h • a.ad4> = •——, 

0 J0 * l n ( 6 / a ) 
Thus the characteristic impedance is 

VQ Z l n ( 6 / a ) 
Zc = -^ = 5 - f - i (3.107) 

The flux linking the center conductor is 

•'o m( o / a ) -'n r 

Consequently, the inductance per unit length is 

<b ixYV0 6 y. b 
L = — = — = 7 - In - = — In - (3.108) 

/„ 2TTYV0 a 2TT a 

from which it is seen that LC = ye' and Z(. = ( L / C ) 1 / 2 . 
The shunt conductance G is given by we"C/e', and is 

toe" 2-rre' 2-nwe" 
G = » (3.109) 

6 ' l n ( 6 / a ) l n ( 6 / a ) 
To find the series resistance, the power loss in the inner and outer 

conductors must be evaluated. This was done in Example 3.2, with the result 
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[Eq. (3.956)] 

Solving for R gives 

1 „ RmTrY2V? b + a 
-RIS = Pl2 - % 
2 [ln(b/a)f ab 

R = 

ce 

R„, b + a 

'ITT ab ( 3 l » 0 ) 

The internal inductance Ls is equal to R/io; so the total series line inductam 
per unit length is 

L + L= = h 'n a + 2,0,'ab^r ( ^ l ) 

The distributed-circuit parameters R, L, C. and G for a transmission 
line can also be determined from an evaluation of the stored electric and 
magnetic field energy and the power loss per unit length. Energy storage in the 
magnetic field is accounted for by the series inductance L per unit length, 
whereas energy storage in the electric field is accounted for by the distributed 
shunt capacitance C per unit length. Power loss in the conductors is taken 
into account by a series resistance R per unit length. Finally, the power loss in 
the dielectric may be included by introducing a shunt conductance G per unit 
length. Suitable definitions for the parameters L, C, R, and G based on the 
above concepts are 

L = ~ r W H - H * d S (3.112a) 
*o'o s 

C= - ^ — [ E-E* dS (3.1126) 
W Js 

R = -^-(f) HH'dl (3.112c) 

G=-^-[E-E*dS (3.112d) 

where /„ is the total current on the line, and V0 the potential difference. These 
expressions are obtained, for example, by equating the magnetic energy 
\l0lo L = Wm stored in the equivalent series inductance L to the expression 
for Wm in terms of the field. The above definitions are readily shown to be 
equivalent to the other commonly used definitions such as 

magnetic flux linkage l l 3 f l j 

total current 

total charge per unit length 113ft) 
voltage difference between conductors 

total shunt current . O . M 
G ( 3 . U 3 C ' 

voltage difference between conductors 

Parameters of some common transmission lines are given in Table 3.*-j 
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TABLE 3.1 
Parameters of common transmission l inest 

R 

S> 
1/2 . D 

cosh ' — 
2Rr D/d 

"d [(D/df-1 
1/2 

1 Ho) , o 
I n -

a 2TT v e ; 2-n- \ a b J 

11 

P = 
D 

9 = 

1/2 

In 2p 
1-?* 
1+g* 

1 + 4p2 

2ff„ I + 2p2 

+ — V ( 1 + <?*)-
! • 4p-

tFor all TEM transmission lines 

_ ( M o p " * 
C = = L = (Moe ) ' Zt G = 

e"C 

GZ, 
<*</ = 

RK. 
/?, 

_1 / "M \ L./5 
5, U 

I/U 

<r ,̂ \ 2<r I 

310 INHOMOGENEOUSLY FILLED 
PARALLEL-PLATE TRANSMISSION LINE 

In Fig. 3.14a we show a parallel-plate transmission line (waveguide) par
tially filled with dielectric material having a permittivity e = ere0, where er 

is the dielectric constant. The plates are infinitely wide and spaced a 
distance b apart. The dielectric sheet has a thickness a and rests on the 
bottom plate. 

The purpose for studying this particular waveguide is that it exhibits a 
number of characteristics that are similar to those of the microstrip trans
mission lines examined in the following section. We will show that the 
dominant mode of propagation in the waveguide under consideration is an 
E mode and that as the frequency approaches zero this mode becomes a 
TEM mode. Furthermore, in the low-frequency limit, the propagation con-
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FIGURE 3.14 
(a) Partially loaded parallel-plate waveguide; (6) parallel-plate waveguide with magnetic walk 
at x = + W. 

stant can be found in terms of the distributed capacitance; and inductance 
per meter by the usual transmission-line formula /? = covLC. As the fre
quency increases \i increases faster than to, in which case we say that the 
transmission line exhibits dispersion. 

Another feature that can be easily described for this waveguide is the 
existence of a surface-wave mode of propagation that consists of a field 
concentrated near the air-dielectric interface. 

Since the analytic solution for the partially filled parallel-plate wave
guide is readily constructed, this waveguide serves as a useful example to 
provide some physical insight into the properties of microstrip transmission 
lines. 

An electric wall is a surface on which the tangential electric field must 
be zero. A good conductor such as copper provides a surface with a very 
small skin-effect surface impedance (see Sec. 2.9). When we let the conduc
tivity a become infinite, we obtain an electric wall on which the boundary 
condition n X E = 0 holds. The dual of an electric wall is a magnetic wall on 
which the tangential magnetic field is zero, i.e., the boundary condition 
n X H = 0 holds. The magnetic wall does not have a physical realization 
but is, nevertheless, a useful theoretical concept. In practice, a magnetic 
wall can be inserted into a field region, without disturbing the field, along 
any surface on which the tangential magnetic field is zero. Such surfaces 
usually correspond to certain symmetry planes in a given problem. I" 
addition to the above boundary conditions, Maxwell's equations show that 
on an electric wall the normal component of H is zero, that is, n • H = 0. | 
The dual boundary condition n • E = 0 holds on a magnetic wall. 

For the E mode that we will consider in the partially filled parallel-plate 

waveguide, we will assume that the fields do not depend on the x coordinsie 
but are functions of y and z only. A consequence of this assumption is that 
only the field components Ey, Ez and Hx are present. Thus we can place 8 
magnetic wall along any x = constant surface without disturbing the field-
We will now assume that magnetic walls are inserted at x = ± f f a s shown 
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in Fig. 3.146. By means of this artifice, we are able to talk about a closed 
waveguide structure, closed by electric walls at y = 0, b and by magnetic 
walls at x = ±W. 

In order to find the solutions for E modes having the z dependence 
e~Jpz, we must find solutions for the axial electric field component ez{y) 
first. In an ideal transmission line the propagation constant equals that for 
plane TEM waves in the surrounding medium. In the structure under 
investigation we have a nonuniform medium, namely dielectric in the region 
0 < y < a and air in the region a < y < b. Consequently, we can anticipate 
that the propagation phase constant /3 for the dominant mode will take on 
an intermediate value, i.e., 

k0 = toj(i0e0 < fi < yfe^k0 = k 

The equation satisfied by eSy) is (3.72a) which is repeated below 

V2ez + k2ez = 0 

Since we assume no variation with x, the transverse laplacian operator 
becomes simply d2/dy2. In this equation k2 = k2, - P2 in the air region and 
equals k2 - [32 in the dielectric region. The propagation constant (3 must be 
the same in both regions because the tangential electric and magnetic fields 
must match at the air-dielectric interface for all values of z. For conve
nience, we will let kc = I in the dielectric region and let it equal p in the air 
region. We thus require that p2 — k\ = I'2 - k2 or 

l2-p2~(er-l)k
2 (3.114) 

In the two regions the axial electric field is thus a solution of 

d2e, 
* * * ' ' « • = 0 0 £y < a (3.115a) 

a sy <b (3.1156) 

along with the boundary conditions 

eAy) = 0 y = 0 ,6 (3.116a) 

ez(y) continuous at y = a (3.1166) 

er de2 

I2 dy 

1 

« = 7 2 
de2 

9y a 

(3.116c) 

The third boundary condition comes from the requirement that Hx be 
continuous across the air-dielectric interface. The transverse fields are given 
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by (3.726) and (3.72c). The generic form of the equations is 

P Jfiae** -J /5* 

"* *'k*dye 

upon using a. X ay = - a , . In the equation for ff, the wave admittance y 
is given by kY/fi in the dielectric and by (k0Y0)/p in the air region where 
kY = o>yJ/x0€ i/e/fxo = fr^o^o- Thus we have 

ev(:y) = 

- —5- —- dielectric region 

air region 

(3.117a) 

2 By 

K(y) = 

jerk0Y0 de2 

I2 3y 

jk0Y0 dez 

P2 dy 

dielectric region 

air region 

(3.1176) 

An examination of the expression for hx(y) shows that continuity of hx at 
y = a gives the boundary condition specified by (3.116c). We also find that 
in an inhomogeneously filled waveguide, the wave impedance, defined by the 
ratio -Ey/Hx, is not constant since it has a different value in the air region 
from that in the dielectric region. 

The reader can readily verify that the solutions of (3.115a) and 
(3.1156) that satisfy the boundary conditions at y = 0 and b are 

Cj(y) = Cl sin ly 0 < y < a 

ez(y) =C.2sinp(b - y ) a < y < 6 

where C1 and C2 are unknown amplitude constants. The boundary condi
tion (3.1166) requires that 

C, sin la = C2 sin pc 

where c = b - a. The last boundary condition (3.116c) requires 

* r * 
— C, cos la — C9 cos pc 
I l p 2 

When we divide the first equation by the second one, we obtain 

/ tan la = -erp tan pc (3.118) 
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This transcendental equation must be solved simultaneously with (3.114) to 
determine the allowed values of / and p. There will be an infinite number of 
solutions; consequently an infinite number of E modes are possible. Since /3 
is given by 

(i = y/k2~p2 = y/k2 - I2 (3.119) 

most of the modes will be nonpropagating since increasing values of p and / 
give p > k0 which makes /3 imaginary. When /3 is imaginary the z depen
dence is of the form e~il3>z and the field decays exponentially from the point 
at which it is excited. These nonpropagating modes are called evanescent 
modes. 

We note from (3.119) that a value of /3 between k0 and k can occur 
only if p is imaginary. Thus we must consider the possibility that an 
imaginary p, say p =jp0, is a possible solution to (3.118). If we let /„ be the 
corresponding value of I, then our relevant equations become 

Z0 tan l0a = erp0 tanh p0c (3.120a) 

l2+p2 = (er~ l)kl (3.1206) 

We consider solutions of these equations and the corresponding fields in the 
low- and high-frequency limits in the next two subsections. 

Solution 

When the frequency is very low, k'l is a very small number (at 1 MHz, k0 

equals 0.02094 rad /m) ; hence /0 and p0 are then also small. We will 
assume that 6 is at most a few centimeters, then l0a and p0c are also small 
and we can replace the tangent function and the hyperbolic tangent func
tion by their arguments. Thus (3.120a) becomes 

Upon using (3.1206) we readily find that 

(er- l)k2-p2= 
a 

a + erc 

The solution for /3 in the low-frequency limit is thus 

P = l/*o + Pi = \ —~ *o = \ / e > o (3-12D 
y a + erc 

where ee, given by this equation, is called the effective dielectric constant. 
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We will now show that this equals co</LC, where L and C are the stat" 
distributed inductance and capacitance per meter for the given structure 

If we have a uniform current density Jz on the inner surface of n. 
upper plate and —Jt on the inner surface of the lower plate, the magneti 
field between the plates will be given by Hx = Jz. The time-average stored 
magnetic energy per unit length is given by 

'-w 2 4 Jn J-w 

We equate this to ^Llf where the total current 7. = 2WJZ and then find 
that 

L - w (3122> 
The distributed capacitance C per meter is found by considering the 
capacitance of the dielectric and air regions as represented by two equiva
lent parallel-plate capacitances Crf and Ca in series where 

e re02W e02W 
O, = -^ C„ = 

The capacitance Cd is that of a parallel-plate capacitor of width 2W, unit 
length, plate spacing a, and filled with dielectric. Ca is the capacitance 
the air-filled section which has a spacing c. 

The series capacitance is given by 

CnCd 2Were0 

(3.123) 

lit 

of 

Ca + Cd erc + a 

The product LC = ere0ii0b/(erc + a) which gives the solution for /3 = 
io\/LC equal to that in (3.121). 

The expressions for the fields can be written down in simplified form 
using the small argument approximations and the relationship C2 * 
C\ sin l0a/j sinh p0c = -jCj^/p^c obtained from the boundary condi
tion requiring continuity of ez at y = a. We readily find that in the region 
0 <y & a, 

ez = C^y (3.124a) 

ey = -v^-^i^s 
Jerk0Y0 Ur(erc + a) 

*0 V ( e r - l ) c 
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and in the air region 

es = Cl^-(b-y) 
c 

(3.124rf) 

JPUa jfi / * (3.124e) 
JPUa jfi 

/ ( e r - l ) c 
(3.124e) 

jk0Y0 ler(erc + a) 

K= 1Q c,=,y„c,y/ (6p_1)c 

/ ( e r - l ) c 

(3.124/) 

We note that in the low-frequency limit ez vanishes as k(l, and hence /0 , 
approach zero, while ev and hx remain constant. If we define the voltage V 
between the upper and lower plates by the line integral of ey, then 

The total 2-directed current on the upper plate is tz = 2WJ: = 2WHX, and 
hence the characteristic impedance is given by 

(3.125) 

Thus we find that in the low-frequency limit the dominant mode of propaga
tion in the partially filled parallel-plate waveguide becomes a TEM mode 
and the waveguide may be analyzed as a transmission line. The propagation 
constant and characteristic impedance are determined by the static dis
tributed inductance and capacitance. In general, at low frequencies the 
mode of propagation would be called a quasi-TEM mode since the axial 
electric field e2, even though it is small, is not zero. At high frequencies the 
mode of propagation is an E mode and departs significantly from a TEM 
mode in its field distribution. 

Solution 

At high frequencies k0, and hence l0 and p 0 , are large. In this case p0c is 
large so we can replace tanh p0c by unity and (3.120a) gives 

Z 0 t a n J 0 a = e r p 0 = £ r V ( e r - l ) * o - ' o (3-126) 

upon using (3.1206) to ehminate p0. This equation is independent of the 
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plate separation 6. The solution for ez can be approximated as follows: 

et(y) = C, sin l0y 0<y<a (3.l27a> 

e,(y) = C , j s i n h p 0 ( 6 -y) 

sinh p0(b - y) 
= C, sin lua 

sinh p0(b - a) 

ePll<b-y) 

e* 

= C Isin(/0o)e-'"><-1 '-a , a<y<b (3.1276) 

This is a field that decays exponentially away from the air-dielectric surface 
and does not depend on 6 as long as pnc = pQ(b - a) is large. This field is 
guided by the dielectric sheet on the ground plane (lower conductor) even if 
the upper plate is removed to infinity. This type of mode is called a 
surface-wave mode because its field is confined close to the guiding surface. 
The axial electric field for this surface-wave mode is illustrated in Fig. 3.15. 

The first root for /„ in the eigenvalue equation (3.126) occurs for 
l0a < 7r/2 or /„ < 7r/2a. Thus, as k0 approaches infinity, /0 remains 
bounded but p0 will become large because pi = (er - Dk2, - /%. Conse
quently, for large enough kQ we will have 1% •« k2 and then /3 = k. As we 
go from zero frequency to very high frequencies, the propagation constant 
varies from a low value of ]/e^kQ given by (3.121) to an asymptotic value of 
i/erk0. We see that /3 is not a linear function of u> or k0 and for this reason 
is said to exhibit dispersion. The term dispersion arises from a considera
tion of signal propagation. In our discussion of waveguides later on in this 
chapter, we will show that a signal consisting of a band of frequencies will 
have its frequency components dispersed whenever j3 is not a linear func
tion of (o. This is caused by the phase velocity vp, given by the relation 
/3 = co/vp and thus vp = <o/p = 1/ yjienlieQ, being a function of to. The 
ratio /32/&o gives the effective dielectric constant at any frequency. In Fig-
3.16 we show a plot of ee versus frequency for the case when er = ln> 
a = 0.4 cm, and 6 = 1 cm. This curve is derived by solving the pair ol 
equations (3.120). Microstrip transmission lines exhibit similar dispersion 
characteristics. 

F I G U R E 3.15 
' Axial electric field for surface-wave mode. 
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FIGURE 3.16 
Effective dielectric constant as a 

j function of frequency for cr = 10, 
40 GHz Q =0.4 cm, and b = 1 cm. 

A second surface-wave mode solution can be found from (3.120a ) with 
l0a in the range TT < lQa < 3 - / 2 provided ye r - 1&0 is larger than v so 
that (3.1206) can also be satisfied. For large kCla many surface-wave modes 
can propagate. In addition to the surface-wave modes, there are also an 
infinite number of solutions to (3.118) for real values of p. The higher-order 
solutions have values of p on the order of ntr/b in value, where n is an 
integer. Provided rr/b is greater than k0, these values of p will give 
imaginary values of fi and hence nonpropagating modes. The cutoff occurs 
when p = k0 giving /3 = 0. Thus at cutoff 

/ tan la = —erk0 tan k0c = \/erk0 tan ^erk0a 

since / = k for (i = 0. This equation reduces to 

tan yj7~rk0a = - y/tTr tan k0c 

which can be solved for the values of k 0 at which the various modes cease to 
propagate. 

We will not consider the partially filled parallel-plate waveguide any 
further even though a good deal more could be said about its mode spec
trum. The purpose of our discussion is to highlight those features that will 
be displayed by microstrip transmission lines, which is the next topic 
taken up. 

P L A N A R T R A N S M I S S I O N L I N E S 

A planar transmission hne is a transmission line with conducting metal 
strips that lie entirely in parallel planes. The most common structure is one 
or more parallel metal strips placed on a dielectric substrate material 
adjacent to a conducting ground plane. A planar transmission hne that is 
widely used is the microstrip hne shown in Fig. 3.17. It consists of a single 
conducting strip of width W placed on a dielectric substrate of thickness H 
and located on a ground plane. By image theory this transmission line is 
equivalent to a line consisting of two parallel conducting strips placed 
opposite each other on a dielectric sheet of thickness 2H as also shown in 
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Ground plane 

|a) 

U>) 

FIGURE 3.17 
(a) The microstrip transmission line; 
(6) equivalent parallel strip line ob
tained by using image theory. 

Fig. 3.17. Typical dimensions for a microstrip line are substrate thickness of 
0.25 to 1 mm and strip widths of 0.1 to 5 mm. 

The microstrip transmission line can be fabricated using conventional 
printed-circuit-board techniques which result in good mechanical tolerances 
and a low cost. 

In addition to the microstrip line, there are many other planar-trans
mission-line structures that are used for various purposes. A number of 
these other transmission-line configurations are shown in Figs. 3.18 to 3.20. 
The coupled microstrip line shown in Fig. 3.18a is used in directional 
couplers. The coupled microstrip line supports two modes of propagation. 
The even mode of propagation has the same voltage and current on the two 
strips, while the odd mode of propagation has opposite voltages and currents 
on the two strips. 

The coplanar transmission line shown in Fig. 3.186 consists of a single 
strip mounted between two ground planes on the same side of the dielectric 
substrate. The coplanar line has an advantage over the microstrip fine in 
that shunt connection of components to the ground plane can be made on 
the same side of the substrate. In addition, it allows the series connection of 
components to be made with equal facility to that for microstrip lines. The 
coplanar strip line shown in Fig. 3.18c is similar to the coplanar line in tha 
all conducting strips are in the same plane (coplanar). It is less desirable 
than the coplanar fine because it is not balanced relative to a ground pla116 

and thus wave propagation on this line is more strongly influenced DV 

nearby conductors such as a shielding enclosure. In practice, a shielding 
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(b) 

FIGURE 3.18 
( a ) Coupled microstrip lines; (6) copla-
nar transmission line; (c) coplanar 
strip transmission line. 

wmy/////A mmmm FIGURE 3.19 
Suspended and 
crostrip line. 

)d suspended mi-

lb) 
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enclosure for a microwave circuit is needed to reduce spurious radiatin 
from the circuit, eliminate electromagnetic coupling with nearby circuit. 
and for environmental protection. 

In Fig. 3.19 are illustrated the suspended and inverted suspends 
microstrip lines which are quite similar to the conventional microstrip nn 

but involve less dielectric substrate material. Figure 3.20a shows a slot lin 
The open slot line is not as widely used as the microstrip and coplanar h n e 

are. The shielded slot line, which is typically a slot line placed inside a 
rectangular waveguide as shown in Fig. 3.206, is called a fin line and has 
found to be useful for many circuit applications. Only shunt-connected 
components can be used with a slot line. 

The final transmission-line structure illustrated here is the strip line 
shown in Fig. 3.20c. This line consists of a strip placed between two parallel 
plates that function as ground planes. The strip may be rigid enough to be 
suspended in air or it may be sandwiched between two dielectric sheets as 
shown in the figure. The strip line was often used in microwave filters and 
couplers before the other forms of planar transmission lines became popu
lar. The strip line is somewhat more difficult to fabricate but has certain 
advantages for special applications to filters and couplers. Many directional 
coupler, power divider, and filter designs using strip lines were developed in 
the period from 1955 to 1975. An excellent reference source for design data 
for strip-line circuits is the book by Howe listed in the references at the end 
of this chapter. 

The methods used to fabricate planar-transmission-line structures and 
related circuit elements are compatible with integrated circuit fabrication 
and have allowed the development of microwave integrated circuits (MIC 
circuits). In integrated microwave circuits the active devices and all 
interconnecting transmission lines, impedance-matching elements, needed 
capacitors and resistors, etc., are fabricated on the same chip. In these 
applications the microstrip and coplanar transmission lines are the ones 
most easily adapted for on-chip fabrication. In MIC circuits the substrate 
thickness and line widths are generally much smaller than in hybrid 
circuits. The term hybrid is used to describe integrated microwave circuits 
where the discrete components such as transistors, capacitors, and resistors 
are soldered in place. 

The dielectric substrate material used in a planar transmission line 
must have low loss, i.e., a small loss tangent. A large dielectric constant 
results in a shorter propagation wavelength and hence a more compac 

circuit. The substrate material should have good mechanical strength, be 
easy to machine, and have good thermal conduction. When active device 
are mounted into a planar-transmission-line circuit, the heat generated by 
the active device is in part conducted away to the ground plane through the 
substrate material. It is difficult to use metal heat sinks in a microwave 
circuit because these large metal structures would interact with the electrO' 
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magnetic field in an undesirable, and often unpredictable, manner. Conse
quently, in power amplifier circuits substrate materials with good thermal 
conductivity are required. Dielectric materials used in low-frequency circuit 
boards are generally too lossy to be used for microwave transmission lines. 
The dielectric constant and thickness must be maintained to a high level of 
uniformity in the manufacturing of substrates because otherwise the fabri
cated transmission lines will not perform according to the specified design 
since the propagation phase constant and characteristic impedance both 
depend on these parameters. Uniform thickness and dielectric constant is 
particularly important in the design of filters and impedance-matching 
elements whose dimensions are critical. Once a printed microwave structure 
such as a filter has been constructed, it is not very easy to add external 
tuning elements to bring the constructed filter performance into specifica
tions. 

A commonly used substrate material is polytetrafiuoroethylene 
(PTFE)t which has a dielectric constant of 2.1 and a loss tangent of 0.0002 
at 1 MHz and around 0.0005 at microwave frequencies. This material has 
excellent resistance to chemicals used in the photoetching process. In order 
to increase the mechanical strength, it can be loaded with woven fiberglass 
mat or glass microparticles. This increases the dielectric constant to the 
range 2.2 to 3. The use of glass fiber results in some anisotropy in the 
dielectric constant. In the manufacturing process the glass fibers are gener
ally aligned parallel with the substrate so the dielectric constant along the 
substrate is typically 5 to 10 percent larger than that norma] to the 
substrate. By using ceramic powders as fillers, notably titanium oxide, much 
larger dielectric constants can be obtained. Typical values are in the range 5 
to 15. 

Ceramic materials such as aluminum oxide (alumina) and boron ni
tride, as well as the glasslike material sapphire, are also used (or substrates. 
These materials are very difficult to machine. Alumina is perhaps the most 
commonly used material. It has excellent thermal conductivity. For inte
grated microwave circuits the usual semiconductor materials germanium, 
silicon, and gallium arsenide are used. These substrate materials have a 
high dielectric constant and may exhibit some conductivity depending on 
the doping level. 

In Table 3.2 we have summarized the important properties of a 
number of substrate materials. In this table er is the dielectric constant 
along the substrate and ev is the dielectric constant normal to the substrate.$ 

tThis material is commonly known as Teflon, which is a registered trade name of Du Pont. 
t in order to keep the notation as simple as possible, we use ey instead of try for the relative 
permittivity (dielectric constant) in the y direction. 
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TABLE 3.2 
Propert ies of substrate materials 

Material 
Thermal 

Loss tangent conductivity Ma. hioaba^ 
PTFE/woven glass 2.84 2.45 0.001-0.002 Fair Good 
PTFE/microfiberglass 2.26 2.2 0.0005-0.001 Fair Good 
•CuFion 2.1 2.1 0.0004 Fair Good 
*RT/Duroid 5880 2.26 2.2 0.001 Fair Good 
*RT/Duroid 6006 6.36 6 Medium Good 
•Epsilam 10 13 10.3 Medium Good 
Boron nitride 5.12 3.4 Good Poor 
Silicon 11.7-12.9 11.7-12.9 0.001-0.003 Medium Poor 
Germanium 16 16 Medium Poor 
Gallium arsenide 12.9 12.9 0.0005-0.001 Medium Poor 
Alumina 9.6-10.1 9.6-10.1 0.0005-0.002 Good Poor 
Sapphire 9.4 11.6 0.0002 Good Poor 
Beryllium oxide 6.7 6.7 0.001-0.002 Good Poor 

'CuFlon is a registered trademark of Polyflon Company. It is a Teflon material electroplated with copn» 
RT/Duroid is a registered trademark of Rogers Corporation. Rogers Corporation also manufactum 
substrates with dielectric constants around 10. Epsilam 10 is a registered trademark of the 3M Company 
It is a ceramic-filled Teflon material. 

The data in Table 3.2 have been compiled from a variety of sources.t Since 
the dielectric constant and loss tangent are frequency dependent and also 
influenced by the material processing, the listed data should be viewed as 
representative values at microwave frequencies. 

Substrate materials are usually plated with copper in 0.5-, 1-, or 2-oz 
weights (amount of copper per square foot). The use of 1-oz copper weight 
gives a plating thickness of 0.0014 in. Gold plating is sometimes used on top 
of the copper to prevent oxidation of the metal. In integrated microwave 
circuit construction a metalization thickness of a few microns is typical. 
One-half oz copper-clad board has a metalization thickness of 18 /xm. 

3.12 M I C R O S T R I P T R A N S M I S S I O N L I N E 

In a microstrip transmission line the dielectric material does not completely 
surround the conducting strip and consequently the fundamental mode of 
propagation is not a pure TEM mode. At low frequencies, typically below a 

163. 
tH . Howe, "Stripline Circuit Design," Artech. House Books, Dedham, Mass., 1974. 

T. Laverghetta, Microwave Materials: The Choice is Critical, Microwave J., vol. 28, p-
1985. 

M. N. Afsar and K. J. Button, Precise Millimeter-Wave Measurements of Complex Refractive 
Index, Complex Dielectric Permittivity and Loss Tangent of GaAs, Si. SiO,2 

Macor, and Glass, IEEE Trans., vol. MTT-31, pp. 217-223, 1983. 
Some data were also obtained from manufacturers' literature. 

Al O.,, BeO. 2 ^ 3 
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few gigahertz for practical microstrip lines, the mode is a quasi-TEM mode. 
In the frequency range up to a gigahertz or somewhat higher, the microstrip 
transmission line can be characterized in terms of its distributed capaci
tance and inductance per meter in a manner similar to what was found for 
the partially loaded parallel-plate transmission line in the previous section. 
Unfortunately, there are no simple closed-form analytic expressions that 
can be derived for describing the field distribution or the characteristics of 
planar transmission lines. Formal solutions can be derived and evaluated on 
a computer and have been used to compile data on the characteristics of 
these transmission-line structures. Static field analysis has also been exten
sively used to obtain the low-frequency characteristics. However, even the 
static field analysis is quite complex. 

The analysis of planar transmission lines can be based directly on a 
solution for the electric and magnetic fields in the structure. An alternative 
approach is to first solve for the scalar and vector potential functions and 
from these find the corresponding electromagnetic field. In actual fact the 
propagation constant and characteristic impedance can be found from the 
potentials without a detailed consideration of the fields. The advantage of 
using the scalar and vector potentials in the analysis is that this approach 
provides a direct link to the quasistatic solutions in terms of more familiar 
low-frequency concepts. 

In this section we will develop the essential equations to be satisfied by 
the scalar and vector potentials for a microstrip transmission line. From 
these equations we then obtain simplified ones that will describe the 
quasi-TEM mode of propagation at low frequencies. The term low frequency 
is a relative one. It is the ratio of fine dimensions to wavelength that 
determines whether a microstrip line can be adequately described in terms 
of the quasi-TEM mode of propagation. In MIC circuits with line widths as 
small as 100 fj.m, the low-frequency region can extend as high as 20 to 30 
GHz. Even though space does not permit a full development of analytic 
methods suitable for solving planar-transmission-line problems, some in
sight into the properties of these structures is obtained from the basic 
formulation of the relevant equations. 

After we have presented the theoretical foundations, typical dispersion 
curves and graphical results for characteristic impedances are given for a 
number of important substrate materials and a range of microstrip conduc
tor widths. 

The vector and scalar potential functions are solutions of Helmholtz 
equations as described in Sec. 2.10 when the sources are located in vacuum 
(air). For the microstrip line shown in Fig. 3.17, two added complications 
enter due to the presence of the dielectric in only part of the region of 
interest and the anisotropic nature of some substrate materials. For this 
reason we need to derive new equations to be satisfied by the potential 
functions. The substrate material will be characterized by a dielectric 
constant eu in the y direction which is normal to the interface and by a 



1 3 2 FOUNDATIONS KOR MICROWAVE ENGINEERING 

dielectric constant er in the x and z directions. The unknown charge anj 
current densities on the conducting microstrip will be denoted by p an^ ~ 
These source densities are concentrated along y since they exist only on tk 
microstrip which is assumed to have negligible thickness. The source co * 
centration can be described by introducing the delta function 8(y - #, ' 
localize the sources at y = H. Thus we can write 

p(x,y,z) = ps(x,z)S{y - H) (3.128a) 

J(x,y,z) = Js(x,z)8(y-H) (3.1286) 

where Js and ps now describe surface densities rather than volume densi
ties. 

We will assume that the dielectric constants ey(y) and er(y) are 
functions of y that are constant in the substrate and undergo a rapid 
change in value to unity as the interface is crossed into the air region. The 
reason for doing this is that the equations we then obtain for the potentials 
will automatically give us the boundary conditions needed to properly join 
the solutions for the potentials in the substrate region to those in the air 
region. 

We begin the derivation by letting 

B = V x A 

From Maxwell's equation 

V x E = -jwB = -jtoV x A 

we get V X (E + jo>A) = 0 which has the general solution 

E = -jwA - V<t> 

where <P is a scalar potential function. Up to this point we have followed the 
same steps as in Sec. 2.10. Maxwell's curl equation for the magnetic field is 

V X H =jcoD + J 

For an anisotropic dielectric we have 

D = e0er(Exax + E:az) + e0eyEyay 

We can replace H by P-Q ' V X A to obtain 

V x V X A = V V - A - V2A =j<op.0D + Mo J 

and express D in terms of the potentials as follows: 

D = - e 0 € r ju>(Axax + A 2 a J + a x - + a , — 

~dy~ -eQey\jA,ay + &y 
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By adding and subtracting a term to the y component that includes the 
factor e r , we can reexpress D in the form 

D = - e r e 0 ( > A + V<D) - e0(ev - er)\ja>Ayay + a — 

We wish to eliminate the VV • A term in the equation for A by setting it 
equal to the gradient of another function. For this purpose we now express 
e V4> in the form V(er<P) - 4>vVr, where Ver has only a y component since er 

is a function of y only. We can set VV • A equal to -jioe0n0V(er<P) which 
gives the Lorentz condition 

V • A = -jwe0ern0<t> 

The equation for the vector potential now becomes 

(3.129) 

- V ' A =j(onQ - y W 0 e r A + e0*Ve r 

-e0(ey -€r)\jmayAy+ av H0J 

The current J does not have a y component so the x and z components of 
this equation are 

V*Ax + er(y)klAx= -»0JX 

V'A: + er(y)klA2= -^Jz 

while the y component becomes 

(3.130a) 

(3.1306) 

V% + €y(y)AgAv = -jo)n0e0 * — - W - e r ) — 
oy *y 

= Ju/J-oe0 

d<P 
( 6 v - e r ) — + <t>(H)(er-l)S(y-H) 

tly 
(3.131) 

where — (e r - l)5(y - H) expresses the derivative of the step change that 
occurs in er as y crosses the interface at H, that is, er(y) changes from cr 

to unity. 
The equations for Ax and A2 are of the same form as derived in Sec. 

2.10, but the equation for Av is new. The equation for Av is coupled to the 
scalar potential <i>(//) at the boundary even if we have an isotropic sub
strate. Thus boundary conditions require the presence of an A v component 
even though there is no y component of current. 
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A separate equation for the scalar potential is obtained by usi 
Gauss' law V • D = p and the Lorentz condition (3.129). Thus we find th ^ 

-ere0(jojA + V4>) - e0(ev - e r ) \ j<oa v A y + av — 
I ' dy 

fl 

V D = V 

= - « o j<oV-(erA) + V - (e r V*) + jcoj-(ey - er) Ay 

fl d<& 

fl 
M*J • A + A • VCr) + V - (e r V*) +J<o — (ey - er)Ay 

d d® 

By replacing V • A with -joj€0/j.0er<i> from the Lorentz condition, we obtain 

= - e o 

fl ()<P 

^fly 
= ->^if ->W^-Cr)^-

d P_ 

The last step is to simplify this equation using 

dA fl 

~dy~ 
( e v - e r ) A , . = ( e v - e r ) — - + Avk 

dy - \ fly dy 

fe- der 

and 
flerd<t> 

*eT 

V • erV<t> = e r V 2 < P + —-
fly fly 

fl fl<t> d2<P <9cp / fley 

By using these expressions a number of terms cancel and we obtain the final 
form 

fl2<p fl2<S> 
+ 

dx' flz' 

fl fl<i>. 
- C y — +6?fc 2

0 * 
fly • fly ' 

= - — + > ( f , - l)Ay(H)5(y - H) -jo>(€y - er) 
dy 

(3.132) 

where we have also used 

A > ^ T = -(ey-l)Ay(H)8(y-H) 
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This equation also displays a coupling between the scalar potential and 
Ay(H) at the interface as well as coupling within the substrate whenever ey 

does not equal e r, that is, for anisotropic substrates. In the air region 
y > H, both er and ev are replaced by unity in (3.130) to (3.132). 

After the above lengthy derivation we can now obtain simpler equa
tions to be solved in each separate region along with boundary conditions to 
use in joining the solutions at the interface y = H. The source terms p and 
J when expressed in the form (3.128) contain the 8(y - H) factor. In order 
for the left-hand sides of (3.130) to (3.132) to equal the corresponding 
right-hand sides, we must obtain a delta function Sly - H) from the 
derivative of the potentials with respect to y. In (3.130a) and (3.1306) this 
requires that dAx/dy and dAz/dy have a step change at the interface so 
that the second derivative with respect to y will produce a delta function. 
The required step change can be found by integrating both sides of the 
equation over a vanishingly small interval centered on y = H. The integral 
of terms not involving a derivative with respect to y will vanish since these 
terms must be continuous at y = H and the interval length vanishes. For 
example, if As were not continuous at y = H, the second derivative with 
respect to y would generate a singular term corresponding to the derivative 
of the delta function and no such term exists on the right-hand side of the 
equation. Thus from (3.130a) we obtain 

v rff+rrtt, A dA 
lim / —-=- ay = 
r - O - ' H - r ' t-r V dy 

H-

H~ 

rM+r lim / - n0Jsx(x,z)8(y - H)dy= -IM0JS 

or 

In a similar way we obtain 

w 
= -p&J* 

H-

(3.133a) 

dy = -Mo^s (3.1336) 
n 

The notation H^ and H~ means evaluating the derivative on adjacent 
sides of the interface at y = H. These two equations state that the tangen
tial components of the magnetic field must be discontinuous across the 
current sheet Js since from the equation B = V X A: 

17 = *°Hx = -Mo-ff, 

In a similar way we obtain the following boundary conditions by integrating 
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(3.131) and (3.132) about a small interval centered on y = H: 

dA"' 

dy ir 
v~dy~ 

= y<o/x0e0(er - l)<t>(H) 
«-

(3.133C) 

H~ 
-fo+Mey-l)Ay(H) (3.md) 

A term such as (ev - er)d<P/dy that occurs in (3.131), and a similar term 
occurring in (3.132), does not contribute because 

l i m / (e - e , ) — dy= l im(e - er) / — dy = 0 

since d<J>/dy is continuous in the interval H - - < y < H and for y > /f we 

have e„ =« €p = 1. The boundary conditions on <t> reflect the fact that the 
total y-directed electric field has a contribution from Ay so that the 
discontinuity in Dy across the charge layer is given by 

-e< — + iioA. 
dy J * 

+ €y€0 ~dy~ 
• JdiJ = P* 

ir 

which is (3.133d). 
By using the above boundary conditions, we can solve (3.130) to 

(3.132) in each respective region away from the interface. Thus we need 
only to solve the following homogeneous equations, subject to the specified 
boundary conditions, in the substrate region: 

(v2
 + £rk

2)Ax = o (3.134a) 

(3.1346) 

d$> 
V2Ay + eyk

2Ay =j(oiu.0€0(ey - er) — 

<?2<1> 

dx2 

d2<t> e„ el2* dA, 
772 + T J + ̂ ^ 2 + fr*0* = -X«v - €r)^~ 

dz *r <>y 9y 

(3.134c) 

(3.134a") 

In the air region the equations to be solved are obtained by setting er = fy 
= 1. There is no volume coupling between <J> and Ay in the air region or m 
an isotropic substrate region. Since we are interested in wave solutions 
representing waves propagating in the z direction, we can assume that the 
dependence is e~jt>z. The second derivative with respect to z can then be 
replaced by - / 3 2 . The common factor e~ip* can be deleted from the equa
tions just as e-""' was dropped for convenience. 

Low-Frequency Solutions 

We can obtain the equations to be solved in the zero-frequency limit by 
assuming that the potentials and the source terms can be expanded a5 
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power series in to. Thus we let 

A = A° + <uA1 + «2A2 + ••• (3.135a) 

<J> = <I>° + &><*>' + to2®2 + • • • (3.1356) 

J = J° + w J l + a r J 2 + ••• (3.135c) 

P =p° + top1 + w'Y + ••• (3.135d) 

The parameter k0 = io2p.0e0 is of second order in to. The propagation 
constant (5 can be expressed in the form fi = ^ k 0 , where ee is a fre
quency-dependent effective dielectric constant. Consequently, p2 is also of 
second order in to. 

We now substitute these power-series expansions into (3.130) to (3.132) 
and equate all zero-order terms to obtain the following lowest-order equa
tions: 

( a ? + ^5 A°x - - /* 0 J ,° (3.136a) 

^Z5 + -^\All= -n0J? (3.1366) 
dx* dy 

P a2 , 

d2 a a \ p° 

e r ^ r + — ev — $° = -— (3.136d) 
rdx2 ay "ay J e0 

Further information is obtained from the Lorentz condition (3.129) which 
gives 

3A° M ° 
—- + —y- = 0 (3.137a) 
dx dy 

-MAI = - > * o * r * ° (3.1376) 

In the air region er and e„ are set equal to unity. From the continuity 
equation relating current and charge, namely, 

V • J = —jcop 

we obtain 

= 0 (3.138a) 

-jpj?= -jwp0 (3.1386) 
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In the above equations the e~jtiz factor is not included but any derivative 
with respect to z was replaced by -j/5. 

Since J° must be zero at the edges x = ± W/2 of the microstrip wp 
conclude that J® is zero because the integral of dj^/dx is at most 
constant. Hence, to lowest order, there is no x-directed current on thp 
microstrip and A" is zero. The Lorentz condition then requires that dA°/av 

= 0 and hence A° = 0 aiso since a constant A\ is a trivial solution and 
would not produce any magnetic field contribution. Thus, to lowest order 
we only have to solve for an A^ and a scalar potential <t>". If we assume the 
microstrip to be at a potential V, then the boundary condition on 3>° is that 
it equals V on the microstrip and equals zero on the ground plane. 

We can integrate the continuity equation (3.1386) across the mi
crostrip line to get 

0 / / = "Q° (3.139) 

where 7Z° is the total 2-directed current on the microstrip and Q° is the 
total charge. On the microstrip the axial electric field must be zero. To 
lowest order this boundary condition is 

<?<p° 
El = - > A ° - — = -ju>A° +jp<b° = 0 

az 

or wA° = pV (3.140) 

Hence A° is also constant on the microstrip. 
We will show shortly that the inductance L per unit length of the 

microstrip line is given by the equation 

I?L = A°z (3.141) 

The capacitance per unit length is given by 

C = — (3.142) 

By using these expressions to eliminate Q° in (3.139) and A" in (3.140), we 
obtain the pair of equations 

pi? = coCV (3.143c) 

»U„° = PV (3.1436) 

T 

from which we find that 

p2 = u>2LC (3.1440) 

^~ (3.1446) 
h° 
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A 

FIGURE 3.21 
Surface used to find the magnetic 
flux linkage in a microstrip line. 

We have thus been able to show in a rigorous way that in the 
low-frequency limit the microstrip line can be analyzed as a static field 
problem and that its propagation constant and characteristic impedance are 
determined by the low-frequency distributed capacitance and inductance. 
The analysis leading up to (3.144) is quite general and applies to other 
planar transmission lines as well. 

At this point we return to the promised derivation of (3.141) giving the 
line inductance. With reference to Fig. 3.21 we note that the magnetic flux 
ip Unking the microstrip per unit length is given by the integral of Bx over 
the area extending from the microstrip to infinity. Thus 

ip = f I B • axdydz 

By using B = v* x A and Stokes' law, we can write 

ip = f1 f V X A • a , dy dz 
J0 JH 

= 6\-d\ 
ci 

where C, is the boundary of the area. Since A" is zero and A° is zero at 
infinity and is constant on the microstrip, we obtain i/< = A°z for the flux 
linkage. The inductance is given by i/»//£° and this gives (3.141). 

We can also derive equations for the next level of approximation. 
However, the solution of these equations is not much easier than the 
solution of the original equations; so it is not worthwhile to develop the 
power-series solutions beyond the lowest order. Thus the equations to be 
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solved are 

;>2 d2 

a*5 + dp A* = 0 y <H,y> H 

dx2 er dy2 

9x* 
*2 \ „ 

ay
2 

with the boundary conditions 

M>° 
dy 

a*0 
!i 

— €» 
»y 

y <H 

y>H 

= ~Mo^« 

P« 

(3.145aj 

(3.1456) 

(3.145c) 

(3.145d) 

(3.145e) 

<t>° = V on microstrip 

A° = constant on microstrip 

Along the interface and away from the microstrip, the right-hand sides of 
(3.145(f) and (3.145e) are zero. In addition, 4>° and A°z must be zero on the 
ground plane in order to make the tangential electric field vanish on this 
surface. 

The equations for A" do not depend on the dielectric constants of the 
substrate material. Hence the line inductance is the same as for an air-filled 
line. But for an air-filled transmission line with distributed capacitance C„, 
we have 

\/LCa = y>oe^ and hence L = 

so we can find L by finding the distributed capacitance of an air-filled 
microstrip line. By introducing Ca in place of L, the solutions for /3 and &c 
can be expressed in the form 

/ ^ w i c ^ / — k0 = jrek0 

= l / c : 
L C* •"cO 

(3.146a) 

(3.1466) 

where Zc0 is the characteristic impedance of the air-filled fine and the ratio 
C/C„ gives the low-frequency equivalent (effective) dielectric constant ee-
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The effect of having an anisotropic dielectric substrate does not add 
any additional complication. If we introduce a new variable u = (er/ey)

1/2y> 

then upon using 

d du I e, d S 
du dy 

we find that (3.1456) reduces to 

d2 

dx* du1 (3.147) 

When y = H the corresponding value of u is Ur/ey)
i/2H; so the solution of 

(3.147) is that for a microstrip with an equivalent substrate thickness Hv 

given by (€r/evY
/2H = He. The boundary condition (3.145e) becomes 

d<t>° 

h 
d<p° 

H, 
9y a 

- y ^ S 
d<S>° 

du H; 
= - — (3.148) 

which shows that the equivalent dielectric constant of the substrate should 
be taken as the geometric mean eg = -Jerev. Thus, by modifying the 
substrate thickness and introducing the equivalent dielectric constant, the 
solution for the distributed capacitance C for the case of an anisotropic 
substrate can be reduced to that for an isotropic substrate. The distributed 
capacitance Ca is that for the unsealed microstrip line. 

The unit of length does not enter directly into the differential equa
tions for the potentials. Thus x and y can be in units of meters, centime
ters, inches, or any other convenient unit. What this means is that the 
distributed capacitance and inductance per unit length is dependent only on 
the ratio of strip width to substrate thickness, i.e., on W/H. If we have 
found C and L for a given set of values for W and H on a per-meter basis, 
then if we change W to sW and H to sH, where s is a scaling factor, both C 
and L on a per-meter basis do not change. Hence the characteristic 
impedance, effective dielectric constant, and propagation constant /3 for any 
planar transmission line is invariant to a scaling of the cross-sectional 
dimensions. However, the attenuation caused by conductor loss does not 
scale since the series resistance is inversely proportional to the conductor 
widths. The attenuation due to conductor losses will double if the conductor 
size is reduced by a factor of 2. The scaling law is clearly illustrated for an 
ideal parallel-plate capacitor with a plate dimension of W? and separation H 
and having a capacitance e0Wl/H. Clearly keeping the ratio W/H fixed 
keeps the capacitance unchanged. 

A variety of methods exist for solving the two-dimensional Laplace 
equation (3.147). For planar transmission lines the conformal mapping 
method is widely used, generally along with some approximations that are 
necessary because of not having a dielectric medium filling all of the space 
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FIGURE 3.22 
A microstrip line with perfectly conductim, 
side walls inserted at x = ±a with ct »yy 

around the conductors. A number of useful solutions obtained by conforms 
mapping methods are described in App. III. We will refer to some of these 
solutions as needed. 

In order to illustrate the general method of solution, we will develop a 
Fourier series solution to (3.145) which will turn out to provide an efficient 
method to obtain the parameters of a microstrip transmission line. In order 
to use the Fourier series method, we place perfectly conducting (electric) 
walls at x = ±a as shown in Fig. 3.22. Provided a is chosen equal to 10VV 
or 10H, whichever is larger, the sidewalls have a negligible effect on the 
field which is concentrated near the microstrip. 

We can expand the unknown charge density p, into a Fourier series of 
the form 

Ps(x) = E Pncos 
nvx 

n - 1 , 3 , . . . 2a 

The charge coefficients pn axe given by 

I fW/2 

a '-Pn 
'-W/2 

p s(x')cos 
nvx 

~2a~ 
dx' 

(3.149a) 

(3.1496) 

The charge density is an even function of x because of the symmetry 
involved; so only a cosine series is needed. The functions are chosen so that 
they vanish at x = ± a, a required boundary condition for the potential; so 
only odd integers n are used. 

The potential <i>(x,y) can also be expanded into Fourier series; so 
we let 

*(*.y) = E f,,(y)cos 
TITTX 

n = 1 . 3 , . . . 2a 

E §n(y)cos mrx 
2a 

y>H 

0 < y < He 
(3.150) 

11=1,3, . . . 

where fn(y) and g„(y) are to be found. We are using an effective substra 
thickness He, so that an anisotropic substrate can be accommodated. W 
have dropped the superscript 0 since it is understood from the context th» 
we are solving for a static potential field. 
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Each Fourier term in the expansion of <l> must be a solution of 
Laplace's equation. Hence we require that 

* 2 * 2 W f B ( y ) \ rtirx ^ + ^ )U ( , ) ) C O S ^ = 0 

which gives 

d>f„(y) 
-<fn(y)=0 

- ^ - - ^gn(y) = 0 

where u>,2 = (nv/2a)2. In the region y < He, a suitable solution for g„(y) 
that vanishes on the ground plane is 

8*(y) = Cn Sinn »>„y 

where C„ is an unknown constant. In the region y > / / . we need a solution 
that will vanish as >• approaches infinity; so we choose 

fn(y) = Dne-»»> 

where D„ is another unknown constant. At y = He. H the two potential 
functions must match; so we have 

CnsmhwnHe = Dne-»»» 

The Fourier series expansion of the charge density ps represents this charge 
density as sheets of charge p„ cosnir j ; /2a that extend from x = -a to 
x ~ a. By superimposing an infinite number of such charge sheets, we 
obtain a charge density ps that is nonzero only on the microstrip - W/2 < x 
< W/2. The boundary condition (3.148) is applied to each Fourier term to 
obtain 

dfn_ dg» 

H *'*> 

or — w„D„e w*a - egw„C„ cosh w„He ~ —-

We now have two equations which we can solve to find C„ and Dn. The 
solutions are 

C L -

Dm = 

e0u;n(sinh wnHe + eg cosh wnHe) 

Pne
w-H sinh wnHe 

e0u>„(sinh wnHe + eg cosh waHe) 

where eg = J*res. 
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We now substitute our solutions for fn and gn into (3.150) and 
(3.1496) for p„. Thus we obtain Usse 

*(*,y)- E / 
W/2 COS W„X COS U)„X ' 

»- l .3 . . . . J-wne0u/„a(siahu/nHt + egcoshwnHe) 

sinh /^.y 
X 

siimi«n i2ee-^ ( } f- i r 3 
Ps(x')dx- (3.151) 

where the upper term is for v < He and the lower one is for y > // -TJ. 
factor multiplying ps(x') under the integral sign represents the Green's 
function for this problem. It is designated by the symbol G(x,y;x', y')- so in 
abbreviated form we express (3.151) as 

rW/2 
* ( * , ? ) - / G{x,y;x',He)p,(x')dx' 

J -W/2 
(3.152) 

The last boundary condition to be imposed is the requirement that <f> = V 
on the microstrip; thus 

W* W 
V=f G(x,Ht;x;He)p,(x')dx' - — < x < — (3.153) J-w/2 2 2 

This is an integral equation whose solution would determine the unknown 
charge density ps(x'). Once we know the charge density, we can calculate 
the total charge on the microstrip using 

J -W/2 

and find C = Q/V. 
Integral equations are most often not solvable by analytic means. 

However, various numerical schemes exist for obtaining good approximate 
solutions. The most popular method is the Method of Moments.t In "ris 
method the first step is to choose a finite number of basis functions and to 
expand ps(x') in terms of these in the form 

N W W 

where Qn are unknown coefficients. The basis functions could be the u 
height pulse functions shown in Fig. 3.23, the cosine functions cos 2nirx/ > 
or any other reasonable set that would give a good approximation to pM 

tR. F. Harrington, "Field Computation by Moment Methods," Krieger Publishing ComP"™' 
Inc., Malabar. Fla., 1968. 
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tfi *N 

w 
2 

W 
2 

FIGURE 3.23 
Unit height pulse functions for ex
panding the charge density. 

When this substitution is made in (3.153), we obtain 

N W W 
V - L Q„Gn{x) - - < * < -

2 
(3.154) 

where Gn(x) = f G(x,H,;x',Ht)*n(*')dx' 
J -W/2 

The next step is to convert (3.154) into a matrix equation for the unknowns 
either by making both sides of the equation equal at N points in x along 
the microstrip, or by using weighting functions to make N weighted 
averages of both sides equal. We can choose the <l>m{x) as weighting func
tions, in which case the method is called Galerkin's method. Other choices 
for the weighting functions can also be made. If we use Galerkin's method, 
we obtain 

£ GnmQa = Vm m = 1,2, ...,N (3.155) 

where the matrix elements are given by 

Gnm~ jW/2Gn{x)4,m(x)dx 

1-W/2 

rW/2 = / / G(x,x-)Ux)<l>m(*')dxdx-
-W/2 

and the components V„, of the source vector are given by 

rW/2 
Vm= (•~V^m{x)dx 

J-W/2 
m = 1,2,. . . ,AT 

The system of linear equations given in (3.155) can be solved for the 
unknown charge amplitude coefficients Qri. If N is chosen sufficiently large, 
we will obtain a good approximation for the charge density. 

If we know a priori how p,(x') is distributed on the strip, or a close 
approximation to it, we could get an excellent approximate solution using 
very few basis functions. From conformal mapping solutions we know that 
on an isolated infinitely long conducting strip of width W and with total 
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FIGURE 3.24 

Charge density on an idea) isolated strip of 
width W. 

charge Q per meter that the charge density is given by 

2Q 
Ps(x) = 

TrWy7! -X2/{W/2)' 
(3.156) 

This charge distribution is illustrated in Fig. 3.24. At sharp corners and 
edges the charge density always exhibits an infinite behavior. However, the 
density is never so singular that it cannot be integrated. The reader can 
readily verify that if the substitution x = (W/2)sin 6, dx = (W/2)cos 0d6 
is made, then 

iW/2
P^)dx'^r/2de = Q I 

J-w/2 irJ-w/3 

In a microstrip line the charge density is influenced by the dielectric 
substrate and the ground plane but surprisingly (3.156) remains a good 
approximation. By using a two- or three-term polynomial along with (3.156), 
i.e., choosing 

Ps(x) = 
Q0 + Q,x2 + Q2x* 

}/l-x2/(W/2)2 

(3.157) 

an excellent approximate solution for ps(x) will be obtained. 
We do not plan to solve the integral equation (3.153) numerically using 

the Method of Moments. It does require considerable numerical compu^' 
tion to evaluate the matrix elements because we only have the Green 
function expressed as an infinite Fourier series. What we are going to do 
to express the integral equation in a form that we can interpret as repr 
senting the capacitances between a conducting strip in air above a groun 
plane with spacings He, 2He, 3He, etc We can then make use of ^ 
conformal mapping solution for a pair of strips in air to evaluate t 
distributed capacitance C for the microstrip line. 
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Let us choose e = 1 but still retain the strip spacing above the ground 
plane as He. By using (3.151) in the integral equation (3.153) for this case, 
we obtain (note that sinh wnHr + cosh w„He = ew"H') 

rW/2 * C°S W„X COS W.x' 
Q ' L 7 n—(l - e-*"»H<) 

!-^QJ-dx' = V (3.158) 

where we have set y = He and multiplied and divided by the total charge Q. 
The part multiplied by - c - 2 " ' " " - represents the effect of the ground plane 
which is equivalent to that of the image strip at y = -He and having a 
charge density -ps. A solution of (3.158) provides the solution for the 
problem of a strip above a ground plane, as well as the solution to the 
problem of two parallel strips in air and separated by a distance 2HP. The 
capacitance per meter for a strip above a ground plane is given by 

Q 

Ca(He) = ~ 

while that between two strips separated by a distance 2He is 

We see that the integral, involving the normalized charge density, repre
sents 1/CJHJ. 

Consider now the factor 

sinh wn Hv 

sinh w„ He + eg cosh wn Hc 

that occurs in the Green's function in (3.151) at y = He. We can express 
this term in the form 

B"«ft _ e-*nHr 1 _ e~2w„Hr 

(1 + e )e"'»w. - (1 - e j c - " ' " " ' " I I - C- _ „ 

1 + e
g 

+ C 

( 1 _ e - 2 - „ ^ ) ( l _ 7 7 e - 2 - n " , ) - 1 

where 77 = (1 - e „ ) / d + e„). The last factor is now expanded into a power 
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series to obtain 

1 

1 + e 
( 1 - e -2u'„H, ) £ •n'"e-'imw-H' 

m = 0 

Y\ •nme~2mw"H'- - Y 7i"'e-2<n ' + I)"',H„ 
m*-0 m = 0 

We now add -ij"' to both series which has no net effect because of thp 
minus sign in front of the second series. This gives 

I f " " 1 
- E v'^l-e-2"""""') + £ rim(l ~ e-*"'*""'""') 1 +<r„ m = 0 m = 0 

The m = 0 term is zero in the first series so we can change rn to m + 1 and 
still sum this for m = 0 , 1 , 2 , 3 , . . . without changing its value; thus we get 

i r ^ 
- £ ijm"*1(l - e-2(">+!)«-„",) + y rim(l - e-

2*1"+ »«'»«,\ 
m-0 m=0 

1 +e„ 

•(n - 1) L *7m(l -e"2""*»«•<.»«) 
m - 0 

2e„ 

(1 + O «-o 
£ Vm(l ~ e~*m*v>w°'i') (3.159) 

Upon using this expansion in the Green's function, the integral equa
tion (3.153) can be expressed in the form 

4e, rW/2 

• = 0 ( 1 + 6,) y - « 7 2 » - i , 3 , . . . 

cos wn x cos «;„ A: 

4e0w„a 

(1 - ,-*»+*-»,*) M i l (&' = V (3.160) 

We note that the m th term considered by itself is an integral equation of 
the same form as that in (3.158) apart from the multiplying factor 
4e^77m/(l + eg)

2. This integral equation would provide a solution for the 
capacitance of a strip in air spaced a distance (m + l)He above the ground 
plane. If we assumed that the normalized charge density ps(x')/Q was the 
same for any strip, independent of the spacing above the ground plane, eac 
integral would produce a constant voltage Vm but different from V. Wit 
increased strip spacing and constant total charge on each strip, the integr 
has to give a larger voltage since Q = Ca[(m + l)He\Vm and Ca[(.m + 1 ^ ' j | 
the capacitance between the strip and the ground plane, decreases wit 
increasing m. The approximation that the charge density is the sain 
independent of strip-ground-plane spacing is a necessary one to make sinc 

there is only one charge density expression in the integral equation. Tn 
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approximation is a good one and by using it we can express (3.160) in the 
form 

since by our assumption 

W/2 £ c o s i e s cos «,„*' £ . a ) W + l l t f 

•'-w/2„ = 1 . 3 . . . . 4 C O H ; „ C 

dx = V,„ = 
Q '" Ca[(m + l)ffe] 

Prom (3.161) we now obtain the following solution for the distributed 
capacitance C = Q/V: 

C = ! a -J j (3.162) 

1 + CJLH.) E v 
m 

: x ' CD[(m + l)tfc] 

where M is the number of terms that are kept. Since -q is negative the 
series is an alternating one. Typically, from 10 to 40 terms are needed for 
good accuracy. The evaluation can be done on a computer very quickly and 
requires only a simple program to implement. However, we do require an 
expression for the capacitance between a strip in air as a function of the 
spacing above the ground plane, which is given below. 

The exact solution for the capacitance between a strip of width 2W and 
a distance H above a ground plane is given in App. Ill , along with tabulated 
values as a function of 2W/H. For practical applications it is desirable to 
have simple formulas that will enable the capacitance to be evaluated with 
an accuracy of 1 percent or better. A number of investigators have proposed 
such formulas which are based on approximate analytic solutions, along 
with empirical adjustment of various numerical constants so as to achieve 
the desired accuracy.! The following formulas give excellent results for the 

tH . A. Wheeler, Transmission Line Properties of a Strip on a Dielectric Sheet on a Plane, 
IEEE Trans., vol. MTT-25. pp. 631-647. August, 1977. 

E. 0. Hammerstad, Accurate Models for Microstrip Computer-Aided Design, IEEE MTT-S 
Int. Microwave Symp. Dig., pp. 407-409. 1980. 

E. 0. Hammerstad, Equations for Microstrip Circuit Design, Proc. European Micro. Conf.. 
Hamburg, W. Germany, pp. 268-272, September, 1975. Equations (3.163) and (3.166) come 
from this publication. 

S. Y. Poh, W. C. Chew, and J. A. Kong, Approximate Formulas for Line Capacitance and 
Characteristic Impedance of Microstrip Line, IEEE Trans., vol. MTT-29, pp. 135-142, Febru
ary, 1981. 
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capacitance per meter of a strip of width W at a height H above a 
plane and with air dielectric: 

2776,, 

gfouiuj 

C = TBH 
In — W 

W 

C=e, 
W (W 
— + 1.393 + 0.667 In — + 1.444 
H \ H 

W 

H * 1 

w 
H > 1 

(3.163 a) 

(3.1636) 

These formulas give results that agree with those tabulated in App. m *. 
within 1/4 percent. 

The effect of finite thickness T for the microstrip on the distributed 
capacitance is normally negligible. If necessary the effect of finite thickness 
can be included by using an effective width W(, where We is given by the 
following expressions due to Gunston and Weale:t 

We = W+0.398T 1 + ln 

= W+ 0 .398: r | l + In 

4 T T W \ 

T 

2H 

I 
W 

H < 

W 
— > 
H 

1 

2 ^ 

1 

2 ^ 

The above expressions can be used in (3.162) to evaluate the capacitance C 
for a microstrip line with an isotropic or anisotropic dielectric substrate. 
The effective dielectric constant ee for a microstrip line is given by 

c_ 
el 

where Ca is the capacitance of the unsealed air-filled line. The characteristic 
impedance is given by 

.1/5-
i/^V Mo«o 

e„ C„ 
(3.165) 

Even though computations based on (3.162) are straightforward, there 
is an easier way to find ee. Schneider has presented a remarkably simp' 
formula for the effective dielectric constant of a microstrip line with an 
isotropic substrate.^ This formula was modified by Hammerstad to improve 

tM. A. R. Gunston and J. R. Weale, Variation of Microstrip Impedance with Strip Thickness. 

Electron. Lett., vol. 5. p. 697, 1969. 

tM. V. Schneider, Microstrip Lines for Microwave Integrated Circuits, Bell System Tech. •• 
vol. 48, pp. 1422-1444, 1969. Schneider's formula has a numerical coefficient of 10 instead ° 
12 multiplying the H/W term. 

(3.164) 

icteristic 
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the accuracy.t The modified formula, which we will refer to as the S-H 
formula, is 

+ 1 e - \ ( 12H - 1 / 2 

where F(er,H) = 0.02(er - 1X1 - W/H)2 for W/H < 1 and equals zero 
for W/H > 1. The last term accounts for the reduction in ee caused by the 
finite thickness of the microstrip. We have checked the accuracy of this 
formula against the results obtained by solving the integral equation and 
found the agreement to be better than 1 percent for 0.25 < W/H < 6 and 
1 < er < 16. We can also adapt the S-H formula to treat the case of an 
anisotropic substrate as follows: For an anisotropic substrate we replace the 
spacing parameter H by the effective spacing He given by 

H --

and use the geometric mean eg = ye^Cy f° r *-ne dielectric constant e r . The 
S-H formula gives the capacitance of a microstrip line with spacing He and 
dielectric constant eg relative to an air-filled line with the same spacing He; 
thus 

C{eg,He) e + 1 e „ - l / H„\'l/2 , tT v 

The effective dielectric constant is, however, given by the ratio of C(eg, He) 
to the capacitance of the air-filled unsealed line according to (3.164). Hence, 
for the case of an anisotropic substrate, we have 

e„ = 
U + l e g - l , H.A-^ 

1 + 1 2 - ^ + F ( c , , f f . ) m **» 
The capacitances for the air-filled lines are readily computed using (3.163). 

For comparison purposes, typical results obtained for ee using (3.162), 
formulas (3.166) or (3.167), and those obtained by solving the integral 
equation are given in Table 3.3. Also listed are the number of terms needed 
in the formula (3.162) to give a numerical convergence of 0.3 percent. 
Overall, all three methods give values for ee that are in close agreement. 
Equation (3.162) gives values that are on the high side for wide strips and 
substrates with large dielectric constants. This is caused by the variation in 
charge density with strip spacing above the ground plane, which is more 

tE . O. Hammerstad. loc. cit. (1975 paper). 
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TABLE 3.3 
Comparison of values for effective dielectric constant using 
different formulas 

Integral Integral -
equation Eq. (3.162) Eq . (3.166) equation Eq. (3.162) Eq. (3.166) 

W/H 6 r = 2 er = 5.12, ev = 3.4t 

0.25 1.588 1.589 an 1.583 2.671 2.675(15) 2.69 
0.5 1.61 1.612(7) 1.605 2.694 2.698(15) 2.721 
1 1.645 1.649 (7) 1.639 2.731 2.734(15) 2.731 
2 1.696 1.699(7) 1.689 2.797 2.802 (16) 2.794 

• 1.762 1.761 (8) 1.75 2.906 2.929 (16) 2.890 
6 1.801 1.799 (8) 1.789 2.979 2.944 (16) 2.963 

* r = 6 * f = 1 0 

0.25 3.896 3.896 (22) 3.913 6.195 6.192(36) 6.244 
0.5 4.003 4.004 (22) 4.025 6.387 6.40 (37) 6.445 -> 4.173 4.169(22) 4.193 6.69 6.70 (37) 6.748 
2 4.428 4.447 (23) 4.444 7.15 7.16(38) 7.201 
4 4.763 4.837 (23) 4.75 7.757 7.946 (39) 7.750 
6 4.966 5.012(23) 4.943 8.127 8.303 (40) 8.098 

tBoron nitride. 
j T h e numbers in parentheses are the number of t e rms used in the numerical solution. 

pronounced for wide strips. From the tabulated results it can be inferred 
that the modified Schneider's formula will be acceptable for most applica
tions since even the dielectric constant of the substrate is often not known 
to an accuracy much better than 1 percent. The following two examples will 
illustrate the application of the above formulas to microstrip lines. 

Example 3.4. A microstrip line uses a substrate with dielectric constant 
cr = 9.7 (alumina) and thickness 0.5 mm. The strip width is also 0.5 mm. We 
wish to find the effective dielectric constant, the characteristic impedance, and 
the microstrip wavelength at a frequency of 2 GHz. 

Since the substrate is isotropic, we use (3.166) to find ee. Thus since 
W/H = 1, 

10.7 8.7 
r ^ - ( 1 + 12) -1/2 _ = 6.556 

In order to evaluate Zc using (3.165), we first find Ca using (3.163). Thus 

From (3.165) we get 

e0 m(8 + | ) = 2.978 

120TT 

2.978V^7 2.978^6.556 
49.44 n 
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At 2 GHz the propagation constant is /3 = -^2TT/\0 = 1.0725 rad/cm. Hence 
A = 2ir//3 = 5.858 cm. The wavelength can also be found using A = A0/ j/e^. 

Example 3.5. A microstrip line uses a sapphire substrate 1 mm thick and 
having «r = 9.4, ey = 11.6. We want to find the effective dielectric constant 
and characteristic impedance for the case when the strip is 0.5 mm wide. 

Since this substrate is anisotropic, we first find eg = Jerey = 10.44 and 

He = yjer/*y H " °-9 m m - We n o w u s e (3-167) to find ee. By using (3.163a) we 
get the ratio 

Ca(He) 2.347 

From (3.167) 

e„ = 1.0385 
11.44 

ca(B) 

9.44 

2 

2.26 
= 1.0385 

o,9 r v 
1 + 12-— + 0.02 x 9.44 x § 

0.5) 4 

= 7.02 
From (3.163a) we get CJ.H) = 2.26«0 and using (3.165) gives 

120TT 
Z = 2.26/02 = 62.96 n 

Microstrip Attenuation 

Dielectric losses and conductor losses will introduce attenuation. The atten
uation caused by the finite conductivity of the conductors is accounted for 
by the series resistance R, while attenuation caused by dielectric loss is 
modeled by the shunt conductance G in the distributed circuit model of the 
microstrip line. The separate attenuation constants are given by 

a „ = — (3.168a) 

« d -

2ZC 

G 
(3.168b) 

and the total attenuation is given by 

a = ac + ad (3.168c) 

The attenuation in decibels per unit length is obtained by multiplying a by 
8.686. 

We will first examine the attenuation caused by dielectric loss. The 
dielectric loss arises when the permittivity e is complex, that is, e = e' -je". 
The loss tangent 

6" 
tan 8, = — = 81 
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is the usual given parameter for a dielectric material. Maxwell's equation 

V X H = jweE + o-E = y W E + (<oe" + a)E 

shows that cue" can be viewed as the effective conductivity of a In 
dielectric when the ohmic conductivity a is zero. Normally we can assu 
that cr = 0 except for a semiconductor substrate, in which case o- vrin 
depend on the doping level. 

The electric energy stored in the substrate region of the microstrip lin 

is given by 

We. = — ( E • E*tfV 
4 -V, 

where Vl is the volume of the substrate region per unit length of line. The 
power loss due to dielectric loss is given by 

toe" r 
P, = / E • E* dV 

' 2 Jv. 

Thus we see that 

If the dielectric filled all of the space around the microstrip, we could equate 
Wel to C V 2 / 4 and P, to GV'2/2 and thereby obtain 

we 
G= — C 

€ 

However, for a partially filled line some of the electric energy is located in 
the air region that occupies a volume we will call V2. Consequently, we have 

e' e0 , CV2 

Wtl + We2 = - ^ E • E*dV+ -fvE • E*dV = — 

If we had an air-filled line, we could write 

e e C V2 

Wei + We2 = -? /" E * E*dV + 4 f E • E*dV= ~^r-
4 -'v, 4 Jyz

 4 

with the understanding that the electric field in the two cases will not be t 
same. There is no simple exact way to determine how the electric energy 
split between the two regions. There is, however, an approximate method 
find the division of the total energy between the two regions and ^">s 

based on the assumption that the volume integrals of E • E* in the t 
cases are approximately the same. By making this assumption we can vW 

eh + e0I2 = CV2 

e0I, + e0I2 = CaV
2 
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where Ix and I2 represent the values of the integrals over Vl and V2, 
respectively. The above two equations can be solved for /, and /2 to give 

e - e0 e ~ e0 

where e'r = e'/e0. The fraction of the total energy in the dielectric region is 

< . / , e ' r ( C - C „ ) e ' r e , - l e'r 

where we have used C = ecC„. The parameter o: is called the filling factor. If 
q was found independently, then we could solve for ee to get ee = e'rq + 
(1 ~ q). The parameter q is the ratio of the integral of E • E* over the 
volume Vy to the integral over the total volume V, + V2, that is, q = 
/ [ / ( / j + I2) and clearly represents a filling factor. 

With the above assumption regarding no change in the volume inte
grals for the two cases, we see that G, as given earlier, should be reduced by 
the same fraction by which the total electric energy was split since there is 
essentially no loss in the air region. Hence an estimate for G is 

G=~J7—r — C (3.170) 

By using Ze = y e J y ^ t 0 e 0 / C we obtain 

GZC ,7 e'r e, - 1 
ad= — = —-!=-- - t a n S , (3.171) 

for the attenuation constant due to dielectric loss. In the derivation we used 
a>ijn0e0 = k0 = 27r/A0. As an example if e'r = 9.7, ee ~ 6.55, and tan 8, = 
2 X 1CT4 we get ad = 1.52 X 10" 3 Np/wavelength. In decibel units this 
equals 0.013 dB/wavelength, which is a relatively small value. The attenua
tion caused by conductor losses will be significantly larger. Equation (3.171) 
is valid for isotropic substrates only. 

We now turn our attention to evaluating the attenuation caused by 
finite conductivity of the microstrip and the ground plane. The continuity 
equation (3.138b) shows that the current density J. along the conductors 
varies the same way as the charge density. Thus on a conducting strip of 
width W the current density will be similar to the charge density given by 
(3.156). At the edge of an infinitely thin strip, the current density will 
increase inversely proportional to the square root of the distance from the 
edge and becomes infinite at the edge. However, the density can be inte
grated to give a finite value for the total current. But since power-loss 
calculations require integrating the square of the current density, we would 
find that for the current density on an infinitely thin strip we would obtain 
infinite power loss. In practice, the conductors have a finite thickness and 
the current density is less singular at the edge and the power loss is finite. 
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Consequently, it is necessary to take into account the finite thickness of tL 

conductors. In addition, it is necessary to determine how the total cur 

divides between the two faces of the microstrip since the presence /" 
ground plane results in an unequal division of the current for strip win! 
greater than one-half of the spacing above the ground plane. 

The current distribution, current division, and power loss can 
evaluated using conformal mapping techniques. In order to obtain usef 
formulas, some approximations are necessary. The analysis for a microsfJ; 
line is carried out in App. Ill and the results obtained are repeated hp^ 
(note that in App. Ill the strip width is 2w and the thickness is 2r, where 
here we use W for the width and T for the thickness). The normalized 
series distributed resistance for the microstrip is Rl where 

R,W I 1 1 4irW 
= LR - + - ^ m — — (3.172) 

(3.173) 

The loss ratio LR is given by 

IV 
LR = 1 — < 0.5 

w /wy w 
LR = 0.94 + 0.132— - 0.0062 — 0.5 < — < 10 

H \ H} H 
The loss ratio gives the increase in resistance that results from an unequal 
division of the current. The normalized series resistance R2 of the ground 
plane is given by 

R2 W/H W 
W— = 0 1 < — < 10 (3.174 

Rm W/H + 5.8 + 0.03H/W ~ H ~ v 

This formula states that the effective width of the ground plane is W + 5.8H 
and having uniform current density. The skin-effect resistance Rm is given 
by Rm = (w / i / a ) 1 / 2 . For copper with a conductivity of 5.8 X 107 S/m. w6 

have Rm = 8.22 x 1 0 _ 3 / 7 ft where f is in gigahertz. The total series 
resistance is Rx + R* and thus upon using (3.346) we get 

x?] + R2 
a„ = (3.1751 

2ZC 

for the attenuation caused by conductor losses. For the quasi-TEM m 

the magnetic field, and hence the conductor losses, do not depend on 
substrate material. . i 

The equations presented above predict somewhat higher theoreti 
attenuation than that obtained from a formula developed by Pucel, M» 
and Hartwig using Wheeler's incremental inductance rule.t Our form1"* 

tR. A. Pucel, D. J. Masse, and C. P. Hartwig, Losses in Microstrip, IEEE Trans., vol. *4T»" 
pp. 342-350, June, 1966. 
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appear to be in b e t t e r ag reemen t w i t h exper imenta l resu l t s . F o r pract ical 
micros t r ip lines surface roughness can increase t h e a t t enua t i on by as m u c h 
as 50 percen t or more depending on t h e scale of surface roughness relative 
to t h e skin dep th . T h e etching process does no t p roduce a perfectly flat end 
face at t h e sides of t h e strip- Some u n d e r c u t t i n g of t h e edge occurs a long 
with some roughness , which will also resu l t in an increase of t h e a t t enua 
t ion above t h e theore t ica l values. 

Example 3.6. We wish to find the attenuation for a microstrip line using a 
copper strip of width 0.5 mm, a spacing of 0.5 mm above the ground plane, an 
alumina substrate with er = 9.7, and a loss tangent of 2 x 10 4. The strip 
thickness T is 0.02 mm. The frequency of operation is 4 GHz. 

The effective dielectric constant and characteristic impedance were found 
in Example 3.4 and are ee = 6.556, Zc = 49.44 il. The wavelength of operation 
is 7.5 cm. The attenuation caused by dielectric loss was calculated after (3.171) 
was presented and is 1.52 X 10~3 Np/wavelength or 2.02 x 10~4 Np/cm. 

For this microstrip line W/H = 1 and W/T = 25. From (3.173) we find 
that the loss ratio is 1.0658 and (3.172) gives 

1.0658 X 8.22 x 10 3 vf / 1 
R. = —— - + —? In IOOTT 

1 0.05 \ir ir2 

= 3.157 x 10~5 n / c m 

By using (3.174) we obtain 

8.22 X 1 0 - 3 / 4 
R* ~ 0.05 5.8 + 0.03 

= 4.81 X 1 0 ' 2 f l /cm 

For this case the loss in the microstrip is a factor of 6.5 greater than that in 
the ground plane. The reason for this is the high current density near the 
edges in the microstrip as compared with a more uniform current distribution 
over a wider area on the ground plane. By using (3.175) we find that the 
attenuation due to conductor loss is 

3.157 x 1 0 _ l + 4.81 X 10~ z 

"• : 2 X 49.44 = 3 " 6 8 * 10 N p / C m 

This attenuation is 18.4 times greater than that caused by dielectric loss. The 
total attenuation is 

a = ac + ad = 3.88 X 1 0 " 3 Np/cm 

which equals 0.0337 dB/cm. Surface roughness could result in a real 
attenuation 15 to 25 percent higher than this at 4 GHz. In this example we 
neglected the correction to ec and Zc due to the finite thickness T since it is 
small. 
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High-Frequency Properties of Microstrip Lines ' 

The equations describing the quasi-TEM mode can be used with accent v 
accuracy for frequencies up to 2 to 4 GHz for a substrate thickness of l 
For a substrate 0.5 mm thick, the upper frequency limit would be 4 Dl' 
GHz. When these limits are exceeded, it is necessary to take into acco * 
the frequency dispersion of the effective dielectric constant and the cha 
in characteristic impedance with frequency. At the higher frequencies ti 
electric field becomes more confined to the region between the microst*' 
and ground plane. The greater concentration of the field in this rem ' 
results in an increase in the effective dielectric constant as well as increase 

if. I ________—- 6.0 
^ __- 4.0 

2.0 - ^ "~~ 

——-""* " w ^*^ _-——•"' 2 0 

1.9 
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FIGURE 3.25 
(a) Effective dielectric constant for a PTFE/microfiber glass substrate with er = 2.26, ty 
(6) characteristic impedance. 

%% 
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FIGURE 3.26 
(a) Effective dielectric constant for an RT/Duroid 6006 substrate having er = 6.36, ey = 6; 
(b) characteristic impedance. 

attenuation because of a greater concentration of the electric field in the 
substrate which has some loss. The conductor loss also increases because 
the skin-effect resistance Rm increases and more of the current flows on the 
inner face of the microstrip. 

In order to determine the effective dielectric constant at high frequen
cies, it is necessary to carry out a full wave analysis, i.e., the complete set of 
equations given earlier for the potentials must be solved. In Figs. 3.25 to 
3.28 we show the dispersive properties for four common substrate materi
als, a PTFE/microfiber glass substrate with er = 2.26, ev = 2.2, RT/Duroid 
6006 with er = 6.36, ey = 6, alumina with er = 9.7, and gallium arsenide 
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100 r 

0 4 8 12 16 20 

[ Characteristic impedance 

J i i 
24 FH in GHz mm 

8 12 16 20 24 FH in GHz mm 

(b) 

FIGURE 3.27 B ^ ^ 
(a) Effective dielectric constant for an alumina substrate with cr = 9.7; (6) characterise 
impedance. 

with er = 12.9. An examination of these figures shows that dispersion 
effects are more pronounced for wider strips and large dielectric constants-

Along with each figure giving the effective dielectric constant a s 8 

function of normalized frequency is a figure showing the characterise 
impedance as a function of normalized frequency. The normalized frequency 
is the actual frequency in gigahertz multiplied by the substrate thickness^ 
millimeters. Thus, for substrates 0.5 mm thick, the frequency range covert 
is 0 to 48 GHz. 

When the propagating mode is not a TEM or quasi-TEM mode, thf** 1 
is no unique value for the characteristic impedance because it is not Po S 9 ' \J 
to define a unique value for the voltage as given by the line integral of** 
electric field between the ground plane and the microstrip. The characte1"18" 
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FIGURE 3.28 
( a ) Effective dielectric constant for gallium-arsenide substrate with er = 12.9; (6) characteris
tic impedance. 

tic impedances given in Figs. 3.25 to 3.28 are based on using the following 
definition for the equivalent voltage: 

v=-/V* = /> A > + r 
'o •'o \ dy, 

d<P\ 
dy 

where the path of integration is along a straight line from the ground plane 
to the center of the microstrip. The current / is chosen as the total 
2-directed current on the microstrip and Zc was calculated from the ratio 
V/I. In general, the power flow along the microstrip transmission line will 
not equal |V7. The characteristic impedance can be defined in terms of the 
power flow P by choosing either the current / or voltage V according to the 
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above definitions and using 

2 

Zl 
2ZC 

to find Zc. These two equations will give different values for the characterk. 
tic impedance with neither one being equal to V/I. 

The lack of a unique value for the characteristic: impedance is not a 
great disadvantage since microstrip junctions and discontinuities can be 
described by equivalent circuits using any convenient definition for the 
characteristic impedance. In Chap. 4 we will find that an equivalent trans
mission-line circuit theory can be formulated for any waveguiding system 
and does not require that there be a unique characteristic impedance 
associated with the propagating modes. 

For computer-aided design (CAD) of microstrip circuits, it is important 
to have simple formulas that can be used to find the effective dielectric 
constant. Many different formulas have been proposed. The most accurate 
one that covers the full range of parameter values like!}1 to be encountered 
was developed empirically by Kobayshi and is given below:t 

< " > - ' - i t o w u " (3'"6) 

where 

K- 0.75 + (0.75 ~ 0.332c;1 73)W/H 

47.746 
h Hfer - ee{0) 

m = mQmc < 2.32 

mn = 1 + ===== + 0.32(1 + JW/H) 
- 3 

I 

m, = 

1 +
 YTWTH(015 " °-235e~a45f/r°) H - °"7 

w 
— > 0.7 
H 

tM. Kobayashi. A Dispersion Formula Satisfying Recent Requirements in Microstnp 
IEEE Trans., vol. MTT-36, pp. 1246-1250, August, 1988. 

inCA» 
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In these formulas H is in millimeters, the frequency f is in gigahertz, and 
whenever the product m0mc is greater than 2.32 the parameter m is 
chosen equal to 2.32. The effective dielectric constant at the frequency f is 
ee( f) and ec(0) is the quasistatic value which can be found using (3.166). It 
requires only a simple computer program to evaluate ee{f) using Kobayshi's 
formula. The accuracy is estimated to be within 0.6 percent for 0.1 < W/H 
< 10, 1 < er < 128 and for any value of H/A0.t 

In microstrip circuit design where junctions of microstrip lines with 
different widths are involved, it is necessary to characterize the junction in 
terms of an equivalent circuit. The parameters of this equivalent circuit will 
depend on frequency. The equivalent characteristic impedances that are 
assigned to the microstrip lines are arbitrary and often are simply chosen to 
have normalized values of unity. Any impedance level change that occurs at 
the junction is incorporated as part of the equivalent circuit of the junction. 
For these reasons we will not quote any of the formulas that have been 
proposed for evaluating characteristic impedance as a function of frequency 
because they are of limited use in practice. 

Simple formulas giving the attenuation of microstrip lines at high frequen
cies do not exist. Equation (3.171) can be expected to give a good estimate 
for the attenuation due to dielectric loss provided ee is replaced by the 
effective dielectric constant that applies at the frequency of interest. 

A realistic evaluation of the attenuation caused by the finite conductiv
ity of the conductors requires evaluation of the current density on the 
microstrip and the ground plane at the frequency of interest. In general, the 
current tends to be more uniform across the microstrip at high frequencies, 
particularly for wide strips. In Fig. 3.29 we show several computed current 
distributions at frequencies of 10 and 20 GHz for an alumina substrate 1 
mm thick. The quasistatic current distribution is also shown. The current 
density has been normalized so that the total current on the microstrip 
equals W. In view of the tendency for the current density to become nearly 
uniform at high frequencies for wide strips, the attenuation constant can be 
estimated with fair accuracy by assuming uniform current density over a 
width W on both the microstrip and the ground plane. In this limit the 
attenuation caused by the conductor loss for wide strips that are not too 
thin is given by 

ac=^£- (3.177) 
c WZC

 v 

tThe author has verified the accuracy of Kobayshi's formula by comparison with calculated 
numerical results for 0.25 <, W/H < 6 and 2 s er < 12. 
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F I G U R E 3.29 
Current distribution on the microstrip for an alumina substrate with H = 1 mm and two 
different widths. The broken curves give the quasistatic distribution, (a) W = 2 mm, f = M 
GHz; (6) W= 2 mm, f = 20 GH?,; ( c ) W = 6 mm, f= 10 GHz; id) W = 6 mm. f= 20 GHr 

For narrow strips and high frequencies, no simple formulas for atten 
ation appear to be available. For narrow strips, say W/H < 1, the qu» 
sistatic formula (3.175) is probably a reasonably good estimate since M* 
current density does not depart significantly from the quasistatic distn 
tion for narrow strips. 

3 .13 C O U P L E D M I C R O S T R I P L I N E S 

When two conducting strips of width W are placed side by side 
dielectric substrate above a ground plane as shown in Fig. 3.30a, we o 
a coupled microstrip line. Since this is a three-conductor transmission 
there are two fundamental quasi-TEM modes of propagation. The y 
mode is the mode corresponding to both strips being at the same potent* 
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Odd mode 
(c) 

FIGURE 3.30 
(a) Coupled microstrip line; (6) the electric field distribution for the even and odd odes; (c) the 
current distribution for the even and odd modes. 

and on which the same currents exist. The odd mode corresponds to the 
strips being at opposite potentials, - V and V, relative to the ground plane. 
For the odd mode the currents on the two strips are also equal in ampUtude 
but of opposite sign. A sketch of the electric field lines for the two modes is 
shown in Fig. 3.306. For isolated strips in air, i.e., with no ground plane and 
substrate present, the theoretical current distributions for the two modes 
are:t 

J'(x) = 
V ( * 2 - * ? ) ( * £ - * 2 ) 

(3.178a) 

</*(*) = 
^ ( * 2 - * ? ) ( * ! - * 2 ) 

(3.1786) 

tR. E. Collin, "Field Theory of Guided Waves," 2nd ed., chap. 4, IEEE Press, Piscataway, N.J., 
1991. 
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For the even mode the factor x in the numerator reduces the arnpUturt 
the singular behavior near the inner edges at x = ±xv When xt equals * °^ 
the current singularity at ±.r, vanishes and J"(x) becomes the exDe^/0 

current density on a single strip 2x2 units wide. For the odd tnodp 
current singularity at the inner edges ±x 1 is more like a 1/x sinmil • 
when *! is very small. This is caused by the strong electric field acrn 
very narrow slit with the adjacent conductors at opposite potential TO 
current distribution for the two modes is shown in Fig. 3.30c. 

The coupled microstrip line is used in various directional counl 
designs and these applications will be discussed in Chap. 6. The imports 
parameters describing the quasi-TEM mode properties of the coupled mi 
crostrip line are the even- and odd-mode effective dielectric constants e' e° 
that determine the two propagation constants, and the even- and odd-mode 
characteristic impedances Ze

c, Z". An important parameter in directional 
coupler design is the coupling coefficient, which is given in terms of the 
characteristic impedances of the two modes by 

ye yo 

C = j ^ (3.179, 

The coupling coefficient is commonly expressed in decibel units, that is, 
20 log C. In a coupled microstrip line it is not practical to achieve much 
more than a 2.5: 1 impedance ratio; so strong coupling cannot be realized in 
a simple coupled microstrip directional coupler. However, other designs are 
available, so this is not a problem for the microwave circuit engineer. 

There are no simple formulas giving the quasi-TEM properties of 
coupled microstrip lines that have an accuracy comparable to that for 
microstrip lines. Bahl and Bhartia list formulas characterizing coupled 
microstrip lines that give results which are acceptable for noncritical appli
cations.! The computer program CMST implements these formulas. We 
have checked the accuracy against numerical results obtained from a full 
wave solution for an alumina substrate. The effective dielectric constants 
were found to be accurate to within 3 percent. The characteristic impedance 
for the even mode was also found to be accurate to within 3 percent. For tW 
odd-mode characteristic impedance, the error was as large as 8 percent w 
W/H = 1, S/H = 0.25, but considerably less for larger values of W/H ana 
S/H. of 

The dispersion properties for coupled microstrip lines on a variety 
different substrates have been computed by Morich.? In Figs. 3.31 to o-

9 Son5, 

t j , Bahl and P. Bhartia. "Microwave Solid State Circuit Design," p. 28, John Wiley * """ 
Inc., New York, 1988. 
JM. Morich, Broadband Dispersion Analysis of Coupled Microstrip on Anisotropic S u b s l . ^ , J , 
by Perturbation-Iteration Theory, M.S. Thesis, Case Western Reserve University, dev^ 8 ' * 
Ohio. May, 1987. 
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F I G U R E 3.31 
Dispersion characteristics of a coupled microstrip line on an alumina substrate. S/H = 0.25, 
er = 9.7. (a) Even- and odd-mode effective dielectric constant; (b) even- and odd-mode charac
teristic impedance and coupling coefficient C. 
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FIGURE 3.32 
Dispersion characteristics of coupled microstrip line on a gallium-arsenide substrate. S/" 
0.25, «r =* 12.9, (a) Even- and odd-mode effective dielectric constant; (6) even- and odd-m 
characteristic impedance and coupling coefficient C. 

rises to a value of 0.524 at FH = 20 GHz mm. A coupling coefficient of 0-' 
is needed for a 6-dB directional coupler. The effective dielectric constant 
the odd mode is smaller than that for the even mode because a '0^\ 
percentage of the electric field energy is located in the air region-
capacitance between closely spaced parallel strips at opposite potential 
large so the characteristic impedance of the odd mode is smaller than 
for the even mode for the normal range of parameters involved. For w 

strips \vith large spacing, there is very little coupling and the two n* 
impedances will be almost the same. 

file:///vith
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FIGURE 3.33 
Dispersion characteristics of coupled microstrip line on an RT/Duroid 6006 substrate. S/H = 
0.25, er = 6.36. (a) Even- and odd-mode effective dielectric constant; (b) even- and odd-mode 
characteristic impedance and coupling coefficient C. 
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S T R I P T R A N S M I S S I O N L I N E S 

The basic strip transmission line consists of a conducting strip embedded • 
a dielectric medium between two ground planes as shown in Fig 3 o, l n 

Figures 3.346 and c illustrate coupled strip lines. For broadside CQU ,a 

strips as shown in Fig. 3.34c, the coupling coefficient is significantly great* 
than for coplanar strips. Thus the strip line with broadside coupled string 
suitable for directional couplers where a coupling of 3 dB is required Si ' 
the dielectric completely surrounds the strips, the strip line and the COUDIBH 

strip line support pure TEM modes of propagation. There is no frequen 
dispersion or change in effective dielectric constant with frequency. ConsZ 
quently, for the coupled strip line the even and odd modes of propagation 
have the same phase velocity, which is also a desirable feature for direc
tional coupler design. 

For the symmetrical strip line and coupled strip line, the TEM-mode 
characteristic impedance is readily found from the distributed capacitance 
with the latter determined by conformal mapping techniques. The dis
tributed capacitance for the symmetrical strip line is found in App. in. 

W 

W 1 S 1 W 

TT 

ZH 

Even mode 
Even mode 

F IGURE 3.34 .oUpKs<l 
(a ) The basic strip-line configuration; (6> coupled strip line using coplanar strips: ic) L ^ 
strip line using broadside coupled strips. The electric field lines for the TEM modes are 
shown. 
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From the given expression (III.27) and using (III. 13c), we have 

Z0 K(k) Z0K 
Z = r *& K(k') Aj7rK' 

(3.180a) 

where 

k = 
cosh -rt W/4H 

K 1 / 1 + \[k 

W = ^ ln2TWT 

k' = tanh iv 
W 

K 

~K' 

1 / 1 

- I n 2-
1 - /* ' 

0.7 < k < 1 

0 < k < 0.7 

and er is the dielectric constant of the dielectric material that completely 
surrounds the center strip. For W > 2H the formula for Zc reduces to the 
simple form 

Z = — = — W>2H (3.1806) 
' 8y/Zr(ln2 + TTW/4H) 

For a very narrow strip 

Z,.= In 
16H 

2nyfc. TTW 
W<0AH (3.180c) 

Since the dielectric material completely fills the strip line, the attenuation 
due to dielectric loss is given by (3.87a) and is 

iTi/e'r tan o, ire, 
a J = 

Aov^ 
(3.181) 

Formulas for the attenuation in a strip line due to conductor losses 
and assuming an inner conductor of elliptical cross section have been 
derived using conformal mapping techniques.t In App. Ill it is shown that 
the series resistance of an isolated conductor of elliptical cross section is 
greater than that for a conductor with a rectangular cross section. By using 
an equivalent center thickness Te for the conductor with elliptical cross 
section, the two series resistances will be equal provided Te is chosen to be 

T. = e~^2 
4WT 

~ 
(3.182) 

tR. E. Collin, loc. cit„ chap. 4, eqs. (73), (74). and (76). 
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We will assume that this equivalence is also a good approximation f 
conductor placed between two ground planes. On this basis the a t tenua/ a 

by the center conductor is ' ° n 

TTi?„, 16Hk' 
a,., = -ln-

16ZcHK'2k' kirTe (3-183Q) 

and that due to the ground planes is 

-2R,nW 
a<2 64ZcH*K'2k' ( 3-1 836) 

For wide and narrow strips these formulas reduce to the following simpli
fied forms: 

8H TTW 

Rj7r
 ln^fe

+JH 
a<l = ~Wir ^W~ W*2H (3184a) 

° »* + !S 
rrR^W 

«c-2 = / ^ff\ W>2H (3.1846) 
8Z0H

2 l n2 + —-
\ 4 /7 

a r , = 

«„, = 

, _ 4W 
2Rjer\n — 

^ 16H 
2Z0H\n 

W<0AH 

W < OAH 

TTW 

Suitable formulas for evaluating K and K' are given by (III. 13) in App 
The total attenuation for a strip line is given by 

« = « d + « c l + « c 2 ( 3 - 1 ^ 

Example 3.7. A strip line has a ground-plane spacing 2H = 1 cm and use= 
centered copper conducting strip of width W = 1 cm and thickness T - • 
cm. The dielectric filling material has a dielectric constant e'r = 2.2 and a , 
tangent equal to 10~3. We want to find the characteristic impedance 
attenuation at a frequency of 10 GHz. For this line W/H = 2, so (3.1806'c 

be used. Thus 
120TT2 

Z< = 8v^2( ln2 + 7r/2) = 4 4 ' 0 9 " 
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The wavelength of operation is 3 cm; so by using (3.181) we find the attenuation 
due to dielectric loss to be 

ir&2 X 10 s 

« * - 3 

= 1.55 X 10 :i Np/cm or 1.35 x 10 ' 2 dB/cm 

From (3.182) we obtain Te = 0.00742 cm for the equivalent thickness. We can 
use (3.184a) to find 

4 -
m-8.22 x 10-3y'10v f2.2 ' " - x 0.00724 2 

240 ,7X0 .5 \n2 + -
2 

= 3.034 x 10" 4 Np/cm or 2.635 x 10 :) dB/cm 

From (3.184b) we obtain 

8.22 X 10 3 vTO J22v 
a''2 ~ 8 x 12077 x 0.52( ln2 + - / 2 ) 

= 7.096 x 10 5 Np/cm or 6.163 x 10~4 dB/cm 

The total attenuation is 0.0167 dB/cm. For this transmission line the dielectric 
loss is greater than the conductor loss. 

According to a formula for strip-line conductor attenuation developed by 
Cohn, we would get ac = 3.236 x 10 ~3 dB/cm, which agrees very closely with 
3.25 x 10 3 dB/cm obtained with our formulas.t 

COUPLED STRIP LINES 

For copianar s t r ips of width W and spacing S, t h e even- and odd-mode 
character is t ic impedances a r e given by$ 

c 4 / e r K(kt)
 l 

J^KiKl ( 3 .1 8 66) 
r i{TrK(kn) 

tSee H. Howe. "Strip Line Circuit Design," eq. (1.5), Artech House Books, Dedham, Mass. 
1974. 
iS. B. Cohn, Shielded Coupled Strip Transmission Line. IRE Trans., vol. MTT-!J. pp. 29-37, 
October, 1955. 

S. B- Cohn, Characteristic Impedances of Broadside-Coupled Strip Transmission Lines, IRE 
Trans., vol. MTT-8, pp. 633-637, November, 1960. 

S. B. Cohn, Thickness Corrections for Capacitive Obstacles and Strip Conductors, IRE 
Trans., vol. MTT-8, pp. 638-644, November, 1960. 
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where 

and 

(w W\ [TT W+ S 

K = Vl - *? A'o = l / l - * „ 2 . 

Note that KXA') = J?'(A). For the evaluation of K and #' see (111.13). 
For coplanar strips with a thickness T, 

Z' = 
Z0(2H-T) 

A=l + 

A_ = l + 

4j7~r{W+(H/TT)CfA,) 

ln [ l + tanh(7rS/4H)] 

i - e,o W > Q.m (3.187) 

In 2 

ln[ l + c o t h ( i r S / 4 / f ) ] 

In 2 

(4H -T 

2tf 
:ln 

T ( 4 H - 7 ) 

( 2 H - T ) 2 

For broadside coupled strips as shown in Fig. 3.34c, the even- and 
odd-mode characteristic impedances are given by [valid for W > 0.35S, 
W> 0.7/7(1 - S/2H)] 

_ f W 1 2^ S T » + ° - 4 4 1 3 +; In 
2H S + 2T 2H 

-In-2H - S - 2T 2H-S-2T S + 2T 

(3.188a) 

_ f W W 2 
2 ^ 2 f / - S - 2 T + S + C ° + -V 

1+sr 
T\ T T 

-s)-sln-s 
(3.1886) 

where 

P" = 
2 / / - 2T 

rS In 
2tf - 2T 8 

+ 2H-S-2T 2H-S-2T 
In 

2H-2T 

All of the characteristic impedances given above refer to the impedance 
one strip to the ground planes. 

frofl1 
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FIGURE 3.35 
(a) Basic coplanar transmission line; (6) a shielded coplanar transmission line; (c) electric field 
distribution. 

C O P L A N A R T R A N S M I S S I O N L I N E S 

An illustration of a coplanar transmission line is shown in Fig. 3.35a. A 
shielded coplanar line is shown in Fig. 3.356. The strip width is S and the 
strip to ground-plane spacing is W. The coplanar line is often called a 
coplanar waveguide (CPW), The most significant advantage that a coplanar 
line has over a microstrip line is the ability to connect active and passive 
circuit components in shunt from the conducting strip to the ground plane 
on the same side of the substrate. In a microstrip line a connection to the 
ground plane requires drilling a hole through the substrate which is some
what difficult for ceramic materials such as alumina. Figure 3.35c shows 
the electric field distribution in a coplanar line. 

The characteristics of a coplanar line at low frequencies can be deter
mined by conformal mapping techniques. A solution for the coplanar line is 
given in App. III. For the ideal case when the ground planes are very wide 
relative to the slot width W and the dielectric substrate is very thick, the 
electric field has the same distribution as for a coplanar fine in air. The 
reason for this is that the mapping of the air-dielectric boundary, shown as 
the intervals BC and EF in Fig. III.4, is the two parallel sides in the ideal 
parallel-plate capacitor shown in Fig. III.3. Thus the solution for the 
potential is not affected by the presence of the dielectric. The distributed 
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capacitance of the coplanar line is thus the capacitance of one-half 0f 
air-filled line plus one-half of that for a line completely surrounded ^ 
dielectric. This capacitance is given by III. 14 and for the line with di e | e ^ 
on one side only we have 

K K ( e r + 1) K 
C ~ 2e0— + 2e,.e0 — - 4 , 0 — - — (3 ^ 

where K(k) and K' = K(k') are again the complete elliptical integrals 
the first kind. The modulus k is given by the ratio 

1 S/2 S 
k = Y/k = W + S/2 = S + 2W <3190) 

since in Fig. III.4 the center conductor extends from -1 to 1 and the 
ground planes begin at u = ±(l/k). From (3.189) it is clear that the 
effective dielectric constant for the coplanar line is given by 

e.+ 1 
(3.191) 2 

Consequently, the characteristic impedance is given by 

ZQK' 
z< = TT^ < 3 1 9 2 ) 

When the substrate material is anisotropic with a dielectric constant ey in 
the direction perpendicular to the air-dielectric interface and er in the 
direction parallel to the conductors, then er should be replaced by eg = 
yjzrev in (3.189) and (3.191). 

In most applications it is necessary to provide shielding of a microwave 
circuit. If the shield dimensions are large, the shield will not produce a 
significant effect on the line characteristics. In monolithic microwave inte
grated circuits, the substrate is very thin and fragile; so it is desirable to use 
another ground plane below the substrate to mechanically strengthen tj 
overall circuit and to also provide a better heat sink to help dissipate tne 
power generated by active devices. Ghione and Naldi have considered 
number of different shield arrangements as well as coupled coplanar line* 
We will present results only for the shielded coplanar line shown in £'|-

3.356. For this structure the effect of the widewalls, spaced by amount • 
is negligible provided 2A > 10(S + 2W). We will assume that this is tn^ 
case. Ghione and Naldi make the assumption that the air-dielectric inter 
in the slot regions can be replaced by magnetic walls in order to simplify 

tG. Ghione and C. U. Naldi, Coplanar Waveguides for MMIC Applications: Effect of 'P $ 
Shielding, Conductor Backing, Finite Extent Ground Planes, and Line-to-Line Coupling. 
Trans., vol. MTT-35. pp. 260-267, March, 1987. 
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conformal mapping solution. The assumption is a correct one only for the 
case when the upper and lower shields are spaced the same distance from 
the coplanar line, that is, H = HY in Fig. 3.356. For the line dimensions 
encountered in most practical applications of coplanar lines, the assumption 
does not introduce significant error. The advantage of this assumption is 
that it decouples the air and dielectric regions; so it is only necessary to find 
the capacitance of the air- and dielectric-filled sections separately. 

It was found that the effective dielectric constant is given by 

« e = 1 + q{er- 1) (3.193a) 

where the filling factor q is given by 

KjkJ/Kjk'J 
Q K(k2)/K(k2)+K(k)/K(k') (3-193*; 

K is the complete elliptic integral of the first kind, k\ and k'2 are the 
complementary moduli given by y 1 - k\ and yl - k%, and 

t a n h ( i r S / 4 H ) 

t anh[ i r (S + 2W)/H \ * 1 = . „ - L f - , o , n „ n „ „ (3.193c) 

tanh(TrS/4/7,) 

* 3 = t a n h [ 7 r ( S + 2 W ) / 4 f f 1 ] (3.193c/) 

The characteristic impedance is given by 

Zn 

2]/Te[K(kl)/K(k\) + K{k2)/K(k2)\ 
(3.194) 

The ratios K/K' are easily evaluated using III. 13c. For an anisotropic 
substrate er should be replaced by eg = JereY and H should br replaced by 

the effective thickness He = Jer/ev H. When H and / / , are very large, &, 
and k,2 become equal to k given by (3.190) and the filling factor o equals 
0.5. 

If the lower shield plate is replaced by a magnetic wall, we obtain an 
approximate model of a coplanar fine with a substrate of finite thickness H 
and with an upper shield at a spacing H, above the coplanar conductors. 
For this case Ghione and Naldi give 

q = (3.195a) 
K[k2)/K[k'a) +K(k)/K(k') 

Z. = • ,— , „ , " r (3.1956) 
2jre[K(k2)/K(k'2)+K(k)/K{k-)} 
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Attenuation 

where 

sinh(7rS/4H) 
3 s i n h [ i r ( S + 2W)/4H] 

and k2 is given by (3 .193d) , k is given by (3.190), and ec is g j V e , 
(3 .193a) . When H, is m a d e infini te k2 becomes equa l to k. T h e result 
s t r u c t u r e is an unshie lded coplanar line wi th a s u b s t r a t e having a fin 

t h i ckness H. 

E x a m p l e 3.8. A coplanar line with upper and lower shielding and used in *-
MMIC circuit has the following dimensions: S = 50 /j.m = 0.05 mm, IV = jr' 
nm, H = 250 jim, / / , = 800 Mm. The substrate material is gallium arsenide 
with er «= 12.9. We want to find the effective dielectric constant and 
characteristic impedance. The first step is to find kx and k2 using(3.193c)and 
(3.194c). A straightforward evaluation gives <fes = 0.3547, k2 = 0.33547. We 
now use (III. 13c) to find K{kx)/K(k\) = 0.6573, K{k2)/K(k2) = 0.6414. By 
using (3.193a) and (3.1936), we get q = 0.506 and ec = 7.0228. The last 
calculation is for Zc using (3.194) and gives Z,. = 54.77 12. This example shows 
that for the shield spacings used very little effect on the coplanar-line 
characteristics occurred as is apparent from the fact that k-, = k2 and q = 0.5. 
relationships that hold exactly when no shields are used. 

T h e a t t enua t i on in a coplanar line caused by dielectric loss is given by the 
same formula as for a micros t r ip line, i.e., by (3.171). By us ing the filling 
factor q th is can be expressed as 

K 
q t an 8, (3-196) 

This formula can be used for shielded and unshie lded lines as long as tft 
appropr ia te filling factor q is used. 

For th in conductors wi th th ickness T less t h a n 0 . 0 5 S and with a sl» 
width W > 0 . 3 S , t h e formula for t h e unshielded coplanar- l ine attenuation 
derived in App. I l l can be used. T h e center conductor h a s a series resistan 
per u n i t l eng th given by 

« t = 
4TTS 1 +k 

4 S ( 1 - k2)K2{k) 

T h e d is t r ibu ted ser ies res is tance of t h e g round planes is given by 

(3.197"} 

* „ = 4 S ( 1 -k2)K2(k) 

4tr(S + 2W) 1 1+k 
77 + 1,1 f £lnTTT 

(3. 19?*) 
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w h e r e k = S/(S + 2W). T h e a t t enua t i on due to conductor loss is given by 

R, + R2 

* - sr (3-197c) 
In normal s i tua t ions the addit ional a t t enua t i on in t roduced by upper and 
lower shields is small if H and / / , a r e g rea te r t h a n AW. 

Example 3.9. A coplanar line has a copper strip of width 0.6 mm, slot width 
W = 0.6 mm, metal thickness T = 0.005S = 3 ^m. The dielectric used is 
alumina with a dielectric constant of 9.7 and a loss tangent equal to 2 x 10 4. 
We want to find the attenuation caused by dielectric loss and conductor loss at 
a frequency of 4 GHz. For this line k = S/{S + 2W) = 0.333. The effective 
dielectric constant, from (3.191), is 5.35. From (3.192) and (III.13c) we obtain 

120TT 1 1 + v'fe7 

Zr = • - I n 2 -?= = 63.7 il 
4j5M ~ 1 - y/F 

where we used k' = \Jl - k2 = 0.9428. From (3.196) we obtain 

9.7TT 
arf = ^ ^ - 0 . 5 X 2 x 10~4 x 8.686 = 1.526 x 10 3 d B / c m 

7.5^5.35 

where q =* (ee~ l ) / (e ' r - 1) = 0.5 was used. To evaluate K(k) = K(Q.333), we 
use (111.13c/) to obtain 

1 -k' 
K(0.333) = — - K — - = : r ^ K ( 0 . 0 2 9 4 ) = 

1 + k' Xl + k'} 1.9428 v 1.9428 

= 1.617 

From (3.197) we get i?, = 19.25i?m /cm and R2 - 5.97i?,„/cm. We now use 
Rm = 8.22 X 10~3V? and (3.197c) to get 

% = (2.158 x 10 z + 6.69 X 10~ 3 ) = 2.827 X 10 2 dB/cm 

The ground planes contribute 23.7 percent of the conductor loss. The total 
attenuation is 2.98 X 10~2 dB/cm. 

Jackson has made some loss calculations for coplanar and microstrip 
transmission lines at a frequency of 60 GHz and found that for typical line 
dimensions and characteristic impedances greater than 50 il, the coplanar line 
has a smaller attenuation.t The substrate considered had a dielectric constant 
of 12.8 and a loss tangent of 6 x 10 3. The maximum strip width considered 
by Jackson was 0.3 mm. For these line dimensions the quasistatic formulas 
given above can be used. We have verified that indeed the quasistatic formulas 
give essentially the same attenuation. The lower loss in coplanar lines appears 
to be due to being able to use a wider center conductor for a given impedance 
as compared with that for a microstrip line. However, this is not always 

tR. W. Jackson, Considerations in the Use of Coplanar Waveguide for MjJIimeter-Wave 
Integrated Circuits IEEE Trans., vol. MTT-34, pp. 1450-1456, December, 1986. 
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necessarily true since the relative attenuation of the two types of transiv 
lines will depend on other factors such as substrate thickness and diel^ 
constant also. ^ i c 

High-Frequency Dispersion 

Coplanar transmission lines exhibit dispersion effects similar to that f 
microstrip lines. There are less available computed results for the effect- ' 
dielectric constant and characteristic impedance for coplanar lines th 
what is available for the microstrip line. The coplanar line can be viewed 
two coupled slot lines and from this point of view it is clear that there ar 
two modes of propagation that are quasi-TEM in character. The reader iR 

referred to the paper by Nakatani and Alexopoulos for typical dispersive 
properties of a coplanar line.t In many integrated microwave circuit applies. 
tions, the line dimensions are so small relative to the wavelength that the 
quasi-TEM formulas can be used even though the frequency may be as high 
as 50 GHz. 

PART 3 
R E C T A N G U L A R A N D C I R C U L A R WAVEGUHDES 

Hollow-pipe waveguides do not support a TEM wave. In hollow-pipe wave
guides the waves are of the TE and TM variety. The waveguide with a 
rectangular cross section is the most widely used one. It is available in sizes 
for use at frequencies from 320 MHz up to 333 GHz. The WR-2300 
waveguide for use at 320 MHz has internal dimensions of 58.42 in by 29.1 
in and is a very large duct. By contrast, the WR-3 waveguide for use at 333 
GHz has internal dimensions of 0.034 in by 0.017 in and is a very miniature 
structure. The standard WR-90 X-band waveguide has internal dimensions 
of 0.9 in by 0.4 in and is used in the frequency range of 8.2 to 12.5 GHz. The 
rectangular waveguide is widely used to couple transmitters and receivers 
the antenna. For high-power applications the waveguide is filled with j 
inert gas such as nitrogen and pressurized in order to increase the voltage 
breakdown rating. 

Circular waveguides are not as widely used as rectangular wavegu1 

but are available in diameters of 25.18 in down to 0.239 in to cover tn 
frequency range 800 MHz up to 116 GHz. 

tA. Nakatani and N. G. Alexopolous, Toward a Generalized Algorithm for the Modeling ° ^ 
Dispersive Properties oflntegrated Circuit Structures on Anisotropic Substrates, 1E&E ' ^ 
vol. MTT-33, pp. 1436-1441, December, 1985. 
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R E C T A N G U L A R W A V E G U I D E 

The rectangular waveguide with a cross section as illustrated in Fig. 3.36 is 
an example of a waveguiding device that will not support a TEM wave. 
Consequently, it turns out that unique voltage and current waves do not 
exist, and the analysis of the waveguide properties has to be carried out as a 
field problem rather than as a distributed-parameter-circuit problem. 

In a hollow cylindrical waveguide a transverse electric field can exist 
only if a time-varying axial magnetic held is present. Similarly, a transverse 
magnetic field can exist only if either an axial displacement current or an 
axial conduction current is present, as Maxwell's equations show. Since a 
TEM wave does not have any axial field components and there is no center 
conductor on which a conduction current can exist, a TEM wave cannot be 
propagated in a cylindrical waveguide. 

The types of waves that can be supported (propagated) in a hollow 
empty waveguide are the TE and TM modes discussed in Sec. 3.7. The 
essential properties of all hollow cylindrical waveguides are the same, so 
that an understanding of the rectangular guide provides insight into the 
behavior of other types as well. As for the case of the transmission line, the 
effect of losses is initially neglected. The attenuation is computed later by 
using the perturbation method given earlier, together with the loss-free 
solution for the currents on the walls. 

The essential properties of empty loss-free waveguides, which the 
detailed analysis to follow will establish, are that there is a double infinity of 
possible solutions for both TE and TM waves. These waves, or modes, may 
be labeled by two identifying integer subscripts n and m, for example, 
TE„„,. The integers n and in pertain to the number of standing-wave 
interference maxima occurring in the field solutions that describe the 
variation of the fields along the two transverse coordinates. It will be found 
that each mode has associated with it a characteristic cutoff frequency fc „m 

below which the mode does not propagate and above which the mode does 
propagate. The cutofT frequency is a geometrical parameter dependent on 
the waveguide cross-sectional configuration. When fc has been determined, 
it is found that the propagation factor [i is given by 

P~{H-k*y* (3.198) 
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TE Waves 

where kn = w / / t o c 0 and k,. = 2Trfc)/p.0e0 . The guide wavelength is readji 
seen to be given by 

2TT A0 ^ A0 

T " "(1-A|/A»),/8 == yJl-C/f* ( 3 - 1 9 9 ) 
As = 

where A0 is the free-space wavelength of plane waves at the frequen 
/*= W/2TT. Since kc differs for different modes, there is always a lower band 
of frequencies for which only one mode propagates (except when kc may ho 
the same for two or more modes). In practice, waveguides are almost 
universally restricted to operation over this lower-frequency band for which 
only the dominant mode propagates, because of the difficulties associated 
with coupling signal energy into and out of a waveguide when more than 
one mode propagates. This latter difficulty arises because of the different 
values of the propagation phase constant /3 for different modes, since this 
means that the signal carried by the two or more modes does not remain in 
phase as the modes propagate along the guide. This necessitates the use of 
separate coupling probes for each mode at both the input and output and 
thus leads to increased system complexity and cost. 

Another feature common to all empty uniform waveguides is that the 
phase velocity vp is greater than the velocity of light c by the factor Ag/A0. 
On the other hand, the velocity at which energy and a signal are propagated 
is the group velocity v. and is smaller than c by the factor A0/A#. Also, 
since /3, and hence As, u , and vg, are functions of frequency, any signal 
consisting of several frequencies is dispersed, or spread out, in both time 
and space as it propagates along the guide. This dispersion results from the 
different velocities at which the different frequency components propagate. 
If the guide is very long, considerable signal distortion may take place. 
Group and signal velocities are discussed in detail in Sec. 3.19. 

With some of the general properties of waveguides considered, it is 
now necessary to consider the detailed analysis that will establish the above 
properties and that, in addition, will provide the relation between kc and 
the guide configuration, the expressions for power and attenuation, etc. The 
case of TE modes in a loss-free empty rectangular guide is considered first. 

For TE, or H, modes, ez = 0 and all the remaining field components can J> 
determined from the axial magnetic field hz by means of (3.71). The a» 
field h, is a solution of 

or 

*?K» + *?*, = o 
d2h, d2kz -- o (3.200) 



TRANSMISSION LINES AND WAVEGUIDES 1 8 3 

If a product solution hz = f(x)g(y) is assumed, (3.200) becomes 

1 d2f 1 d2g 

fdx2^ g dy* 
+ *? « 0 

after substituting fg for hz and dividing the equation by fg. The term 
\/fd2f/dx2 is a function of x only, l/gd2g/dy2 is a function of y only, 
and k'l is a constant, and hence this equation can hold for all values of x 
and y only if each term is constant. Thus we may write 

111 _H d%f 

fdx2 * °r dz2 

1 d2g d2g 

g dy2 v dy'1 

where kx + k'2 = k2m order that the sum of the three terms may vanish. 
The use of the separation-of-variables technique has reduced the partial 
differential equation (3.200) to two ordinary simple-harmonic second-order 
equations. The solutions for f and g are easily found to be 

f = A, cos kxx + A2 sin kxx 

g = S 2 cos kyy + B2 sin kyy 

where A,, A2, Bv B2 are arbitrary constants. These constants, as well as 
the separation constants kx,ky, can be further specified by considering the 
boundary conditions that h, must satisfy. Since the normal component of 
the transverse magnetic field h must vanish at the perfectly conducting 
waveguide wall, (3.716) shows that n • V,h2 = 0 at the walls, where n is a 
unit normal vector at the walls. When this condition holds, tangential e will 
also vanish on the guide walls, as (3.71c) shows. The requirements on hz 

are thus 

—— = 0 at x = 0, o 
dx 

3y 
= 0 at y = 0, b 

where the guide cross section is taken to be that in Fig. 3.36. In the solution 
for f, the boundary conditions give 

— kxA1 sin kzx + A!xA2cos kxx = 0 a t x = 0 ,a 

Hence, from the condition at x = 0, it is found that A2 = 0. At x = a, it is 
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necessary for sin kxa = 0, and this specifies kx to have the values 

1 = 0 , 1 , 2 , . . . 
rnr 

In a similar manner it is found that B2 = 0 and 

rrnr 
* • = * m = 0 , 1 , 2 , . . . 

Both n and m equal to zero yields a constant for the solution for h and n 
other field components; so this trivial solution is of no interest. 

If we use the above relations and put A , B , = Anm, the solutions for 
h, are seen to be 

h=A. cos-
nirx miry 

cos-
a 

(3.201) 

for n = 0,1,2,...; m = 0 , 1 , 2 , . . . ; n = m * 0. The constant Anm is an 
arbitrary amplitude constant associated with the nmth mode. For the nmth 
mode the cutoff wave number is designated kc „ m , given by 

c.« m 

niry I mir 
-,1/2 

(3.202) 

and is clearly a function of the guide dimensions only. The propagation 
constant for the nmth mode is given by 

ynm =JPnm=J{kl-K.nm) 
1/2 

f27rV 
^7/ 

mr 

a 

m T- \2 
1/2 

(3.203) 

When k0>kc,nm , finm is pure real and the mode propagates; when k0< 
„,, then ynm is real but (lnm is imaginary and the propagation factor is 

e-yn,„U\t which shows that the mode decays rapidly with distance \z\ fr°m 

the point at which it is excited. This decay is not associated with energy ^>ss, 
but is a characteristic feature of the solution. Such decaying, or evanescent, 
modes mav be used to represent the local diffraction, or fringing, fields tha 
exist in the vicinity of coupling probes and obstacles in waveguides. 
frequency separating the propagation and no-propagation bands is desig 
nated the cutoff frequency fc „ m. This is given by the solution of 
that is, 

Ic.nm 
'c.nm 

C c 

2^ 

riv

et + 
rrnr 

-,1/2 
(3.204) 
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where c is the velocity of light. The cutoff wavelength is given by 

2ab 

(nV+inV) 
A typical guide may have a ~ 26, in which case 

2a 

Ac „„, = wo (3.205) 

A c,nm „ 0 .1 /2 

(n2 + 4m2) 
and ACjl0 = 2a, Ac 01 = a, Ac ,, = 2 o / \ /5 , etc. In this example there is a 
band of wavelengths from a to 2a, that is, a frequency band 

c c 

2c ' a 

for which only the H10 mode propagates. This is the dominant mode in a 
rectangular guide and the one most commonly used in practice. Above the 
frequency c/a, other modes may propagate; so the useful frequency band in 
the present case is a one-octave band from c / 2 a to c/a. 

The remainder of the field components for the TE, i m , or Hnm, mode 
are readily found from (3.201) by using (3.71). The results for the complete 
nmth. solution are 

mrx mny 
Hz = A„„, cos cos—:—g +-"*""•-

a b 

Hx = ± j — 2 Anm — sin cos 
kcnm a a 

Pnm rmr mrx 
H y = i j p A n , „ — c o s — - s i n 

kcnm b a v 
B,,m rrnr nirx miry _ .„ 

E x = Z , . n m A „ m j - ^ — c o s s i n - — »*•*«« (3.206a-) 
« c . n m b a b 

Bnm nv mrx miry _ _ 
Ey~ -ZhiHmAamj-f sin c o s — — e * - "W (3.206c) 

kcnm a a b 

where the wave impedance for the nmth H mode is given by 

Zh.„m = -^~Z0 (3.207) 

When the mode does not propagate, Zh nm is imaginary, indicating that 
there is no net energy flow associated with the evanescent mode. A general 
field with E2 = 0 can be described in a complete manner by a linear 
superposition of all the Hn m modes. 

(3.206a) 

miry _ 

b 
(3.2066) 

mny _ ._ 
(3.206c) 
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For a propagating Hnm mode the power, or rate of energy flow, Ln th 
positive z direction is given by 

Z Jn Jn 2 -'0 

Re 
2 -o-'o 
1-Ref(\ExH;-EvH:)dxdy 

= ^Re Z;,nm/o7 V , H ; + HxH:)dxdy (3.2o8) 

If we substitute from (3.2066) and (3.206c) and note that 

ra fh ^nvx .7rrnry i fa ,/, rnrx miry 

•'o •'0 a — 6 " " u j r -» 0 'O 
UO S i l l 

a 6 
a6 

4 
a6 

n * 0, m *• 0 

= 1 

a6 

4 
a6 

T n or m = 0 

we find that 

P 
nm 

2 l«& fi*m „ 
€ ( ) n e 0 m Rf,nm 

/ rmr \2 / n u \2] 

[I—) M T I 
\AnJ

2abi pnm \Z
z 

, n m 

dxdy 

(3.209) 

where e0m is the Neumann factor and equal to 1 for m = 0 and equal to 2 
for m > 0. 

If two modes, say the Hn m and Hrs modes, were present simultane
ously, it would be found that the power is the sum of that contributed by 
each individual mode, that is, Pnm + Prs. This is a general property of 
loss-free waveguides. This power orthogonality arises because of the orthog
onality of the functions (eigenfunctions) that describe the transverse varia
tion of the fields when integrated over the guide cross section; e.g., 

£ 
nirx rvx 

sin sin dx 
o a a 

n 3= r 

Even when small losses are present the energy flow may be taken to be to* 
contributed by each individual mode, with negligible error in all cases excep 
when two or more degenerate modes are present. Degenerate modes 
modes which have the same propagation constant y, and for these § 
presence of even small losses may result in strong coupling between * 
modes. 
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If the waveguide walls have finite conductivity, there will be a continuous 
loss of power to the walls as the modes propagate along the guide. Conse
quently, the phase constant jfi is perturbed and becomes y = a + j/3, where 
a is an attenuation constant that gives the rate at which the mode ampli
tude must decay as the mode progresses along the guide. For practical 
waveguides the losses caused by finite conductivity are so small that the 
attenuation constant may be calculated using the perturbation method 
outlined in Sec. 3.8 in connection with lossy transmission lines. The method 
will be illustrated for the dominant H10 mode only. For the Hnm and also 
the Enm modes, the calculation differs only in that somewhat greater 
algebraic manipulation is required. 

For the H1 0 mode, the fields are given by (apart from the factor 
e-Jfov*) 

TTX 
/ i z = A i 0 c o s — 

h = • P™ A 
J'kr~A 

Kc,K 

TT TTX 

m -sin-
a a 

- zh, 10 •A 10 , 
.7010 » . TTX 

—sin — 
a a 

as reference to (3.206) shows. From (3.209) the rate of energy flow along the 
guide is 

P\o - l-^io I • 
. ab 

4 
' 10 

' < : . 1 0 
'h. 10 

The currents on the lossy walls are assumed to be the same as the loss-free 
currents, and hence are given by 

J , = n x H 

where n is a unit inward directed normal at the guide wall. Thus, on the 
walls at x = 0, a, the surface currents are 

J a x X H = - a v A 1 0 x = 0 
s | - a r X H = - a , , A J 0 x = a 

whereas on the upper and lower walls the currents are 

JPio * . « 
a X H = -a ,—s—A10—sin + a^A 

«cio a a to cos-

JPlQ . 
- a v x H = a 2 ^ — A 

TTX 

a 

TTX 

^ l , o 

7T TTX 
10~sin axAlocos~ 

a a a 

y = 0 

y = 
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With a finite conductivity <r, the waveguide walls may be characterized 
exhibiting a surface impedance given by 

Z„. -
1 + . / 
tr8a 

= ( ! + . / ' ) # , 

where St is the skin depth. The power loss in the resistive part R Qe ? • 
per unit length of guide is * 

£ guide 
walls 

J*dl 

RJA in ' 
2 dy + 2 r ^ - ^ r s i n -

J0 J0 " c , i o 

Since A t.-I0
 = "" /o . the above gives 

7TX ..a 7TX 
i n 2 — dx + 2 / c o s 2 — <& 

a •'o a 

P, = RJA 101 
a 

b + -
2 

P 
w 

cc. 10 

a 
+ -

2 
. - 2 a If P0 is the power at z = 0, then P1 0 = P0e 2Qi: is the power in the 

guide at any z. The rate of decrease of power propagated is 

dPw 

dz 
= 2aP10 = P, 

and equals the power loss, as indicated in the above equation. The attenua
tion constant a for the Hl() mode is thus seen to be 

R. a 
b + -

2 

0io 

' c , 10 

a = 2 P 10 

R. 

ab 

~2 

(1 10 

v.io 
Jh.W 

-(26&2
I 0 + a £ 2 ) N p / m (3.210) 

I f\ ! '7 l " - " * " M ? III — - 1 1 1 - **•*/ — •" abpl0k0Zo ^ ^ ^ ^ ^ 

The attenuation for other T E n m modes is given by the formula m 
Table 3.4, which summarizes the solutions for TE„,„ and also TMn« 
modes. In Fig. 3.37 the attenuation for the TE1 0 mode in a copper rectangu
lar guide is given as a function of frequency. To convert attenuation given 
nepers to decibels, multiply by 8.686. 

The theoretical formulas for attenuation give results in good agf 
ment with experimental values for frequencies below about 5,000 MHz. 
higher frequencies, measured values of « may be considerably hig" ' 
depending on the smoothness of the waveguide surface. If surface imPer^jjy 
tions of the order of magnitude of the skin depth 8S are present, it is read"-
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T A B L E 3 .4 

Properties of modes in a rectangular guidet 

TE modes TM modes 

tf.-
mrx 

cos cos 
a 

6 £ 
-JO M * 0 

E, 0 
m r x miry 

sin sin—;—c -"'n™-1 

a 6 

E, Zh.nmHy 
- # « « , « * » « . " " f . v _,„ 

E, Zh.nmHy ~ COS Sin ; e Jf,*m4-

Ey -Zn,nmHx 
5 sin cos e •",»™-

6* c.nm a * 

H, 
JPnmn~ . m r x miry 

-j», mz «, 
H, 

JPnmn~ . 
Cuo 

a 
b 

-j», mz 

Z,,nm 

H, 
JPnmmTT m r x 

bkt„m
 C°S a 

sin 
m~y 

-Jt „ m ? 
£ , 

H, 
JPnmmTT m r x 

bkt„m
 C°S a 

sin 
m~y 

-Jt „ m ? 

z,.™ 

Z-h.nm 
/3nm z° 

%e,nm 

b "c.nm [( = T • ( 

/ m r \ 2 l 

~ 6 ~ ) 

1/2 

Pnm tt#-' ** n m > ' / 2 

*c,nm 
2o6 

*c,nm 
( n 2 6 2 + rr V ) , / s 

2/?„ 

bZn{\ - klnm/kl) 1/2 

2 « , n2b3 + m2a3 

f c Z o ( l - A ? . , . ™ / * S ) , / 2 | , a * ^ + m V 

a 2 
*£*„ \ "2^ + «V 

t f l „ • ( < U M O / 2 I T ) I / 2 , e0,„ = 1 for in = 0 and 2 for m > 0. The expression for <J is not valid for 
degenerate modes. 
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• o 

0.2 k 
-

D 1 

I • » 
7 8 9 10 11 GHz 

FIGURE 3.37 

Attenuation of TE1 0 mode in a corm*. 
rectangular waveguide, a = 2 28R 
b= 1.143 cm. cn^ 

appreciated that the effective surface area is much greater, resulting ir 
greater loss. By suitably polishing the surface, the experimental values of 
attenuation are found to be in substantial agreement with the theoretical 
values.t 

D o m i n a n t T E 1 0 M o d e 

Since the TE, 0 mode is the dominant mode in a rectangular guide, and also 
the most commonly used mode, it seems appropriate to examine this mode 
in more detail. From the results given earlier, the field components for this 
mode are described by the following (propagation in the +z direction 
assumed): 

TTX 
H=Acos—e"-"*2 

a 

jB TTX 
H=i-Asm—e~Jli* 

k„ a 

8 TTX 

Ey = -jAZh~sin—< ,-m 

(3.211a) 

(3.2116) 

(3.211c) 

where the subscript 10 has been dropped for convenience since this discus
sion pertains only to the TE ] 0 mode. The parameters 8, kc, and Zh &e 

given by 

(3.212a) 

(3.212*) 

(3.212c) 

* c = a 

8 = k0 — (z)1 
1/2 

£„ v 
zh = - - f = -^z H 8 

tSee J. Allison and F. A. Benson, Surface Roughness and Attenuation of Precision Dr ^ 
Chemically Polished, Electropolished, Electroplated and Electroformed Waveguides, Proc-
(London), vol. 102, pt. B, pp. 251-259, 1955. 
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The guide wavelength A„ is 

2-rr 
A * = 

* [l - (A0/2O)2] 2 i l / 2 (3.212d) 

since the cutoff wavelength Ac = 2a. The phase and group velocities are 

A„ 
op = —c 

"> = T; 

(3.212c) 

(3.212/*) 

and are discussed in detail in Sec. 3.19. 
In Fig. 3.38 the magnetic and electric field lines associated with the 

TEj0 mode are illustrated. Note that the magnetic flux lines encircle the 
electric field lines; so these can be considered to be the source (displacement 
current) for the magnetic field. On the other hand, the electric field lines 
terminate in an electric charge distribution on the inner surface of the 
upper and lower waveguide walls. This charge oscillates back and forth in 
the axial and transverse directions and thus constitutes an axial and 
transverse conduction current that forms the continuation of the displace
ment current. The total current, displacement plus conduction, forms a 

i—r~n—r 

•I-EI3-W 
J | o o l o i 

lei 

lb) 

FIGURE 3.38 
Magnetic and electric field lines for the TE 1 0 mode, (a) Transverse plane; (6) top view; (c) 
mutual total current and magnetic field linkages. 
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FIGURE 3.39 
•' • i Decomposition of TE, 0 mode into two plane w 

closed linkage of the magnetic field lines, and as such may be regarded 
being generated by the changing magnetic flux these enclose. This com 
pletes the required mutual-support action between the electric and magneti* 
fields which is required for wave propagation. 

The fields for a TE1 0 mode may be decomposed into the sum of two 
plane TEM waves propagating along zigzag paths between the two wave-
guide walls at x = 0 and x = a, as in Fig. 3.39. For the electric field we have 

h.t 
2 kr 

E = 'LL—(eJTx/«-JP* — e-Jnx/<>-JPz\ 

If 17/a and (i are expressed as 

7T 

— = k0 sin 9 B = k0 cos 9 
a 

the relation (TT/O) 2 + Bl = k$ still holds. The electric field is now given by 

Zh 8 

** 2 A / ' 

which is clearly two plane waves propagating at angles ± 9 with respect to 
the z axis, as illustrated. Alternatively, the field may be pictured as a plane 
wave reflecting back and forth between the two guide walls. As shown in 
Sec. 2.7, the constant phase planes associated with these obliquely propagat
ing plane waves move in the z direction at the phase velocity c/cos 6 | 
Bc/k0, and this is the reason why the phase velocity of the TE10 mode 
exceeds the velocity of light. Since the energy in a TEM wave propagates 
with the velocity c in the direction in which the plane wave propagates, tnii 
energy will propagate down the guide at a velocity equal to the componen 
of c along the z axis. This component is vg = c cos 9 = (k0/B)c and is * 
group velocity for the TE l 0 mode. When 9 = TT/2, the plane waves reflec 
back and forth, but do not progress down the guide; so the mode is cuto 

The above decomposition of the TE10 mode into two plane waves niaj 
be extended to the TE„„, modes also. When n and m are both differe 
from zero, four plane waves result. Although such superpositions of P 1 ^ 
waves may be used to construct the field solutions for rectangular gu1 ' 
this is a rather cumbersome approach. However, it does lend insight i° 
why the phase velocity exceeds that of light, as well as other properties 
the modes. 
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For TM modes, hz equals zero and ez plays the role of a potential function 
from which the remaining field components may be derived. This axial 
electric field satisfies the reduced Helmholtz equation 

V,2e, + fcf*a = 0 (3.213) 

of the same type encountered earlier for hz, that is, (3.200). The solution 
may be found by using the separation-of-variables method. In the present 
case the boundary conditions require that ez vanish at x = 0, a and y = 0, b. 
This condition requires that the solution for ez be 

n nx m vy 
ez = A„„, s i n — - s i n — — (3.214) 

a b 
instead of a product of cosine functions which was suitable for describing 
hz. Again, there are a doubly infinite number of solutions corresponding to 
various integers n and m. However, unlike the situation for TE modes, 
n = 0 and m = 0 are not solutions. The cutoff wave number is given by the 
same expression as for TE modes; i.e., 

c,n m 

and the propagation factor /5nm by 

/?n m = ( ^ - * ; U ) , / 2 (3-216) 

The lowest-order propagating mode is the n = m = 1 mode, and this has a 
cutoff wavelength equal to 2ab/{a2 + 62)1 / 2 . Note that the TE I 0 mode can 
propagate at a lower frequency (longer wavelength), thus verifying that this 
is the dominant mode.t It should also be noted that for the same values of n 
and TO, the TE„„, and TM„„, modes are degenerate since they have the 
same propagation factor. Another degeneracy occurs when a = b, for in this 
case the four modes TE„ m , TEWfflJ TM„m > and TM„,„. all have the same 
propagation constant. Still further degeneracies exist if a is an integer 
multiple of 6, or vice versa. 

The rest of the solution for TM modes is readily constructed using the 
general equations (3.72). A summary of this solution is given in Table 3.4. 
The TM modes are the dual of the TE modes and apart from minor 
differences have essentially the same properties. For this reason it does not 
seem necessary to repeat the preceding discussion. 

tin any hollow waveguide the dominant mode is a TE mode because the boundary conditions 
ez — 0 for TM modes always require e. to have a greater spatial variation in the transverse 
plane than that for h. for the lowest-order TE mode, and hence the smallest value of kc occurs 
for TE modes. Hence a TE mode has the lowest cutoff frequency, i.e., is the dominant mode. 

nv 

a 

2 / T O 7 T \ 2 

+ 

• 1 / £. 

(3.215) 
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3 .18 C I R C U L A R W A V E G U I D E S 

Figure 3.40 illustrates a cylindrical waveguide with a circular cross s<*ti0n of radius a. In view of the cylindrical geometry involved, cylindrical a 
nates are most appropriate for the analysis to be carried out. Since k 
general properties of the modes that may exist are similar to those for « 
rectangular guide, this section is not as detailed. 

TM M o d e s 

For the TM modes a solution of 

V,% + fe|e? = 0 

is required such that e2 will vanish at r = a. When we express the trans
verse laplacian V,2 in cylindrical coordinates (App. I), this equation becomes 

d2e, 
(3.217) Sr' 

1 de, 1 d2ez 

r 9r dtf 
The separation-of-variables method may be used to reduce the above to two 
ordinary differential equations. Consequently, it is assumed that a product 
solution f(r)g(<j>) exists for ez. Substituting for e, into (3.217) and dividing 
the equation by fg yield 

1 d2f 1 df 1 d2g 

~fdV2 + ^fd~r + ~ ^ g ~ d l ? 

Multiplying this result by r2 gives 

k2 = 0 

r* d2f r df 

7^ + 7d-r+rk* = 
I d2g 

gd<},2 

The left-hand side is a function of r only, whereas the right-hand side 
depends on <t> only. Therefore this equation can hold for all values of the 
variables only if both sides are equal to some constant v2. As a result, 
(3.217) is seen to separate into the following two equations: 

,2 d2f 1 df 

dT2 + ~r~dr 
k2-

d<l>2 

f=0 

« ^ = 0 

(3.218a) 

(3.218*) 

FIGURE 3.40 
The circular cylindrical waveguide. 
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TABLE 3.5 
Values of p n m for TM modes 

n Pnl P » 2 P«3 

0 
1 
2 

2.405 
3.832 
5.135 

5.520 
7.016 
8.417 

8.654 
10.174 
11.620 

In this case the field inside the waveguide must be periodic in rf> with 
period 2-TT, that is, single-valued. It is therefore necessary to choose v equal 
to an integer n, in which case the genera] solution to (3.218b) is 

g{4>) = Al cos n<t> + A2 sin n4> 

where A l and A2 are arbitrary constants. 
Equation (3.218a) is Bessel's differential equation and has two solu

tions (a second-order differential equation always has two independent 
solutions) J,,(kcr) and Y,.(kcr), called Bessel functions of the first and 
second kind, respectively, and of order v.f For the problem under investiga
tion here, only Jn(kcr) is a physically acceptable solution since Yn(kcr) 
becomes infinite at r = 0. The final solution for e, may thus be expressed as 

ez(r,<j>) = (Aj_cos n<f> + A2sinn<f>)Jn(ker) (3.219) 

Reference to App. II shows that Jn(x) behaves like a damped sinu
soidal function and passes through zero in a quasiperiodic fashion. Since e2 

must vanish when r = a, it is necessary to choose kca in such a manner 
that Jn(kca) = 0. If the mth root of the equation Jn(x) = 0 is designated 
pnm, the allowed values (eigenvalues) of kc are 

kc.nm = ~ (3.220) 

The values of p,im for the first three modes for n = 0,1,2 are given in 
Table 3.5. As in the case of the rectangular guide, there are a doubly infinite 
number of solutions. 

Each choice of n and m specifies a particular TM„m mode (eigenfunc-
tion). The integer n is related to the number of circumferential variations 
in the field, whereas m relates to the number of radial variations. The 
propagation constant for the nmth mode is given by 

/ 2 ' ) 1 / 2 

0 - - *S-^f (3-221> 

tY,. is also catted a Neumann function. 
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T E M o d e s 

the cutoff wavelength by 

2TTO 

(3.222, P„ m 

and the wave impedance by 

„ Pixm y 

« 0 
(3.223, 

A cutoff phenomenon similar to that for the rectangular guide exists. p0 

the dominant TM mode, Ar = 2rra/p0i = 2.6'la, a value 30 percent greater 
than the waveguide diameter. 

Expressions for the remaining field components may be derived bv 
using the general equations (3.72). Energy flow and attenuation may be 
determined by methods similar to those used for the rectangular guide. A 
summary of the results is given in Table 3.6. 

The solution for TE modes parallels that for the TM modes with the 
exception that the boundary conditions require that dh,/dr vanish at 
r = a. An appropriate solution for A, is 

hz(r,<j>) = (Bl<soBit6 + B2 sin n<f>)Jn(kcr) (3.224) 

with the requirement that 

dJn(kcr) 

dr 
= 0 at r = a (3.225) 

The roots of (3.225) will be designated by p'nm; so the eigenvalues kcnm are 
given by 

h = ^2H (3.226) 
a 

Table 3.7 lists the values of the roots for the first few modes. Note that 
Pom =Pim s i n c e dJQ(x)/dx= -J^x), and hence the TE 0 m and TMln, 
modes are degenerate. f f 

The first TE mode to propagate is the T E n mode, having a cutofl 
wavelength Ac n = 3.41a. This mode is seen to be the dominant mode\\o 
the circular waveguide, and is normally the one used. A sketch of the n 
lines in the transverse plane for this mode is given in Fig. 3.41-
attenuation constant for the dominant T E U mode is given by 

R„{ 1 . 8 4 1 2 r V 2 / l . 8 4 1 2 

aZA kla* f [ kla* 
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TABLE 3.6 

Properties of modes in circular waveguides 

TE modes TM modes 

H, "\ a 1 \sinn<j 

£ . 0 " \ n / \ sin mb 

JPnmPnm . , / P « M _,„ , / COS rt (6 £,., J^mPnm l P n m r \ l C 0 S n 
H ' oft* J'[ a ) e \ s i n n Kn, 

H„. 
J"P„ 
rkc.nm 

Pnm? 
,-!»«„ 

-sin n<b E r 

cosnrf. %... 

Er Zh.mHt 

JPnmPnm ( Pnmr \ f^JtMnf 

sin n (/» 

£.,. Zh.nn,Hr 
J"P„ 
rkt '.(¥ , - j ( i n — sin n ib 

cos rc</> 

Pnr kl- /',,. 
A?.- *=r si1''2 

•'h.nm 

Pnr 
Zo 

Pnn 

a 
Pnn 

a 

2-rra 

Pnm 

2wa 

Pnm 

Power 
ZOkoPnm" , 2 2 . r 2 , . . 
JU —{Pnn, ~ " )Jnlpnm> 
*nc.nmfOn 

aZ, »0 Ml aZ„ 
1 -

t 2 

- 1 / 2 

Ag ( p ; m ) 2 - n 2 
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TABLE 3.7 
V a l u e s of p'nm f o r T E m o d e s 

« P n l Pn2 Pn3 

0 3.832 
1 1.841 
2 3.054 

7.016 10.174 
5.331 8.536 
6.706 9.970 

F I G U R E 3-41 
Field lines for the T E n mode in a circular waveguide. 

ffi 
• o 

0.5 -

11.5 GHz 

F IGURE 3.42 
Attenuation of dominant T E U mode 
in a circular waveguide. Diameter = * 
cm. 

Figure 3.42 shows the attenuation in decibels per meter for a copper 
waveguide with an internal diameter of 2 cm. For this guide the cuto* 
frequency is 8.79 GHz. In the normal operating range from 9 to 11 GHz, the 
attenuation drops from 0.36 d B / m at 9 GHz to 0.11 d B / m at 11 GHz. 

1 9 W A V E V E L O C I T I E S 

In any system capable of supporting propagating waves, a number of *8 

velocities occur that pertain to signal propagation, energy propaga£'° 
wavefront propagation, etc. These various velocities are examined below' 
the context of propagation in waveguides. 
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Velocity 
The phase velocity of a wave in a waveguide was introduced earlier and 
shown to be equal to 

vp = -f-C (3.228) 

for an air-filled guide. Here kg is the guide wavelength, A0 the free-space 
wavelength, and c the velocity of light. The phase velocity is the velocity an 
observer must move with in order to see a constant phase for the wave 
propagating along the guide. It is noted that the phase velocity is greater 
than the velocity of light, and since the principle of relativity states that no 
signal or energy can be propagated at a velocity exceeding that of light, the 
physical significance of the phase velocity might very well be questioned. 

The clue to the significance of the phase velocity comes from the 
recognition that this velocity entered into wave solutions that had a steady-
state time dependence of eJI"'. A pure monochromatic (single-frequency) 
wave of this type exists only if the source was turned on at t = — <» and is 
kept on for all future time as well. This is clearly not a physically realizable 
situation. In actual fact the source must be turned on at some finite time, 
which can be chosen as / = 0. The generated signal is then of the form 
illustrated in Fig. 3.43. Associated with the sudden steplike beginning of the 
signal is a broad frequency band, as a Fourier analysis shows. If this signal 
is injected into the guide at z = 0, an observer a distance I farther along the 
guide will, in actual fact, see no signal until a time l/c has elapsed. In other 
words, the wavefront will propagate along the guide with a velocity c. At the 
time l/c, the observer wi)) begirt to see the arrival of the transient associ
ated with the switching on of the signal. After a suitable period of time has 
elapsed, the transient will have died out, and the observer will then see the 
steady-state sinusoidally varying wave. Once steady-state conditions prevail, 
the phase velocity can be introduced to describe the velocity at which a 
constant phase point appears to move along the guide. Note, however, that 
there is no information being transmitted along the guide once steady-state 
conditions have been established. Thus the phase velocity is not associated 
with any physical entity such as a signal, wavefront, or energy flow velocity. 
The term signal is used here to denote a time function that can convey 

Sit) 

FIGURE 3.43 
Sinusoidal signal applied at time t = 0. 

<W 
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G r o u p V e l o c i t y 

information to the observer. Thus the step change at t = 0 is a signal K 
once steady-state conditions are achieved, the observer does not receive' 
more information. A better understanding of the above features will vZ 
obtained after the group velocity, discussed below, has been examined 

The physical definition of group velocity is the velocity with which a sign l 
consisting of a very narrow band of frequency components propagates. Th 
appropriate tool for the analysis of this situation is the Fourier transform rr 
a time function is denoted by fit), this function of time has associated with 
it a frequency spectrum Fiat) given by the Fourier transform of /"(*), 

F(u,) =f'j(t)e--""dt (3.229o) 

Conversely, if the spectrum F(io) is known, the time function may be found 
from the inverse Fourier transform relation 

1 . -
f(t) = —- F{a))eJU" da> (3.2296) 

From Eq. (3.2296) it is seen that the Fourier transform represents fit) as a 
superposition of steady-state sinusoidal functions of infinite duration. These 
relations are a generalization of the Fourier series relations. If the time 
function is passed through a device having a response Ziw) that is a 
function of frequency, e.g., filter, the output time function f0(t) will have a 
frequency spectrum Fia»)Z(a>), and hence, by (3.2296), is given by 

f0(t) = — f F(o>)Z(w)e>»1 do> 

In general, Z(u>) = |Z(a»)[e~-'"Ww»; so 

W) = ^ / " j Z ( « ) | F ( » ) e * — * > d « (3-230) 

If the output f0 is to be an exact reproduction of the input, then in ( 3 . ^ 
it is necessary for \Z\ to equal a constant A, and ip must be a Un 
function of w, say aw + b. In this case 

A 

Ytr 

If we put t ~ a = t', the above becomes 

fo{t) , ±-e-J<>r F(o>)e^<-°>da> (3-231°) 
X'TT J -^ *r 

fo(t< + a)=^LLrF(a>)e^du>=Ae-;bnt') (3.23l*> 
Zv J - C O 
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as comparison with (3.2296) shows. Thus the output time function is 

U* + «) - W) = Ae-'»an = Ae-»f(t -a) (3.232) 

i.e., an exact duplicate of the input, apart from a constant multiplier and a 
time delay a. Thus the conditions given on \Z\ and i// are those sufficient for 
a distortion-free system. 

Now, in a waveguide, the transverse variations of the field are indepen
dent of frequency. The only essential frequency-dependent part of the field 
solution is the propagation factor e jPx since 

0 = (fci-*f)1/a=(^-ft?) 

is a function of frequency. Thus a waveguide of length /, in which the field 
has a time dependence eJ'0', w > 0, can be considered as a frequency filter 
with a response e~J^1. Since /3 is not a linear function of to, it may be 
anticipated that some signal distortion will occur for propagation in a 
waveguide. For an ideal TEM-wave transmission fine, )3 = k0 = io/c and 
distortion-free transmission is possible. However, practical lines have an 
attenuation which depends on frequency (Rm a -ff), and this will produce 
distortion. Fortunately, for narrowband signals neither waveguides nor 
transmission lines produce significant distortion unless very long lines are 
used. 

Consider now a time function fit) having a band of frequencies 
between —fm and /",„. This signal is used to modulate a carrier of frequency 
fc *• fm • T n e resultant is 

S(t) = f(t)cos coct = Re[ f(t)eJm<t) (3.233) 

If Fico) is the spectrum of fit), the spectrum of Sit) is 

Fs(w) = f_J-J""f(t) ~ da, 

= -[F(ai - ajc) + F(a> + wc)] (3.234) 

These spectra are illustrated in Fig. 3.44. 
For positive co the waveguide response is e ~&*"*, For negative w the 

response must be chosen as e^S("'" since, if the time variation is e~iQ", the 
sign in front of (i must be positive for propagation in the positive z 
direction. In other words, all physical systems will have a response such 
that |Z(w)| is an even function of co and iliiio) is an odd function of co. Since 
P is an even function, the sign must be changed for co < 0. These even and 
odd symmetry properties are required simply so that the output time 
function is real, a physical requirement. The output spectrum for the 
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F{u) Fsi(u) 

L\. 
-olm. Um 

FIGURE 3.44 
Spectrum of /"(/land Sit). 

-0- —A— 

waveguide is thus 

F„(u,) = | [ F ( w - toje'"3'^' + F{a> -r 

and the output signal is 

c)eJPM'\ 

S„(t)~—f F0(u>)e;«'du> (3.235) 

The analysis that follows is simplified if the signal is represented in complex 
form as f(t)eJ"'c' with a spectrum F(u — coc). In this case only the positive 
half of the spectrum needs to be considered, and the output signal is given 
by 

S „ ( 0 = R e — C' *"F(v - » J e * * - * w ' da> (3.236) 

since F(,a> - wc) is zero outside the band wc - wm < w < we + wm. If the 
band is very narrow, w,„ « wc, then /3(w) may be approximated by the first 
few terms in a Taylor series expansion about ae. Thus 

P(a) =/3(»e) + 
d0 

(w - wc) + 
1 d2p 

2 d -2 
!«r 

( w - o , c ) 2 + - - (3-237) 

Retaining the first two terms only and letting /3(wc) = 0O and d(5/du>c = Po 
at wt„ (3.236) gives 

S0(t) = R e — r+WmF(w - aJeJt'-Me-M+JfV*da 

If this is compared with (3.231) and (3.232), it is seen that 

S0(t) = R e f e ^ o ' ^ ' o ' V U - P'0l)e
Jw'('-p'oh] 

- fit - M*»t*ji - M 
To the order of approximation used here, the input modulating signal / 
is reproduced without distortion but with a time delay p'0L This is l ° t 
anticipated since /3 was approximated by a linear function of w in the 

(3.238) 
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o)c - (om to <oc + (om (distortion-free condition). The signal delay defines the 
group velocity v which is equal to the distance / divided by the delay time; 
thus 

/ 
V*=W* 

My1 

da ) 
(3.239) 

This is also the signal velocity. Note, however, that this velocity has 
significance only if the band, or "group," of frequencies making up the 
signal is so narrow that fi may be approximated by a linear function 
throughout the frequency band of interest. If this is not the case, more 
terms in the expansion (3.237) must be retained and signal distortion will 
occur. In this case the group velocity as given by (3.239) is no longer the 
signal velocity. In fact, because of signal distortion, no unique signal velocity 
exists any longer. Different portions of the signal will travel with different 
velocities, and the resultant signal becomes dispersed in both time and 
space. 

In the case of a waveguide, 

vs = dto J C dji 

d(co2/c2 - k2) 
1 '2 1 - 1 

CO « 0 Ag 
(3.240) 

It is seen that vg < c and that vgvp = c2 for a waveguide. 
A typical plot of k0 versus /3 for a waveguide is given in Fig. 3.45. 

From this plot it can be seen that for a narrow band of frequencies a linear 
approximation for /3 is good. Also note that for high frequencies (large k0) (3 
becomes equal to k0. Thus frequencies well above the cutoff frequency fe 

suffer very little dispersion and propagate essentially with the velocity of 
light c. No frequency components below the cutoff frequency fe can propa
gate along the guide. 

FIGURE 3.45 
Plot of k0 versus 0 for a waveguide. 
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The equality of the wavefront velocity and the velocity of light can k_ 
readily explained by means of Fig. 3.45. The switching on of a signal r e s 1 
in an initial transient that has a spectrum of frequencies extending 0i »• 
infinity. Any small group of frequencies at the high end of the spectrum 7* 
have a group velocity equal to c since dk0/dp equals unity for k n 

infinity. Thus the high-frequency part of the transient will propagate al 
the guide with a velocity c. The lower-frequency components will propae t 
with smaller group velocities and arrive later. 

Energy-Flow Velocity 

Power is a flow of energy, and consequently there is a velocity of energy g0w 

such that the average energy density in the guide multiplied by this velocity 
is equal to the power. In a waveguide it turns out that this velocity of 
energy flow is equal to the group velocity. A proof for the case of E modes 
will be given below, that for H modes being very similar. 

For E modes the field is given by [see (3.72)] 

JP 
H, 

" 0 * 0 

~P~ 
a , X E, 

The average rate of energy flow, or power, is given by 

1 /• ? 1 k0Y0 
IE, dS = -

P 7. E,fdS (3.241) 

where the integration is over the guide cross section. 
The energy density in the magnetic field per unit length of guide is 

CL 4 Js 4 p~ Js 
'dS (3.242) 

The energy density in the electric field per unit length of guide is equal to 
that in the magnetic field. This is readily shown to be the case by using the 
complex Poynting vector theorem, which states that (Sec. 2.5) 

- /' E X H* • a , dS = P + 2jw( Wm - We) Js 

where the integration is over the guide cross section, and the term on 
right gives the power transmitted past the plane S plus 2joi tiroes th 
reactive energy stored in the guide beyond the plane S. Since the integr 

the 

right gives the power transmitted past the plane S plus 2jco tiroes tn 
;egr 

the complex Poynting vector over a cross section 5 for a propagating nl 

in a loss-free guide is real, it follows that Wm = We. In addition, since 
location of the transverse plane S is arbitrary, it also follows that 
energy densities Um and Ue per unit length of guide are equal. 
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The velocity of energy flow may now be found from the relation 

P P k0Y0 H2 

v = U„ + U„ 2t/„ 2 v 2 P M o W 

and comes out equal to the group velocity as stated earlier. 

(3.243) 

B I D G E W A V E G U I D E 

For a rectangular waveguide with a width a equal to twice the height ft, the 
maximum bandwidth of operation over which only the dominant TE1 0 mode 
propagates is a 2 : 1 band. For some system applications it is necessary to 
have a waveguide that operates with only a single mode of propagation over 
much larger bandwidths. A transmission line supporting only a TEM mode 
can fulfill this requirement but must then have cross-sectional dimensions 
that are small relative to the shortest wavelength of interest. A coaxial 
transmission line will support higher-order TE and TM modes in addition to 
the TEM mode. Thus, to avoid excitation of a higher-order mode of propaga
tion, the outer radius must be kept small relative to the wavelength. The 
small cross section implies a relatively large attenuation; so some other 
form of waveguide is needed. The ridge waveguide illustrated in Fig. 3.46 
was developed to fulfill this need for a single-mode waveguide capable of 
operating over a very broad band. Physically, it is easy to understand why 
the ridge waveguide has a very large frequency band of operation. The 
center section of width W and spacing S functions very much like a 
parallel-plate transmission line and consequently the ridge waveguide has a 
much lower cutoff frequency for the same width and height as does the 

FIGURE 3.46 
x Ridge waveguide. 



2 0 6 FOUNDATIONS FOB MICROWAVE ENGINEERING 

conventional rectangular waveguide. Operation over bandwidths of 5 [_ . 1 
more is possible. 

The ridge waveguide, when uniformly filled with dielectric, which 
be air, has the same general properties as the rectangular and circuT 
waveguides discussed earlier. If we can determine the cutoff wavelength 
for the dominant mode, then at any frequency above the cutoff freqUe *c 

the propagation constant ji is given by 

P = yjkl- (2tr/Xcf 

At the cutoff frequency (i = 0 and the electromagnetic field has no variatin 
with the axial coordinate z. The cutoff wave number kc = 2ir/\c can L 
found using the transverse-resonance method as described below. 

The transverse-resonance method is based on finding the resonant 
frequency for the transmission-line circuit that provides a model for the 
waveguide cross section. At cutoff we can view the electromagnetic field as a 
uniform plane wave with components Ey and H, that propagates in the x 
direction and is incident onto a second parallel-plate transmission line of 
reduced height. The equivalent transmission-line circuit is that of two 
parallel-plate transmission lines of height b, length (o - W)/2, and short-
circuited at x = 0 and a. These two transmission lines are connected to 
another parallel-plate line of height S and length W and placed between the 
first two as shown in Fig. 3.47. At the junction where the height changes, a 
local fringing electric field occurs and stores electric field energy in the 
vicinity of the step. The effect of this local fringing electric field is taken into 
account by a shunt capacitive susceptance jB at each junction as shown in 
Fig. 3.47. 

The standing-wave field pattern along the x direction can exist only at 
the resonant frequency for the transmission-line circuit shown in Fig. 3.47. 
For the dominant mode the voltage is a maximum and the current is zero at 
the midsection. Thus, at x = a / 2 , the impedance looking in the x direction 
toward the short circuit must be infinite. The corresponding input admit
tance will be zero. At the step the admittance looking toward the shofl 
circuit is 

Y= -jYci cot kc-
a-W 

+ JB 

By using the formula for admittance transformation along a transnu 

_ F IGURE 3.47 
Equivalent transmission-line circuit of 
section of ridge waveguide, 
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a 

W 
a 

1 FIGURE 3.48 
Normalized cutoff wavelength Kc/a for a 
ridge waveguide. 

line, we obtain 

Y-.„ = Y. 
Y+jYc3 tan keW/2 

c2 Yc2+jY tan kcW/2 

In order for Y to vanish, we must have 

jB -jYcl cot kt 

a- W W 
+ jYe2tanke— = 0 (3.244) 

which is the transverse-resonance condition. The two characteristic admit
tances are inversely proportional to the parallel-plate spacing; thus Yc2 = 
(b/S)Yci. An approximate expression for the normalized shunt capacitive 
susceptance can be found using quasistatic conformal mapping and ist 

B 26 1 a ] „ l ^ 
1 - ln4u + -u2 + - ( 1 - u2) ^ u = - < 0.5 (3.245) 

The eigenvalue equation (3.244) is a transcendental equation. The 
computer program RIDGEWG solves (3.244) for the normalized cutoff 
wavelength A c /a . 

Figure 3.48 shows typical results that are obtained. The numerical 
results obtained from (3.244) agree within 1 percent of the values given by 
Hopfer and Hoefer and Burton over the commonly used range of parame
ters.? 

tN. Marcuvitz, "Waveguide Handbook," MIT Radiation Lab Series, vol, 10, reprinted by 
Boston Technical Publishers. Inc.. 1964. 

tS . Hopfer, The Design of Ridged Waveguides IRE Trans., vol. MTT-3, pp. 20-29, October, 
1955. 

W. J. R. Hoefer and M. N. Burton, Closed Form Expression for the Parameters of Finned 
and Ridged Waveguides, IEEE Trans., vol. MTT-30, pp. 2190-2194, December 1982. 
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3.21 F I N LINE 

If the width W of the ridges in the ridge waveguide is very small, we oht -
a fin line as shown in Fig. 3.49a. Usually the fins are metal foils on a th? 
dielectric substrate mounted in the E plane of a rectangular waveguide ft 
the dominant mode the current flows in the axial direction; so good elert^ 
cal contact between the fins and the waveguide is not essential. The fin I 
is a shielded slot line. The fin line can be matched to the rectaneui * 
waveguide by means of a tapered section or by using one or more quarto 
wave impedance transformers as shown in Figs. 3.496 and c. 

The fin line is suitable for use in microwave circuits that incorporate 
two-terminal devices such as diodes. Transistors cannot be connected to a 
fin line since they are three-terminal devices. 

The cutoff wavelength for a fin line may also be found by using the 
transverse-resonance method. The fins produce a shunt normalized capaci-
tive susceptance across the center of the waveguide given byt 

B 26 
XT 

where 

«2 tt-i\
T»° n) 

_ } _ i 

«2 tt-i\
T»° n) "(£-*• 

A = « i 

P2 = 2a\ + a* - 1 

P3 = 4a? + %axal - 3Ul 

P4 = 8a? + 3a^ + 24ajfa| - 8a? - 4 a | + 1 

27rS 

"1 = C0S Jb 

a2 = sm — a2 = sm — 

r„ = WHxf] 
1/2 

(3.246) 

The equivalent circuit of the fin-line cross section consists of two short 
cuited transmission lines of length a/2 with jB connected at the center 

tR. E. Collin, "Field Theory of Guided Waves," 2nd ed., chap. 8, IEEE Press, Piscataway. 
1990. 
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Dielectric 
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(to) 

(a) 

(c) 

FIGURE 3.49 
(a) Fin line; (6) tapered matching sec
tion; (c) quarter-wave matching section. 

JB -

r _— 

ZjB 

2 Yc 

h-fH -}H 
FIGURE 3.50 
Equivalent circuit of fin-line cross sec
tion. 

shown in Fig. 3.50. The resonance condition is 

Y. jB . ira 
_ = / c o t — = 0 
K 2K J A , . 

(3.247) 

The computer program FINLINE solves this transcendental equation for 
the normalized cutoff wavelength A,./a for S/b = 0.1 to 0.9. Typical nu
merical results are shown in Fig. 3.51 for the case where a = 26. These 
numerical results agree within 1 percent or better with those given by 
Hoefer and Burton.t 

The propagation constant fi is given by the same formula as for a 
conventional waveguide, i.e., 

e = (H - k*c)
,/2 

When the fins are mounted on a dielectric substrate, a correction is needed 
for the propagation constant if the dielectric has an appreciable thickness 

tW, J. R. Hoefer and M. N. Burton. loc. cie. 
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"0 0.6 0.8 1 FIGURE 3.51 
Normalized cutoff wavelength \ / 
fin line. e/a for 5 

S 
b 

PROBLEMS 

and a large dielectric cons tan t . Empir ical formulas for th i s case are avail 
able . t 

3 .1 . For the ideal transmission line shown in Fig. P3.1. the switch is closed at t = 0 
and opened 1 ixs later. The characteristic impedance of the line is 50 ft. The 
load resistance is also 50 fi. The battery has an internal resistance of 10 ft, 
( a ) Sketch the voltage across R7_ as a function of time for a line 300 m long. 

The wave velocity « = 3x 108 m / s . 
(6) Sketch the voltage waveform across RL when RL = 25 fl and the line is 

900 m long. 
(c) Sketch the voltage waveform across RL when RL = 100 fl and the lineis 

900 m long. 
(.d) Repeat (6) and (c) for a line 75 m long. 

Zc = 50 !) « i 

VB T_ 

K FIGURE P3.1 

3.2. Let a generator with internal resistance Rg be connected to a transmission 
of length / and having a characteristic impedance Z,.. The line is terminatea 
a load resistance R,. Let r = l/v be the one-way propagation time d e ^ ' ~ , 
generator produces a pulsed waveform Pit), 0 < t < T. Show that the vo 
across RL is given by 

V'-Y. J—(i + rL)[p(t - r) + \LveP(t - 3T) + rlr;p(t - 5T) 

tK. Chang (ed.), "Handbook of Microwave and Optical Components." vol. 1, PP- 38-3" 
Wiley & Sons, Inc., New York, 1989. 

job" 
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Hint: See (3.12) and consider the total line voltage at z = I. 
3.3. A pulse generator produces a sawtooth pulse P(t) = LOt/T, 0<1<T, where 

T= 1 (T 8 s. The generator has an internal resistance Rg = 200 O and is 
connected to a transmission line with Zc = 50 fi. The line is / meters long and 
terminated in a load resistance RL. The wave velocity equals 3 X 10 m / s . 
(a) Find and sketch the load voltage as a function of time when / = 3 m and 

RL = 200 O. 
(6) Repeat (a) when RL = 12.5 Q. 
(c) Find an analytic expression for the voltage across RL when RL = 200 $2 

and / = 12 m. 
(d) Make a distance-time plot of the line voltage for (c). 

3.4. A battery with voltage of 10 V is connected in series with a 50-JJ resistor to the 
input of a 50-fl transmission line at time / = 0. The transmission line, of 
length 12 m, is terminated in a 1-jtF capacitor. Find and sketch the voltage 
across the capacitor as a function of time. 

Hint: Apply Thevenin's theorem. 
Answer: 

V. = 10[1 - g-c-0-0 4) /5 0] / in microseconds 

3.5. In the circuit illustrated in Fig. P3.5, the battery is connected at / = 0. Find 
and sketch the voltage across RL as a function of time. Assume that RL = Rg 

= Zc = 50 ih C = 1 / iF, I = 300 m, and v = 3 X 108 m / s . 

R SW 

r A A A r / " * -

I ZC = 50!J ;>flL=50Il 
C = 1 ^F 

I = 300 m H FIGURE P3.5 

3.6. The resistor R, is replaced by a capacitor CL *= 1 /xF in Fig. P3.5. Find the 
voltage across CL during the time interval 1 /xs < t < 3 its. 

Answer: 

VL = 5[l+e"~^25] - lOe -(«-n/5o 

where t is in microseconds. 
3.7. Consider an ideal loss-free transmission line of length /. as shown in Fig. P3.7. 

The far end is short-circuited. At the input end a battery of voltage V0 is 
switched across the Vine at time t = 0. Sketch the voltage wave on the line at 
the middle over the time interval 0 < / < ll/c. 

-2 
FIGURE P3.7 
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,r "o4=- Zc = Ra 

1—VW—o-
*0 

3.8, Consider the transmission-line circuit illustrated in Fig, P3.8. At time / -
battery of voltage V0 is switched across the line at the input. DetermiiT **' * 
output load voltage V as a function of time. 

Hint: This transient problem may be solved in a manner similar to tK 
used in low-frequency circuit theory. The governing equations for the transnv 
sion line are 

>?V BJF 3 j- dV 
— _£ = __ Q 

Hz U Hz 8t ' 
The time derivative may be eliminated by taking the Laplace transform. The 
transformed solutions for V and S are 

y J
e - w + V ~ e " '" V e " " ' + I~esz/V 

By transforming the circuit equations for the load termination and the input 
voltage, the resultant equations may be solved for the Laplace transform of the 
load voltage. The inverse transform then gives the load voltage as a function of 
time. 

The foregoing procedure may be simplified by first replacing the battery 
by a source V0e-""' and obtaining the transfer function V/V0 = Z,(ju) as a 
function of u> for this steady-state problem. Replacing ju> by s then gives the 
transfer function in the s domain. The Laplace transform of the output voltage 
is then 

V(s) = —Z,(>=S) 
s 

since the Laplace transform of the input step voltage is V0/s. The output 
voltage is obtained from the inverse Laplace transform of Vis). 

3.9. Obtain expressions for the voltage and current standing-wave patterns on * 
lossless open-circuited transmission fine. Sketch these patterns. Assume an r 
time dependence. 

3.10. A transmission line with Zc = 50 ft is terminated in an impedance 25 + . P 
11. Find the reflection coefficient, standing-wave ratio, and fraction of tl 
incident power delivered to the load. 

Answer: VSWR = 2.618, 80 percent. 
3.11. Verify (3.47) and compute Zin at a distance A0 /4 from the termination gi 

in Prob. 3.10. 

3.12. On a transmission line with Zc = 50 ft, the voltage at a distance 0.4A0 "°, 
the load is 4 +j2. The corresponding current is 0.1 A. Determine the nor 
ized load impedance. 

Answer: 0.145 +J0.397. 
3.13. A 50-ft transmission line is terminated by a 75-ft load resistor. Fin

 0t 
distance / from the load at which Y,„ = 0.02 ~jB. By connecting a ^ 
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susceptance -jB across the line at this point, the load will be matched to the 
transmission line. Explain why this is so. The distance / can be expressed in 
terms of the wavelength A0. 

3.14. Figure P3.14 illustrates a three-conductor transmission line. Since potential is 
arbitrary to within an additive constant, the shield S„ can be chosen to be at 
zero potential. Show that there are two linearly independent solutions for 
TEM waves in this transmission line. If S„ encloses N conductors, how many 
TEM-wave solutions are possible? 

Hint: Note that the potential can be arbitrarily specified on S, and S2. 

V = 0 FIGURE P3.14 

3.15. Show that power transmitted along a transmission line is given by 

P = y/|V(<t>|2d*dy 

For Prob. 3.14 show that this equals j fV,/ , + V21,) by using Green's first 
identity (App. I) to convert the surface integral to a contour integral around 
the conductor boundaries. Ix and /., are the total currents on S, and S 2 . 

3.16. Consider a three-conductor transmission fine as shown in Fig. P3.14 but 
assume that the cross sections of S, and S2 are not the same. Let <$>„ and <Ph 

be two different solutions for the potential field. For <J>„ let Val, /„ , and 
ô2> A»2 De t n e voltage and currents on S, and S2 . Similarly, for <t>b let 

Vbl, /;,, and Vb2, / 6 2 be the voltages and currents on St and S2. For the TEM 
modes derived from 4>0 + <t>b, show that the power flow is given by 

HKi + vln)(iai + / M ) . | (VQ 2 + v,2)(/a2 + z62) 

It is convenient to choose the potentials so that the two TEM modes obtained 
from <t>„ and <1>6 have independent power flow. Show that this will be the case 
if the interaction term 

(ValIbl + VhiIal) + (Vo2Ib2 + Vb2Ia2) 

equals zero. Furthermore, show that the interaction term will vanish if the 
potentials are chosen so that 

K.2 " vb2 

c. 
1 1/2 

c„ + c, 
where Cu is the capacitance between S1 and S0, C22 is the capacitance 
between S2 and S 0 , and C12 is the capacitance between S, and S 2 . For a 
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symmetrical line, Cu = C22 and the two modes correspond to the ev 
odd modes. a*<4 

Hint: Use the relations <?„, = CMVel + C12(VBl - Vo2), Q^ = c 

C12(Vo2 - Vaj) and similar ones for the total charge Qhl and Q,,,, on <j22,?s* 
terms of V6, and Vfc2. Also note that /„, = (y 0 / e 0 )Q a „ etc. "" '' »>n 

3.17. Show that, for an air-filled coaxial line, minimum attenuation occurs 
x In x = 1 + x, x = b/a. What is the corresponding characteristic i m p e d a " 

Hint: Hold the outer radius b constant and find da /da. 

3.18. Evaluate Zc for a lossy coaxial line using (3.28) and computed values of R n 
L, and C. Assume 6 = 3a = 1 cm, f= 109 Hz, a = 5.8 x l o 7 S / r a ' 
e = (2.56 -jO.OODe,,. Verify that ' a n d 

Im Z, <r_ Re Z,. and /M1 / 2 
Z - ( c ) 

See Table 3.1 for coaxiaf-iine parameters. 

3.19. Use the energy definitions of L and C [Eqs. (3.112)1 to derive the results given 
by (3.106) and (3.108) for a coaxial transmission line. 

3.20. A microstrip line has a substrate 1 mm thick and with a dielectric constant 
er = 8. The strip width W = 2.5 mm. Find the low-frequency effective dielec
tric constant and characteristic impedance. 

Answer: ee = 5.953, Z,. = 32.13 il. 

3.21. A microstrip line uses an anisotropic dielectric substrate with er = 10 and 
«v = 8. The substrate is 0.5 mm thick and the strip width W = 0.75 mm. Find 
the low-frequency effective dielectric constant and characteristic impedance. 

Answer: et = 5.895, Z,, = 42.97 fl. 

3.22. A microstrip line has a 1-mm-thick dielectric substrate with a dielectnc 
constant of 6. Use the computer program MSTP to generate data giving the 
effective dielectric constant and characteristic impedance as a function of strip 
width W. Use these data to design a microstrip system with an input line 
having Zr = 50 ft, an output line having Zc = 75 il, and an intermediate 
quarter-wave transformer section with Zr = ^50 x 75 i l . Specify the three 
strip widths W,, VV2, W:i and the length of the quarter-wave transformer at 8 
frequency f = 2 GHz (see Fig. P3.22). 

Answer: Widths are 1.505 mm, 1.0125 mm. 0.649 mm. length = l** 
cm. 

1 
\ w, \w2 

~~1 w, \w2 
~~1 

\% i 
L 

w, \w2 

r~ | i 
A 
4 - A \— 
A 
4 - A FIGURE P3.22 

3.23. Find the effective dielectric constant, characteristic impedance, and atte 
tion at 2 GHz for a microstrip line with the following parameters: fr "^ jg 
Joss tangent = 2 x 10" 3 , substrate thickness H = I mm. strip widthi * 
mm, and strip thickness T = 0.01 mm. Use the computer program MS1 
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3.24. Use the computer program MSTPD to generate dispersion data for the 
effective dielectric constant for a microstrip line having the following parame
ters: dielectric constant = 6, substrate thickness H = 0.5 mm, and strip width 
W = 2 mm. At what frequency has the effective dielectric constant increased 
by 5 percent more than the quasistatic value? 

3.25. In a monolithic microwave integrated circuit, gallium arsenide with er = 12.9 
is used as a substrate material. Find the effective dielectric constant, charac
teristic impedance, and attenuation at 10 GHz for a microstrip line with the 
following parameters: substrate thickness = 0.1 mm, strip width = 0.05 mm, 
strip thickness = 0.002 mm, and loss tangent = 6 x LO-8. For these dimen
sions the quasistatic parameters are accurate. The computer program MSTP 
can be used for the evaluation. What is the attenuation in decibels per 
wavelength (microstrip) for this microstrip line? 

3.26. A microstrip line has the following parameters: strip width W = 1 mm, 
substrate thickness = 1 mm, and anisotropic dielectric with er = 6.5, ev = 6. 
Find the following: distributed capacitance C and inductance L per centime
ter. characteristic impedance, effective dielectric constant, and the quasi-
TEM-mode wavelength at 2 GHz. 

3.27. Use the computer program CMSTP to find the even- and odd-mode character
istic impedances and the voltage coupling coefficient C for a coupled mi
crostrip line having the following parameters: strip width W = 1 mm, strip 
spacing S = 0.1 mm, substrate thickness = 1 mm, and substrate dielectric-
constant = 9.7. 

3.28. A strip line has a ground-plane spacing of 2 mm, a strip width of 1 mm, and is 
filled with a dielectric medium with dielectric constant 2.3. Find the character
istic impedance. 

3.29. Use the computer program STPL to evaluate the characteristic impedance and 
attenuation of a strip line with the following parameters: ground-plane spac
ing = 2 mm, strip width W = 0.5 mm, strip thickness T = 0.01 mm, dielectric 
constant = 6, loss tangent = 0.006, and frequency of operation = 5 GHz. 
What is the ratio of the attenuation due to dielectric loss relative to that of 
conductor loss? 

3.30. A broadside coupled strip line is required for a 3-dB directional coupler. The 
even-mode characteristic impedance is to be 50 SI. The voltage coupling 
coefficient is 0.707. From this information determine the required odd-mode 
characteristic impedance. Find the required strip width W and spacing S for 
this coupled strip line. The ground-plane spacing is 4 mm and the dielectric 
constant of the dielectric filling is 5. The strip thickness T = 0.05 mm. Use 
the computer program CSTPL. You will need to follow an iterative procedure 
to arrive at the required parameters. An accuracy of ± 0.5 percent is adequate. 

Hint: Begin with W = 3.5 mm, S = 0.5 mm. 

3.31. In a monolithic microwave integrated circuit, a coplanar transmission line 
with the following parameters is used: strip width S = 0.1 mm, slot width 
W = 0 . 1 mm, strip thickness = 0.002 mm, substrate thickness = 0.5 mm, 
dielectric constant = 12.9, loss tangent = 0.0008, and frequency = 10 GHz. 
Use the computer program CPW to determine the characteristic impedance 
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and attenuation. If the strip thickness is increased to 0.005 mm wjii 
significantly reduce the attenuation? ' 'h^ 

3.32. Figure P3.32 shows a coplanar-transmission-line circuit for use in a v. 
amplifier circuit. The required input- and output-fine chara f r ^ 
impedances are 50 ft and 72 ft. The impedance of the quarter-wave sect- c 

v/50 x 72 = 60 ft. The ground-plane spacing 2W + S is kept cons tanT '^ "* 
nun. The strip thickness is 0.002 mm. The substrate thickness is 0 4 

n l * 0.3 
the dielectric constant is 12.9 with a loss tangent of 0.001. Use the com" ^ 
program CPW to determine the required strip widths S1 , S2 , and S rj 
mine the length / of the quarter-wave matching section at a frequency f 
GHz. How much attenuation occurs in the quarter-wave section? An accu ^ 
of ±0.25 percent is sufficient. 

0.3 mm s. no 

FIGURE P3.32 

3.33. In a planar transmission line, the attenuation is 0.25 dB/cm. By what 
fraction is the wave amplitude reduced in propagating a distance of 1 cm on 
this transmission line? 

3.34. Derive the equations (3.72) for TM waves. 

3.35. Find the cutoff frequency for the TE1 0 mode in a rectangular waveguide with 
dimensions 4 cm by 2 cm. Find the guide wavelength Ag and phase velocity at 
a frequency 25 percent higher than the cutoff frequency. 

3.36. Derive the solution for a TE1 0 mode in a rectangular guide of wide dimension 
a and height b when the guide is filled with dielectric of permittivity «• Show 
that the cutoff frequency is given by f, = c / 2 a e j / 2 , where c is the free-spi 
velocity of light and er is the dielectric constant. Show that the gu> 
wavelength is smaller for a dielectric-filled guide than for an air-filled g«< 

3.37. Obtain an expression for the attenuation of a TE1 0 mode in a dielectric-fil 
guide when e = el - je2 but the walls are perfectly conducting. Obtain ^ 
exact expression and compare it with the results deduced by an apphca 
the perturbation method. 

i* a witn 
3.38. Obtain a solution for an H wave in the parallel-plate transmission tin ^ 

centered dielectric slab as illustrated in Fig. P3.38. Assume that the P 1 3 ^ ^ 
perfectly conducting and infinitely wide. Can a TEM wave propagate 
structure? Why? 

Hint: Assume h, = cos kdx for |x| < a / 2 and h = Ae' ' f0riltf 
a / 2 . Verify that k\ + p* = (e r - D*o- Match the tangential fields at x " 
to obtain an equation for A and one relating the parameters p and «rf-
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*0 «b 

FIGURE P3.38 

3.39. Obtain solutions for TE„ 0 modes in the partially filled waveguide illustrated 
in Fig. P3.39. 

Hint: Assume that 

ft.= 
cos L i 0 <x < t 

t <x < a 1 A cos p(a - x) 

and match the tangential fields at x = t. Thus show that 

02 = kl - p2 = er*g - kl 

and that 

p tan kdt = -kd tan pd 

Note that there are an infinite number of solutions for p and kd correspond
ing to various TE„ 0 modes. Obtain numerical values for /3, p, and kd when 
k0 = 2, t = I cm, d = 1.5 cm, and er = 4. Note that there is a lowest-order 
solution for p pure imaginary. 

6o 

FIGURE P3.39 

3.40. Obtain expressions for the surface currents of a TE1 0 mode in a rectangular 
guide. A narrow slot may be cut in a waveguide along a current flow line 
without appreciably disturbing the field. Show that, for the TE1 0 mode, 
narrow centered axial slots may be cut in the broad face of a rectangular 
guide. This principle is used in standing-wave detectors to provide suitable 
points of entry for a probe used to sample the interior waveguide field. 

3 .41. Use the computer program RECTWG to evaluate the parameters of a rectan
gular waveguide with width a = 1 cm, height 6 = 0.4 cm at a frequency of 20 
GHz. How much attenuation will occur in a waveguide 5 m long? 

3.42. For TE modes in a waveguide, write H, = -I(z)V,hz, E, = V(z)az X V,hz. 
Use Maxwell's equations to show that Viz) and I(z) satisfy the transmission-
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line equations 

clV dl 
— > M n ' -T 
az az \ ./<°M(i 
— = - i«wt02 ~ <- - | > , „ + 7771- | V 

Construct an equivalent distributed-parameter circuit for these modes p 
TM modes put E, = - V(2)V,et., H, JU)a 2 X V/eil and show that 

rfV / A,2 \ d/ 

dz ^ ./<o«o / "z 

Construct an equivalent distributed-parameter circuit for these modes.t 

3.43. Consider an infinitely long rectangular guide. The guide is filled with dielectric 
for z > 0, having a dielectric constant er. An Hw mode is incident from 
z < 0. At z = 0, a reflected r/1(l mode and a transmitted H10 mode are 
produced because of the discontinuity. Show that the reflection coefficient is 
given by (Z 2 - Z , ) / ( Z 2 + Z,), where Z, is the wave impedance in the empty 
guide and Z2 is the wave impedance in the dielectric-filled guide. Show that 
the ratio of the wave impedances equals the ratio of the guide wavelengths. 

3.44. Find the surface currents for the Hnl mode in a circular guide. 

3.45. Obtain an expression for power in a T E n mode in a circular guide. (See App. 
II for Bessel-function integrals.) 

3.46. Derive an expression for attenuation for TE(1,„ modes in a circular waveguide. 
Answer: a = Rm fc

2
0m/[aZ0 f( f1 - /^o , , , ) " 2 ] . 

3.47. Find the attenuation in decibels per mile for an Hin mode in a circular copper 
guide of 1 in diameter when operated at a frequency of 10 times the cutoff 
frequency. 

3.48. Show that, in a coaxial line with inner radius a and outer radius b, there are 
solutions for TE„„, and TM„ m modes. A suitable solution for ez and kz is 

[AJ„(kcr) +ynO,.r)]cosnrf> 

Obtain equations (transcendental in nature) for determining the cutoff wave 
number kv by imposing proper boundary conditions at r = a, b. 

3.49. Use the computer program RIDGEWG to find the cutoff wavelength and 
frequency for a ridge waveguide with dimensions a = 1 cm, b = 0.4 cm, naj?J 
width = 0.5 cm, and ridge spacing S = 0.1 cm. Compare this with the cuto 
frequency of a standard waveguide with a = 1 cm and b = 0.4 cm. 

3.50. Use the transverse-resonance technique to derive the eigenvalue equation 
TE„ 0 modes in the partially filled rectangular guide of Prob. 3.39. Verify ^ 
the wave impedances in the x direction in the two regions are k0Z0/P 

kz/kd = k0z0/kd. 4 j n 
3.51. A rectangular waveguide with internal dimensions a = 0.9 in and b = ^-^ 

(standard X-band waveguide) has a centered fin with a slot spacing * ~~. 
mm. Find the cutoff wavelength and compare it with that for the wavegu* 
without fin loading. Use the computer program FINLINE. 

tS. A. Schelkunoff, Bell System Tech. J-. vol. 34, p. 995. September, 1955. 
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3.52. The permittivity e is generally a function of e(u>) of to. Obtain an expression 
for the group velocity of a coaxial line filled with dielectric. Neglect the 
frequency dependence of the attenuation due to conductor loss. 

3.53. A rectangular guide of dimensions a = 26 = 2.5 cm is operated at a frequency 
of 10 l 0 Hz. A pulse-modulated carrier of the above frequency is transmitted 
through the guide. How much pulse delay time is introduced by a guide 100 m 
long? 
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CHAPTER 

4 
CIRCUIT THEORY FOR 
WAVEGUIDING SYSTEMSt 

At low frequencies the interconnection of resistors, capacitors, and induc
tors results in a circuit. Such circuits are normally linear, so that the 
superposition principle may be used to find the response when more than 
one exciting source is present. Kirchhoff s laws form the basis for the 
analysis, whether in terms of loop currents or node voltages. In these 
low-frequency circuits the various elements are connected by conducting 
wires, and generally the length of these connecting wires is not critical or 
important. 

At microwave frequencies equivalent reactive and resistive elements 
may also be connected to form a microwave circuit. In place of connectin] 
wires, transmission lines and waveguides are used. The length or to 
connecting link is often several wavelengths, and hence propagation efleci 
become very important. The analysis of microwave circuits is therefore 
necessity somewhat more involved than that for the low-frequency ca~^ 
The circuit theory of transmission-line circuits has been well developed 
many decades, and, as will be shown the circuit theory for wavegu 
systems is formally the same. 

tThe basic theory of microwave circuits is developed in C. G. Montgomery, B- H. Di y , ,^ 
E. M, Purcell, "Principles of" Microwave Circuits." McGraw-Hill Book Company, f J.e*..J U 
1948. Much of the material presented here in Sees. 4.1 to 4.9 must of necessity be sirou 
view o! its basic nature. 

220 
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Many of the circuit-analysis techniques and circuit properties that are 
valid at low frequencies are also valid for microwave circuits. In actual fact, 
low-frequency circuit analysis is a special case of microwave circuit analysis. 
As a consequence, a study of microwave circuits provides a deeper physical 
insight into conventional circuit theory. In this chapter the physical basis 
for a circuit theory for waveguiding systems is developed. In later chapters 
we shall utilize this foundation in the study of impedance matching, wave
guide devices, resonators, filters, etc. 

E Q U I V A L E N T V O L T A G E S A N D C U R R E N T S 

At microwave frequencies voltmeters and ammeters for the direct measure
ment of voltages and currents do not exist. For this reason voltage and 
current, as a measure of the level of electrical excitation of a circuit, do not 
play a primary role at microwave frequencies. On the other hand, it is useful 
to be able to describe the operation of a microwave circuit in terms of 
voltages, currents, and impedances in order to make optimum use of 
low-frequency circuit concepts. For the most part this can be done. There is, 
however, a notable difference, namely, the nonuniqueness of the voltages 
and currents in most instances. It was noted in the preceding chapter that 
for the TEM wave on a transmission line there existed a voltage and a 
current wave uniquely related to the transverse electric and magnetic fields, 
respectively. In the case of TE and TM modes in a waveguide, no unique 
voltage or current waves exist that have the same physical significance as 
those associated with the TEM wave on a transmission line. This result 
might have been anticipated since the guide boundary is a closed conducting 
boundary, and one is at a loss as to the two points on the boundary between 
which the voltage should be measured. Furthermore, if voltage is defined as 
the line integral of the transverse electric field between two chosen points 
on the boundary it is found that for TM waves the line integral is zero 
(Probs. 4.1 and 4.2), whereas for TE waves the value of the line integral 
depends on the path of integration that is chosen. For these reasons the 
introduction of voltage and current waves, to be associated with waveguide 
modes, is done on an equivalent basis and has formal significance only. The 
basis for the introduction of equivalent voltages and currents is discussed 
below. 

In the previous chapter it was shown that propagating waveguide 
modes have the following properties; 

1. Power transmitted is given by an integral involving the transverse 
electric and transverse magnetic fields only. 

2. In a loss-free guide supporting several modes of propagation, the power 
transmitted is the sum of that contributed by each mode individually. 
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3. The transverse fields vary with distance along the guide according t 
propagation factor e±Jl1' only. 

ie transverse magnetic field is related to the transverse electric field L 
simple constant, the wave impedance of the mode; i.e., 

4. The 
a si 

Z„h = a . X e 

for a mode propagating in the + z direction. 

These properties suggest letting equivalent voltage and current waves 
be introduced proportional to the transverse electric and magnetic fields 
respectively, since the transverse fields have properties similar to those of 
the voltage and current waves on a transmission line. That is, in actual fact 
what is done. 

A propagating waveguide mode may be expressed in general as 

E = C*ee'jPz + C+eze'J0z ( 4 . I Q ) 

H = {The--* 2 + C ^ e - ^ 2 (4.16) 

for propagation in the + z direction, and 

E = C~eejp' - C~ete
JP* (4.2a) 

H = ~ < M w * » + C \ize
jtiz (4.26) 

for propagation in the —z direction. In (4.1) and (4.2), C+ and C~ are 
arbitrary amplitude constants. Note also that if the mode is a TE or a TM 
mode, then ez and h.. is zero accordingly. Let the following equivalent 
voltage and current waves be introduced: 

V = f*-e-Jfi* + V~ejp' (4.3a) 

I^I+e~jPz ~I~eJPl (4.36) 

where V*= Kfi+, V~= KXC~, and /' = K2C^, I = K,C~. K} and K2 are 
constants of proportionality that will establish the relationship between 
voltages and the transverse electric field and currents and the transverse 
magnetic field. In order to conserve power, it is necessary that 

1 * \C 

(4-4) 

^ + ( / + ) * = — - fexh*-* z dS 
z. l Js 

or K^KZ = JeXh* • azdS 

he 
By proper normalization of the functions e and h, the product K , K | c a P g 
made equal to unity. Although (4.4) provides one relationship D e t w e e I L h : B 

and K2, a second relationship is required before they are determined. * 
second relationship can be chosen in a variety of ways. For example-
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voltage and current waves given by (4.3) may be thought of as existing on a 
fictitious transmission line that is equivalent Lo the waveguide. As such, it 
may be desirable to choose the characteristic impedance of this transmission 
line equal to unity, in which case 

V+ V~ K, 

As an alternative, it might be desirable to choose the characteristic 
impedance equal to the wave impedance, in which case 

# 1 
Z. = 1T =Z, (4-6) 

Other possibilities are obvious and equally valid. In this text either the 
definition (4.5) or (4.6) is used. The one that is used will be stated, or else it 
will be clear from the discussion which definition is being utilized. When the 
equivalent voltages and currents are chosen so that the equivalent trans
mission-line characteristic impedance is unity, we shall refer to them as 
normalized voltages and currents. Note that even though equivalent trans
mission lines may be used to represent a waveguide, the propagation 
constant of this line must be taken as that for the waveguide. 

A waveguide supporting N propagating modes may now be formally 
represented as N fictitious transmission lines supporting equivalent voltage 
and current waves (from property 2 listed above for waveguide modes). 
Thus we have 

N 
V= £ (V;e-^> + V~e^-') (4.1a) 

a i 

'- t (Ke-^-I-e^) 
n = l 

- E (V:Yne-^ - V-Yne'^) (4.1b) 
n 1 

where the Yn are arbitrarily chosen characteristic admittances for the 
equivalent transmission lines. When an obstacle is inserted into a waveguide 
supporting N modes of propagation, these modes are in general coupled 
together by the obstacle. This coupling can be described in terms of an 
equivalent circuit made up of impedance elements. This impedance descrip
tion of obstacles in waveguides is developed in the next section. Once the 
equivalent voltage and current amplitudes have been determined, the wave-
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guide fields are known from the relations 

n = l 

N 

n = l 

and the specified proportionality constants K]n, K2n for each mode. The 
axial field components may be found from (4.8) by the use of Maxwell's 
equations. Note that the equivalent current wave amplitude for propagation 
in the ~z direction is expressed by -I~, and hence the corresponding 
transverse magnetic field is proportional to -K:ir}I~. When a waveguide 
supports several modes of propagation simultaneously at the same fre
quency, the number of electrical ports will exceed the number of physical 
ports. That is, power can be fed to a given load by means of any of the 
propagating modes, and all these modes may be common to a single physical 
waveguide input port.f 

4.2 I M P E D A N C E D E S C R I P T I O N O F W A V E G U I D E 
E L E M E N T S A N D C I R C U I T S 

One-Port Circuits 

A one-port circuit (equivalent to a two-terminal network) is a circuit for 
which power can enter or leave through a single waveguide or transmission 
line. A short-circuited transmission line and a short-circuited waveguide 
containing a metallic post as illustrated in Fig. 4.1 are examples of one-port 
circuits. 

For one-port devices of the above type, a knowledge of any two of the 
four quantities V*, V~, V = V* + V~, I = 7 + - 7~ will serve to describe the 
effect of the one-port device on an incident wave (it is assumed that the 
waveguide supports only one propagating mode). These quantities must, ox 
course, be referred to a terminal plane such as t in Fig. 4.1 in order to be 
unambiguously specified. A terminal plane, or reference plane, is the equiva
lent of a terminal pair in a low-frequency network. In the present instance 
an impedance description is desired. If the total voltage and current at the 

tThe microwave equivalent-circuit theory presented in this chapter may be extended to iuclu 
nonpropagating modes. However, when nonpropagating modes are included, the imped80 

and scattering matrices do not have the same properties as when only propagating modes 81* 
present at the terminal planes. See H. Haskal, Matrix Description of Waveguide Discontinuity 
in the Presence of Evanescent Modes, IEEE Trans., vol. MTT-12, pp. 184-188, March, 1964 ' 
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f% 

t / = 0 

(a) 

FIGURE 4.1 
One-port circuits, ( a ) Short-circuited coaxial line; (b) short-circuited waveguide with post. 

terminal plane are 

y = v++ V-
i~r-r=Yc(v+-v~) 

where Yc is the equivalent characteristic admittance (actual characteristic 
admittance for the transmission line), the input impedance is given by 

v-
(4.9) 

V V+ 

7 = _ = 7 
m 1 V* - V~ c 

The complex Poynting vector may be used to establish the physical 
nature of one-port impedance functions. From (2.59) and (2.60) we have 

- 0 E x H * - n d S = P, + 2jw(Wm - Wt) (4.10) 

where n is a unit inward normal to the closed surface S, Pt is the power 
dissipated in the volume bounded by S, and Wm - Wr is the net reactive 
energy stored within S. For the surface S choose the terminal plane, the 
guide walls, and the short-circuiting plane. For perfectly conducting walls 
and short circuit, n X E = 0; so the integral reduces to that over the 
terminal plane only. Thus 

- 0 E x H* • a, dS = P, + 2j<o(Wm - We) 

Now at the terminal plane the transverse fields are [see (4.8)] 

E, - KJ1(V~+ V")e = K^Ve 

H , - / ^ ( / - - / - J h ^ J q 7 h 

Hence (4.11) becomes 

-(K^Kty^Vl*je x h* • a2dS = i v 7 * = P, + 2j»(Wm - We) (4.13) 

(4.11) 

(4.12a) 

(4.12b) 
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If now V is replaced by IZ^, we find that 

P, + 2jw(W„ - W.) 
Z;„ = 

{IP 
= R +JX 

(4. l4) 

This relates the input impedance to the power loss and net reactive ene 
stored in the volume beyond the terminal plane. Inasmuch as the current 
may be an equivalent current, the corresponding impedance Z j s 

equivalent one also. Since P,, Wm, and We are all proportional to | /" | 2 _ 
hence also proportional to |7 |2 in view of the linearity of the field equations 
the equivalent resistance R and reactance X in (4.14) are independent of 
the amplitude of the incident wave. 

By replacing 7* by Y*V* in (4.13), we obtain, after taking the 
complex conjugate, 

(4.15) 

for the input admittance of the one-port device. The susceptance B is 
positive (capacitive in nature) only if We > Wm. 

The evaluation of an input impedance by means of the general defini
tion (4.14) will be carried out for the simplest case, that of a short-circuited 
coaxial line. In the short-circuited coaxial line of Fig. 4.1, the fields in the 
one-port device are given by 

V+ 
a . 

E = 

H = 

(e ->*o* _ PJku' 

l n ( 6 / a ) r 

\n{b/a) r v 

) 

) 

since the electric field must vanish at the short-circuited position z - O.u 
the terminal plane is located at z = -I, then 

4 ^0 Ja J-l 

27re0 |V+|2 

Similarly, it is found that 

Wm = 

l n ( 6 / a ) 

TT6 0 |V - | 2 

l n ( 6 / a ) 

l n ( 6 / a ) 

- / sin2 k0zdz 
J-l 

l -
sin 2k0l 

2kn 

1 + 
sin2A:0/ 

2A„ 
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The total current at the terminal plane at z = - / is 

/ = YcV
+(ejk°' + *-**»<) = 2YCV~ cos k0l 

Using (4.14) now gives 

4ja>ire0\V*\2 sm2k0l 
Zm = l n ( 6 / a ) A 0 (4Y r

2 |V + | 2 )cos 2 V 

j(OTre0 s in2/ ; 0 / 
= i5wiSwv'AlmW (416) 

on using the relations Yc = 2vY0/[]n{b/a)], sm2k0l = 2 sin kj cos k0l, 
and k0 = w(/ i 0 e 0 ) ! / 2 . This result for the input impedance of a short-cir
cuited coaxial line, as obtained from the general definition (4.14), agrees 
with the simple computation based directly on expressions for the total 
voltage and current at the terminal plane. However, the purpose of intro
ducing (4.14) was not as a computational tool, but rather for the physical 
insight it provides into the nature of the impedance function for a one-port 
circuit. 

The second example of a one-port circuit as illustrated in Fig. 4.1 
cannot be evaluated in as straightforward a manner as for the coaxial line 
because it does not consist of a uniform unperturbed waveguide. The 
presence of a conducting post within the termination results in induced 
currents on the post that will excite a multitude of waveguide modes. 
However, since it is assumed that only one mode propagates (the TE I 0 

mode), all the other modes decay exponentially in both directions away from 
the post. By choosing the terminal plane sufficiently far away from the post, 
the fields at this plane are essentially just those of the incident and reflected 
dominant modes. The evanescent modes excited by the post will store 
reactive energy, and this will contribute to the input reactance as viewed 
from the terminal plane, as reference to (4.14) shows. The presence of the 
post within the termination modifies the input reactance by changing the 
amplitude of the reflected dominant wave in just the right amount to 
account for the additional reactive energy stored. 

As seen from the preceding discussion, it is important when dealing 
with waveguide structures to choose terminal planes sufficiently far away 
from obstacles that excite evanescent modes, so that only dominant-mode 
fields have significant amplitudes at these reference planes. This will ensure 
that all the reactive energy associated with the nonpropagating modes that 
make up the fringing field around the obstacle is taken into account in the 
expression for the input reactance. This precaution is particularly important 
in any experimental setup used to measure the impedance function for a 
particular obstacle. Once the impedance has been properly determined at a 
given terminal plane, it may be referred to any other terminal plane by 
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using the impedance-transformation formula 

Z ( / , ) +jZetan 

Ze +jZ{ll)tanp{l2-ll) 
Z(l)=Z Z ( / ' ) + ^ t a n f f ( / 2 - / 1 ) 

2' ' Z,. + iZ(L)tanB(lo - L) (4. 

where lx is the location of terminal plane 1 and /., specifies the locatin 
the new terminal plane. In particular, shift in the terminal-plane positm*1)! 
a multiple of Ag /2 leaves the impedance invariant. Thus an impedance 
be referred to terminal planes located in the near vicinity of an obst ? 
where now it is understood that this impedance describes the effect of th* 
obstacle on the dominant mode only, and does not imply that the total fiet' 
at this particular terminal plane is that of the dominant mode only. In oth 
words, the impedance description of a waveguide element or obstacle give, 
information on the effect this element has on the dominant propagating 
mode but does not give any information on the detailed field structure near 
the obstacle. Fortunately, the latter information is rarely required. 

L o s s l e s s O n e - P o r t T e r m i n a t i o n 

If there are no losses present in a one-port circuit, the input impedance is a 
pure reactance given by 

jX^J^f31 (,18) 

The assumption of a lossless structure is often a very good approximation 
for microwave circuits. If Wm = We, the input reactance vanishes and a 
condition of resonance exists. There are actually two possibilities, namely, 
Wm = We but I * 0, and W„, = Wc but V * 0. The first corresponds to a 
zero in the input reactance (series resonance), whereas the second corre
sponds to a zero in the input susceptance (parallel resonance) as given by 

_ *MW,-Wm) 19) 

vv* 
When the input reactance is zero, the input susceptance must be infinite, 
which implies that V = 0 at the terminal plane. This latter condition u 
possible since, for a pure reactive termination, all the incident power 
reflected, so that the total voltage along the waveguide is a standing w a v e , 
the form sin /3/. In the case of a zero for the susceptance function #. 
reactance X must be infinite (have a pole) and / must vanish at 
terminal plane. It may be anticipated, then, that the reactance and sus 
tance functions will have a number of zeros and poles, i.e., frequencies^ 
which they vanish or become infinite. This behavior is clearly evident in 
expression for the reactance of a short-circuited coaxial line, which is 

oil , A on) 
jX = jZc tan k0l =jZc t a n — (*•' 

c 



CIRCUIT THEORY FOR WAVEGUIOING SYSTEMS 2 2 9 

FIGURE 4.2 
Input reactance of a short-circuited coaxial line. 

A plot of X against frequency is given in Fig. 4.2. In particular, note that 
the slope of the reactance is always positive; that is, dX/dcu > 0. This 
positive-slope condition means that the poles and zeros of X must alternate 
as to is increased from zero to infinity. We shall show below that this is a 
general property of any reactive one-port circuit, a result known as Foster's 
reactance theorem. First, however, it will be instructive to rewrite (4.20) by 
using the infinite-product representation and also the partial-fraction ex
pansion of the tangent function^ 

X = 2(. tan k0l = 

0)1 « 

L n= 1 
1 -

,„/ 
T17TC 

n 
n = 0 

1 -
(ay 

(* + i)Ver 

= Z„ 
2wc 

L 
' B - i . 3 . . . . (nirc/2iy 

(4.21) 

The first form contains the product of an infinite number of factors in both 
the numerator and denominator and clearly exhibits both the zeros and 
poles and their alternating occurrence. The second form exhibits the poles 
very clearly, but information on the zero locations is lost. In the vicinity of a 
pole, say that at w = to,, = nvc/2l, all terms in the partial-fraction expan-

tE. A. Guillemin. " T h e Mathematics of Circuit Analysis," chap. 6, John Wiley & Sons. Inc.. 
New York, 1949. 

E. T. Copson, "Theory of Functions of a Complex Variable," Oxford University Press. Fair 
Lawn. N.J., 1935. 

J. Pierpont, "Functions of a Complex Variable," Dover Publications, Inc., New York. 195S. 
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sion are small except the nth term, so that 

2wc Z.. 
X « 

cZ„ 

I (co„ - u>)(ion + a>) l(w„ - w) (4. 

since w ~ u>„. This behavior near a pole is similar to that for a s 
parallel network for which 

X = 
— coL 

lLC- 1 

22) 

simple iC 

(4.23, 

m^t 
where w0 = (LC)'1/2. However, the microwave network is a good deal 
complicated, for it has an infinite number of poles and zeros, and not just" 
double zero and a single pole as a simple parallel LC circuit has [the zero 
occur at w = 0, where wL vanishes, and at infinity, where (wC) ' vanishes! 
These similarities and differences are important to note since they are 
characteristic of microwave networks in general, even though we have 
demonstrated some of these properties for a short-circuited coaxial line 
onlv. 

*4 .3 F O S T E R S R E A C T A N C E T H E O R E M 

The theorem that will now be proved is that the rate of change of the 
reactance X and susceptance B with o> is positive. Once this result is 
established, it follows that the poles and zeros of a reactance function must 
alternate in position along the o> axis. Figure 4.3 illustrates a general 
one-port reactive termination. The field within the termination satisfies 
Maxwell's equations 

V X E = - j u j i H V X H =jaieE 

The derivative with respect to w of the complex conjugate of these equations 
gives 

V X 
r»E« 3H* 

= ja>ix~ + ; H 
dwfi 

tS ti> diss 

Consider next the quantity 

VX 

E x 
(9H* 

do) 

dE* 

Ho) 
X H = V X E 

+ V X 

rlH* dE* 9a€ 
-jwe y E * — 

do) 

<9H* 
- E - V X —— 

00) 

r?E* dE* . , 
H V X H 

do) do) 

v", -r 
FIGURE 4.3 
A one-port reactive termination, 
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Substituting from above gives 

( <?H* <?E* \ I a <?ft>M due \ 
V - E X — + X H = j H - H * - — + E - E * — 

\ dto dto I \ "to ''to J 
I SB* dH* dE* 3>E* 

+ jeo\fiH • ^H • —— + eE • eE dto dto dot dtx) 

The second term on the right-hand side vanishes; so we have 

dH* dE* \ / dun Otoe \ 
E X + — X H =j H • H * ^ — + E • E * -

dto dto J \ dto do) j 

If we integrate throughout the volume of the termination and use the 
divergence theorem on the left-hand side, we obtain 

, / dH* dE* \ e ( Own dtoe \ 
(6 E X + X H \-dS= -jf H H * + E - E * — \ dV 
?S\ do) do) I Jv\ dto doj ) 

= -4j(Wm + We) (4 .24a) 

where W„, + Wc is the total time-average energy stored in the lossless 
termination, as reference to (2.53) in Sec. 2.5 shows, and dS is chosen 
directed into the volume. 

Since both n X E and n X dE/dto, where n is a unit inward normal, 
vanish on the perfectly conducting waveguide walls, the surface integral 
reduces to an integral over the terminal plane t only. On the terminal plane 
we have 

./ dU* dE* \ dl* dV* 
H E X + xH - n d S = V + —~1 (4.246) 

- ' ( \ dto dto j du> dto 

where V and / are the equivalent terminal voltage and current. Now 
V = jIX for a lossless reactive termination; so 

dV* dl* dX 
= -jX jl* — 

dto dto dto 
dl* dV* dl* dl* dX 

Thus V + / =jXI jXI- jB*-r-
d<i) do) dtti dto out 

and hence we find that (4.246) yields 

dX 

d(o 

ax MW„ + wf) 
to JF ( 4 2 5 ) 

The right-hand side is proportional to the total energy stored in the 
termination and can never be negative. Consequently, the slope of the 
reactance function must always be positive. If / is replaced by jBV in 
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(4.246), it is readily found that 

dB 4 ( W m + W e ) 

dco ' W* (4.26) 

and hence the susceptance is also an increasing function of frequency m. 
above relations also show that the frequency sensitivity of the reactance 
susceptance is proportional to the total average energy stored. These rel^ 
tions are readily verified in the case of simple LC reactive networks and 
problem calling for this verification is given at the end of this chapter. 

*4.4 E V E N A N D O D D P R O P E R T I E S O F Z , 

Before terminating the discussion dealing with one-port impedance func. 
tions, one further general property should be pointed out. This property jg 
that the real part of Zm = R + jX is an even function of w, whereas the 
imaginary part is an odd function. The physical necessity of this was pointed 
out in the previous chapter in the section dealing with group velocity. The 
property stems from the requirement that the response of a circuit to a 
real-time-dependent driving function must also be real. That is, if W(t) is 
the applied voltage at the terminal plane, the frequency spectrum is given 
by the Fourier transform: 

V(a>) = f e~>"r(0 dt (4.27) 

The frequency spectrum of the current that flows is 

«-> -m - ̂  
The current as a function of time is 

v 2irJ-*R((o) + jX(u>) 

and must be a real function. This will be the case if 

V(-a>) V*(<o) 

R(-w)+jX(-<») ~ [«(*») +jX(a>)]* 

for then (4.29) becomes 

i V(o>)eja" J_ f0 V{io)eJ"' J_ ,= 
^ ~ 2^LXR(OJ) +jX(w) ^ + 2irJ0 2vJ0 R(o>) + jX{u>) 

which we can show is a real function. In the first integral on the rig1 
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replace w by ~u> to obtain 

6~ JQ 

V(-oj)e —Jiul 

-f 
V(»)e JU,( 

R( - a , ) + ;X( -at) R(u>) +jX(w) 
dot (4.30) 

The two terms in the integrand are complex conjugates of each other, and 
hence the sum is real; i.e., 

S(t) = —Re/" ' 
V(a)e jat 

* aim) +M«Jdl* (4'31) 

The condition specified on V/{R + jX) is satisfied by V alone and by 
R + jX alone. Clearly, from (4.27), V(~a) - V*U) . If 

R(-to) + jX(-co) = [R(<o) +jX(<o)}* 

then S ( -» ) -£ (« ) X(-w) => -X(o>) 

and R is an even function of w, whereas X is an odd function of to, as was 
to be proved. These even and odd properties are useful to know when 
approximate expressions for impedance functions are constructed from 
experimental data. For example, a series such as 

a,to a-Aco' + a5u> + • 

could be used to represent X, but not to represent R, since the series is an 
odd function of o». 

AT-PORT C I R C U I T S 

Figure 4.4 illustrates the junction of JV waveguides or transmission lines (or 
a combination of the two) that terminate in a common region or junction. 
The region between the N chosen terminal planes may contain any arbi
trary collection of passive elements. If each guide can support only one mode 
of propagation, this circuit constitutes an iV-port microwave circuit. If one 
or more of the guides can support several independent modes of propaga-

•v.-vOV/, v 
FIGURE 4.4 
An A/-port microwave circuit. 
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tion, the number of electrical ports exceeds the number of mechanical 
Each mode, since it carries power independently of all other modes P°*t*-
sponds to an electrical port through which power may enter or lea **** 
junction. To simplify the discussion, it will be assumed that each ' 
supports only a single propagating mode. The extension of the theory t e 

case when some or all of the guides may support several propagating J* 
is more or less obvious. ' ,:' -

Let the terminal planes be chosen sufficiently far from the juncti 
that the fields on the terminal planes are essentially just those of tl" 
incident and reflected dominant propagating modes. These fields may J 
uniquely defined at the terminal planes in terms of suitably defined equiv 

lent voltages and currents. Clearly, the amplitudes of all the incident wav<* 
may be arbitrarily specified, i.e., chosen independently. The amplitudes of 
all the reflected waves are then determined by the physical properties of the 
junction; i.e.. all the V~ are linear functions of the V,,'. When the Vn* and V" 
are known, the corresponding currents I*, I„ are known from the relations 

' n *nrn 7-= y y -
* n * r, ' n 

Since Maxwell's equations are linear and the junction is assumed to be 
linear in its behavior, any N linearly independent combinations of the 4iV 
quantities V,*, V„~> J„, and In may be chosen as the independent variables 
to describe the electrical behavior of the junction. For an impedance descrip
tion the total currents /„ = /*— J~ at the terminal planes are chosen as 
independent variables. The N total terminal-plane voltages V„ = V*+ V„~ 
are then the dependent variables, and are linearly related to the currents as 
follows: 

V, 

V, N 

Zn 
Z» '22 %2S 

JN1 zm 
JNN 

h 
h 

1 N 

(4.32) 

The matrix of elements Z,y is the impedance matrix and provides a com
plete description of the electrical properties of the N-port circuit. Some 0 
the properties of this impedance matrix are discussed below. 

If the junction contains a nonreciprocal medium such as a plasm 
(ionized gas) or a ferrite with an applied dc magnetic biasing field (fern 
are discussed in Chap. 6), then, in general. Z , ; * Z ; 1; that is, the impedance 
matrix [Z] is not symmetrical. The junction then requires 2N2 parame 
to describe it completely since each Z{j is complex and has two indepen 
terms. If the junction does not contain any nonreciprocal media, Z,j ** /j" 
and the impedance matrix is symmetrical. In this instance a total 01 ° • 
2N2 - (N2 - N) = N{N + 1) independent parameters are required to 
scribe the junction since N2 - N of the parameters are equal. Finally. » l. 
junction is lossless—and many microwave junctions may be approxiifl3 

as such with negligible error—then all the Z,j must be pure imag"1 • 
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since there can be no power loss within the junction. In this case there are 
only ^N(N + 1) independent parameters required for a complete descrip
tion. Any network containing the required number of resistive and reactive 
elements may be used as a representation for the junction at a given 
frequency. However, it must be kept in mind that when the frequency is 
changed, the values of the network elements (resistance, capacitance, and 
inductance) must also be changed. Rarely would any one particular network 
representation provide a complete description of the junction over a band of 
frequencies unless the network parameters are changed in value when the 
frequency is changed. 

The foregoing discussion applies also to the admittance matrix [Y], 
which relates the currents to the total voltages at the terminal planes; i.e., 

h M l M 2 M 

Y,2 

N 

•2N 

' .VI y, N2 yw,v NN 

v, 
V, (4.33) 

The impedance and admittance matrices are reciprocals of each other; so 

[Y] = [Z] ' (4.34) 

o f o f S y m m e t r y f o r t h e I m p e d a n c e M a t r i x 

The symmetry of the impedance matrix is readily proved when the junction 
contains media characterized by scalar parameters u and e. Let incident-
wave amplitudes V^ be so chosen that the total voltage V„ equals zero at all 
terminal planes except the i th plane. Let the corresponding field solution be 
E j , H ( . Similarly, let a second solution E J ( H correspond to the case when 
incident-wave amplitudes are chosen so that all V„ equal zero except Vy The 
Lorentz reciprocity theorem [Eq. (2.135)] gives 

j>(E, x Hj - Ej x H, ) • n dS = 0 

when there are no sources within the closed surface S. Let S consist of the 
conducting walls bounding the junction and the N terminal planes. The 
integral over the walls vanishes if they are perfectly conducting or if they 
exhibit a surface impedance Zm (Sec. 2.12). Therefore we obtain an integral 
over the terminal planes only, i.e., 

N 

£ j (E, X H, - Ej X H , ) • n dS = 0 (4.35) 
n - 1 'n 

However, for the particular solutions considered here, n X E, and n X E ; , 
that is, Eti,E,j are zero on all terminal planes except tf and t,, respectively, 
since all Vn except V^ and V, have been chosen equal to zero. Thus (4.35) 
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becomes 

/"E, X H, • n dS = [E. X H, • n dS 
J'. J'J 

where (I,-), is the current at the terminal plane i arising from an annl' 
voltage at plane ./', and similarly for (/,), . From the admittance descrinf 
(4.33) of the junction, we have 

£«( / , ) , -W forK = e,»#i 
Hence (4.36) gives 

or 

VVY = VVY 

Y = Y (4.37) 

which proves the symmetry of the admittance matrix. Since the reciprocal 
of a symmetrical matrix is a symmetrical matrix also, it follows that the 
impedance matrix is also symmetrical. The symmetry of the impedance and 
admittance matrices is a consequence of reciprocity. For nonreciprocal 
media, /x or e (or both) are nonsymmetrical matrices, and (2.135) no longer 
applies. In this case the impedance matrix is no longer symmetrical. Nonre
ciprocal microwave devices are discussed in Chap. 6; so no further com
ments on these are made in this section. 

*Proof of Imaginary Nature of [ Z] for a Lossless Junct ion 

For a lossless junction all the elements in the impedance and admittance 
matrices are pure imaginary. Let [V]] and [/] be column matrices represent
ing the terminal voltages and currents, respectively. The transposed matri
ces [V ] , , [ / ] , are row matrices of the form 

The total complex power into the junction is 

IN] 

1 £ £ i:znmim = P, + 2>( wm - we) 
n *» 1 m — 1 

For 
Since 

aginary-or a lossless junction P, =* 0 and the double sum must be pure imag"1* -^ 
ince the /„ can be chosen as independent variables, they may all be chose 
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as zero except for the n th one. In this case 

Re(/n*Zn„/„) = 0 

or ReZ„„ = 0 

If all but /„ and lm are chosen equal to zero, we obtain 

•&z[{i*im + 1 * 4 ) 2 , . + ini*znn + imi%zmm\ = o 

But I„ I*, / „ , / * , and I*Im + I J* are all real quantities and Znn, Zmm are 
imaginary; so this equation can hold only if 

ReZ„„, = 0 

Therefore all Znm are pure imaginary for a lossless junction. 

alized Impedance and Admittance Matrices 

Let us assume that we have chosen equivalent voltages and currents Vn, /„ 
so that the n th equivalent transmission line has a characteristic impedance 
Zn given by 

V+ V 
n~ ~F ~ T 

For an N-port circuit the impedance description is given by (4.32). The 
impedance-matrix elements are Znm. We now wish to redefine the equiva
lent voltages and currents so that each transmission line has unity charac
teristic impedance and to find the new impedance-matrix elements which 
will be designated by Znm and called normalized elements. 

Let the new voltage and current amplitudes be V,f, V„~, /*, and 7„. In 
order to have the same power flow, we require 

•lvn ln 2vn1n 

We can express the power flow in the following two equivalent ways also: 

since for the normalized voltage and current amplitudes Vn*/7*= 1. From 
the last two relations for power flow, we see that the normalized voltage and 
current amplitudes are given by 

i:=yfz;i: 
From these relations it readily follows that 

K = fcvn /„ = {z~j„ 

and V„ = JZ~nVn In = JTJn 
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If we substitute from these expressions into (4.32), we obtain 

\V1 

% 
— 

% . 

{Yy 0 0 

0 0 

IT, o •• 

x 

fY~i 0 

0 fc 

I 
YxZn 

0 

0 

)/YN Vf 

V, 

"J 
Q 

0 

^11 2 , 2 

z0 J21 

' .Y l 

0 

0 

ffi 

4 

Jl>J 

' W 

"2.V 

'AW 

21 

<Y,Y2ZX2 

Y%Z22 

}/YtYNZ1N 

y/Y^Z, 2N 

}/Y^Y~1Zl .VI Yf,-ZNN '.v 
From this expression, we see that the elements of the normalized impedance 
matrix are given by 

nm~ y[Z~ZB 

(4.38a) 

A similar analysis shows that the elements of the normalized admittance 
matrix are given by 

Y 

4.6 T W O - P O R T J U N C T I O N S 

(4.386) 

At this point it seems advisable to examine the special case of the two-P0*1 

junction rather than continue with the general theory of /V-port circuit* 
The derivation of some further properties of the TV-port junction is calle° 
for in some of the problems at the end of this chapter. Three examples °f 
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two-port junctions are shown in Fig. 4.5. The first is the junction of two 
rectangular guides of unequal height (called an .E-plane step since the E 
vector of the TE I 0 mode lies in the plane containing the step geometry). The 
second is a symmetrical junction consisting of two similar rectangular 
guides joined by an intermediate guide of greater width. The third two-port 
junction consists of a typical coaxial-line-waveguide junction, where the 
center conductor of the coaxial line extends into the rectangular guide to 
provide an antenna radiating energy into or coupling energy out of the 
rectangular guide. A discussion of these particular junctions will serve to 
develop the general impedance description of two-port junctions or circuits. 

Since evanescent modes are excited at each discontinuity, the terminal 
planes are chosen far enough away so that these decaying waves have 
negligible amplitudes at the terminal planes. Equivalent voltages and cur
rents are introduced proportional to the total transverse electric and mag
netic fields, respectively, at each terminal plane. For example, for the 
junction in Fig. 4.5a, let the incident and reflected transverse fields of 
the TE1 0 mode at each terminal plane be (coordinates x,y, z refer to the 
left-hand-side guide, and the primed coordinates x',y', z' refer to the right-
hand-side guide, as in Fig. 4.6) 

E, = (CjV*"' + C f e - ^ ' J a , s i n — at t t 

2 

H, = -Yw(C{ejl3'> - C f e - ^ ' ^ a , s i n — at (% 

E, = (C, V 3 ' 2 + Cje-Jli'')ay sin at t 

H, = YjCieP"* - C2 e ~ ^ ) a x sin at t2 

These expressions are obtained by choosing hs = (JTrYw/lia)cos(Trx/a) in 
order to simplify the expressions for the transverse fields. Let the equivalent 
voltages and currents be chosen as 

V,+ = Kfif eJ,sl' V{ = Kfiie ~m' 

V2' = K2C;eJli'* V2~ = K2C2 e **** 

I2 = YwK2C;e*
1* /, = YwK2C2e ~** 

In order to simplify the notation, we have expressed Kn as Kx imd 
K2l as K2 and eliminated the second constants Kl2 and K22 by introduc
ing the wave admittance using (4.6). Thus the characteristic impedance of 
the equivalent transmission line is equal to the wave impedance Zw = Y~J 

of the TE1 0 mode. To conserve power, it is necessary to choose Kx and K2 
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I- A — f c i _ h — I- i 
— 

_i 5, 
4 — « 

i 
** j t * 

« fa) « 

T " 1 
r * - M f ^ 2 ~ 

L 

(4) 

ki 

i t * 

[el 
F I G U R E 4.5 
Examples of two-port junctions. 

0'" FIGURE 4.6 
'* Coordinates used to describe th 

junction in Fig. 4.5a. 

SO that 

r*i_.*vx 
Vtm)* = YwK?\Ctf = r j C j f f P s i n 2 — dxdy 

Jo Jo a 

or K, = y[abj2 and 

* ? ( # ) " = r^ l lC^I 2 = yjC 2
+ | 2 /"° /" 6W— dx'dy' 

Jo Jo a 
or K2 = jab2/2 . 
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FIGURE 4.7 
Equivalent circuits for a lossless two-port circuit. 

If we use the above equivalent voltages and currents, we have 

fvll 
V2. 

= 
2 j i Z12 

Z\-i ^22 

V 
h 

as a suitable description of the E-plane step. An equivalent circuit consist
ing of a T network joining two transmission lines as in Fig. 4.7a provides a 
convenient equivalent circuit for the junction. Other equivalent circuits are 
also possible. In particular, if the junction is lossless, any circuit consisting 
of three independent parameters may be used. Figure 4.76 illustrates a 
circuit consisting of two lengths of transmission lines of length d1 and d2 

connected by an ideal transformer of turns ratio ml. Figure 4.7c is a 
variation of this circuit, where the transmission lines are replaced by 
reactive elements jXy and jX2. The parameters of any one of these circuits 
may be expressed in terms of the parameters of any of the others. The 
required derivations may be carried out in the usual manner. 

The foregoing discussion applies equally well to the other two-port 
junctions of Fig. 4.5 provided suitably defined voltages and currents are 
introduced. Likewise, the equivalent circuits of Fig. 4.7 may be used to 
describe the behavior of these other junctions. Although general forms for 
the equivalent networks can be readily specified, the values of the parame
ters are not so easily found. In some cases the network parameters can be 
evaluated analytically, whereas in many other cases they must be deter
mined by experimental measurements.! 

+For typical analytical solutions and the methods employed, see R. E. Collin, " Field Theory of 
Guided Waves," 2nd ed., IEEE Press, Piscataway, N.J.. 1991. 
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« • " ! 

J* 

(a) 

{b\ 

- i 

Z* 

V.a 

h 

Z* 

[el 

FIGURE 4.8 
Equivalent circuits for a symmetri
cal two-port junction. 

Fo r t h e j unc t i on of Fig. 4 .56, perfect s y m m e t r y exists about the 
midplane , and hence the equivalent impedance mat r ix has Zu = Z2 2 . For a 
lossless junc t ion of this type, t h e equivalent circuit can be any circuit 
conta in ing two independent pa r ame te r s in a symmetr ica l connection. Some 
typical c i rcui ts t h a t may be used a re i l lus t ra ted in Fig. 4 .8 . 

T h e foregoing discussion could be r ephrased so as to apply to the 
admi t t ance-mat r ix represen ta t ion as well; i.e., 

h 
Y 

12 

12 Y. 22 V-2 
(4.40) 

T h e basic equivalent circuit described by (4.40) is the II ne twork 
illustrated 

in Fig. 4.9. 

E x a m p l e 4 .1 , To illustrate the use of equivalent circuits (assuming that tnei 
parameters are known at each frequency of interest), consider the coaxial 
line-waveguide junction of Fig. 4.5c. Let a generator of internal impedance e 

be connected to the coaxial line a distance / from the terminal plane tv L e t 

output guide be connected to a load that is matched to the guide, i.e., ^ 
presents an impedance 1W at the terminal plane t2. The overall circuit is 
illustrated in Fig. 4.10a. We wish to evaluate the power transmitted to 

FIGURE 4.9 
Equivalent circuit for admittance matrix 
two-port junction. 

of* 
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*c Az 

ie) 

i\ 

(A) 

FIGURE 4.10 
Equivalent circuit for generator connected to a coaxial-line-fed waveguide 

load and the standing-wave ratio on the input line. The equivalent transformed 
load impedance at the plane tx is found by conventional circuit analysis to be 

Z-l. - Z\\ r, 
Zf2 

^22 + Zu 

(4.41) 

This impedance is transformed by the length / of coaxial line into an impedance 

ZL +jZc tan pi 
Z'L = Z, Zc + jZL tan fil 

(4.42) 

at the generator terminals as in Fig. 4.106. This reduced circuit is easily 
solved. The current supplied by the generator is 

ZS + Z'L 

and the power delivered to Z'L is 

P = i | / J 2 Re Z-L 2 " * ' 

(4.43) 

(4.44) 

If the coaxial line and junction have negligible loss, this is also the power that 
is delivered to the load. 

To compute the standing-wave ratio, note that the effective impedance 
terminating the coaxial line at tx is ZL. Thus a reflection coefficient I' given by 

r = 
zL - zc 

zL + zc 
(4.45a) 

is produced. This reflection results in a standing-wave ratio S given by 

i + iri 

s = i - in 
(4.456) 

The reflection coefficient and standing-wave ratio depend only on the effective 
terminating impedance ZL. 
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Maximum power will be delivered to the load if Zg is made equal t 
complex conjugate of Z\, just as in the case of a low-frequency circuit n J 
low-frequency network theorems may also be applied. For example, Thev 
theorem may be applied at the terminal plane t2 to reduce the circuit t n" S 

equivalent generator with a new voltage Vg and a new internal impedance 7? 
The new impedance is readily found by transforming Zg to an equjVai * 
impedance n t 

Zg + jZ, tan (3/ 
Zgt = ZcZc + jZg tan pi (4.46) 

at the plane /,. When viewed through the junction, this impedance appears as 
an impedance 

z; ~z'22" z z ^ e
 ( 4 - 4 7> 

at the terminal plane t2-
The evaluation of the open-circuit voltage at t2 is not quite as 

straightforward. However, by using Thevenin's theorem twice in succession, 
the desired result can be deduced with a minimum of labor. We first construct 
a Thevenin equivalent circuit at plane /, . The equivalent internal generator 
impedance to use here is Zge given above. Let the voltage waves produced by 
the generator when the coaxial line is open-circuited at I, be 

¥*«-*• + ?-#*' 
where z is measured from the generator. At z = / the coaxial line is open-
circuited; so the total current 

must vanish at z = 1. Thus V = V+e~2jl". Hence, at the generator end where 
z = 0, 

V(0) = V ' ( l + e - 2 ^ ' ) 

/ ( 0 ) = Y c V J ( l - e - 2 ^ ' ) 

But 7(0) = Ig and Vg = IgZg + V(0); so 

V(0) = V + ( l + e"*"") - Vg - lgZg =Vg- I(0)Zg 

= Vli-YiV'Ze(l-e -™>) 

When we solve for V' we obtain 

V* = 
(4.48) 

(1 + YcZg) + (1 - YcZg)e-W 

The open-circuit voltage at t1 is now readily found to be 

V^ = v+e-Jf" + Ve-"" - 2V*e-
m 

2V
g

e'JP' /4.4»). 
" (l + YcZg) +(l-YcZg)e W 

The Thevenin equivalent circuit at tl is that illustrated in Fig. 4.H-

(*•' 
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FIGURE 4.11 
Thevenin equivalent circuit at 
terminal plane /,. 

FIGURE 4.12 
Thevenin equivalent circuit at terminal plane t2-

Application of Thevenin's theorem once more in the usual manner leads 
readily to the circuit of Fig. 4.12, where Z'g is given by (4.47) and V^ is 
given by 

V" 
zv/v,„. 

Zii 
(4.50) 

The reader may readily verify that the power delivered to Zw as computed 
from the circuit of Fig. 4.12 is the same as that given by (4.44) (assuming no 
circuit losses), i.e.. 

1 
P = 2 

vi 
Z'e + Z„ 

(4.51) 

and is equal to (4.44). When there are circuit losses, not all the power delivered 
to the equivalent load impedance Z'L of (4.44) is absorbed in the load Zw. 
However, (4.51) does give the correct power delivered to the load even if other 
circuit losses are present. An alternative way of solving the problem is to 
replace the coaxial line by an equivalent T network also (Prob. 4.9), in which 
case the circuit is reduced to a conventional lumped-parameter network. 

e Equivalent Two-Port Circuits! 

Figure 4.13 i l lus t ra tes a n u m b e r of useful equivalent circui ts and some of 
the i r duals for r ep resen t ing lossless two-por t junc t ions . T h e impedance 
p a r a m e t e r s Zn, Z22, and ZVi a r e given below in t e r m s of t h e ne twork 
p a r a m e t e r s , and vice versa. T h e same equa t ions apply for t h e admit 
tance p a r a m e t e r s for the dual ne twork (replace Zn by V",,, Z„ by Y0, etc.). 
Note t h a t in the dual ne tworks , the t u r n s ra t io of t h e ideal t r ans fo rmer s a re 
reversed. In addi t ion, note t h a t Z 0 in these circuits i s an independent 

tThe material in this section has been reproduced in modified form from C. G. Montgomery, 
R. H. Dickc, and E. M. Purcell, "Principles of Microwave Circuits." pp. 105-108. McGraw-Hill 
Book Company, New York, 1948. 
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parameter or characteristic impedance and does not equal ( M o / e ) i / 2 

(a) Zn = -jZ0 cot 01 

Z22=Z-jZ0 cot pi 

Z 1 2 = ±jZ0 CSC pi 

(b) Zu=Z{-j cot pi 

Z
22 = Z2 -jCOtpl 

ZI2 = ± 7 CSC pi 

If pi = TT/2. choose 

Zu = Z, 

Z-Z2 = Z2 

Z — Z22 Z u 

cos pi = - i i 
* t 8 

Z0 =./21: 1 -
7 \ 2 

Z\% 

1/2 

12 Zx = Zu + yfiTz*. 

Z2 = Z22 + / l + Zfj, 

sin Pl= ± — 
z-12 

Z[ = Z,, 

z2 = z 22 

(c) 

Zl2 ~jZ0 

z\ i = - . /Z 0 cot /3/ cos / » = 

Z„ 

Z0 = - j Z 1 2 * 1 

\ZV1Z22 

'12 

Z2 2 = - i cot pi Z„ = -jZu\ 
72 

^ 1 2 

Z u Z 2 2 

(rf) 

(e) 

Zl2=j—esc pi 
n 

Zu = -j cot pi 

Z22 = Z cot pi 

ZX2 = — esc pi 

Zn =Z1+ n% 

Z22 — Z2 

Z 1 2 = ±nZ2 

n = ' u 
'22 

cot pl=jZu 

n = 
' 12 

z = z. 
z u z? 12 

22 
1-Zfc 
zf2 

Zi - Z u - — -
•^22 

Z o = Zoo 

rc = 
•"22 
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FIGURE 4.13 
Some equivalent circuits for lossless two-port junctions. 

t 
> • 1 

* Y 

\ 
I f l l (duoi) 

I 

1 
^ 0 = ' Y* 

- 1 D 0 J o 

An equivalent circuit incorporating a length of transmission line is 
particularly convenient to use since a shift in one (or both) of the terminal 
planes will reduce the circuit to a very simple form. For example, let the 
equivalent circuit of Fig. 4.13c be used to represent the junction in Fig. 4.14 
between the terminal planes tx and t2. If the terminal plane <, is shifted a 
distance /' to the left so that pU + I') = w, that is, I + I' = A g /2 , then the 
equivalent circuit has a section of transmission line one-half guide wave
length long. But since impedance is invariant to a transformation through a 
half-wavelength-long section of transmission line, this being equivalent to a 
1:1 turns-ratio transformer, the section may be removed and the equivalent 
circuit reduces to a single ideal transformer. This new circuit represents the 
junction between the new terminal planes t\ and t2. 
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«:i 

/o FIGURE 4.14 
A junction and its equivaW 

t7 circuit. 

SCATTERING-MATRIX F O R M U L A T I O N 

The preceding section dealing with the impedance description of microwave 
circuits is in many respects an abstraction since the voltages, currents, and 
impedances cannot be measured in a direct manner at microwave frequen
cies. The quantities must therefore be regarded as secondary, or derived, 
quantities. The quantities that are directly measurable, by means of a small 
probe used to sample the relative field strength, are the standing-wave ratio, 
location of a field minimum position, and power. The first two quantities 
lead directly to a knowledge of the reflection coefficient. The measurement 
of power is needed only if the absolute value of the field in the device needs 
to be known. Another parameter that is directly measurable is the transmis
sion coefficient through a circuit or junction, this being a relative measure
ment of the amplitude and phase of the transmitted wave as compared with 
those of the incident wave. In other words, the directly measurable quanti
ties are the amplitudes and phase angles of the waves reflected, or scattered, 
from a junction relative to the incident-wave amplitudes and phase angles. 
Again, in view of the linearity of the field equations and most microwave 
devices, the scattered-wave amplitudes are linearly related to the inciden -
wave amplitudes. The matrix describing this linear relationship is called t 
scattering matrix. , 

Consider the N-port junction of Fig. 4.15. If a wave with an associate* 
equivalent voltage V,+ is incident on the junction at terminal plane t\> 
reflected wave SnV,+ = V,~ .will be produced in line 1, where Sx\ & 
reflection coefficient, or scattering coefficient, for line 1, with a wave 
dent on, line 1. Waves will also be transmitted, or scattered, out of the o 
junctions and will have amplitudes proportional to V,+. These aropl l tu 

can be expressed as V~ = SnlVf, n = 2,2,...,N, where Snl is a t r a n s ^ 
sion coefficient on line n from line 1. When waves are incident in all ' 

the scattered wave in each fine has contributions arising from all tb« 
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FIGURE 4.15 
An N-port junction illustrating scat
tered waves. 

incident waves. Thus, in general, we can write 

or 

= 

^ 1 1 S 1 2 

S2 l S22 

^ 1 3 

^ 2 3 &2N = 

SNl SN2 

[v-] 

&N3 

= [S][V+] 

SNN 

vr 

v; 
(4.52a) 

(4.526) 

where [ S ] is called the scattering matrix. 
When dealing with the scattering-matrix description of a junction, it is 

convenient to choose all the equivalent voltages (and currents, which, 
however, do not enter the picture explicitly) so that the power transmitted 
is given by 5|V„+|2 for all values of n. This corresponds to choosing the 
equivalent characteristic impedances equal to unity.t The main reason for 
doing this is to obtain a symmetrical scattering matrix for reciprocal struc
tures. If this normalization is not used, then because of different impedance 
levels in different lines, the scattering matrix cannot be symmetrical. Note 
that, with the assumed normalization, V =V*+V~ and I = T- I'= V + -
V , and hence V+ = \{V + I) and V~ = | ( V - / ) . Thus the new variables V+ 

and V are linear combinations of the variables V and / used in the 
impedance description. For this reason the currents do not enter into the 
scattering-matrix formulation. If desired, they may be calculated from 
the relation / = V - V~. 

.. y vaJue different from unity would also be suitable, the only requirement being that all 
es "aye the same characteristic impedance, so that power will always be equal to a constant 
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When it is necessary to distinguish between normalized and unn 
ized voltage and current amplitudes, then we use an overbar on the n ^^* 
ized variables. Throughout this section we are using only norm p 
variables so the overbar is not included, in order to keep the notaf ^ 
simple as possible. 

At any particular frequency and for a given location of the term-
planes, the scattering-matrix elements S„„, have definite values. If !!/ 
frequency is changed, these elements change values also, in a manner 
readily deduced analytically in general. However, at a fixed frequency *u*1 

change in the scattering-matrix elements arising from a shift in the term-

nal-plane location is readily found. For example, let terminal plane t \, 
shifted outward an amount /„ corresponding to an electrical phase shift nl 
tin

 = PJn> where /3„ is the propagation phase constant for the nth line If 
the incident-wave voltage is still denoted by V„" at this new terminal plane 
all the transmission coefficients S,„ „, m *• n. for transmission into line m 
from line n must be multiplied by e "-'"" to account for the additional path 
length over which the waves must travel. The reflected wave in line n has 
traveled a distance 2/ „ more relative to the incident wave at the new 
terminal plane. Thus the new value of S„„ is e~2" /"S„„. Likewise, waves 
traveling from line m to line n must travel a distance / „ farther, and thus 
Snm is changed to e~jBnS„m. These results are readily expressed in the 
general case by the following transformation of the [S] matrix into the new 
[S'] matrix: 

[S'] = 

e-ji, 

.- ;«! 

.-Jin 

Sn o12 

1M '22 

. -S,vi S JV2 

&2N 

s NN-

• • < 

,-J»i 

, - J » 2 

,~J°N 

(4.53) 

where 0„ = Pnln is the outward electrical phase shift of the rath ten 
plane. 

inal 

Symmetry of Scattering Matrix 

For a reciprocal junction the scattering matrix is symmetrical, t1
 t 

Snm = Smn, provided the equivalent voltages have been chosen so ^ 
power is given by j\V„"\2 for all modes. The latter condition is eQul. jjpes 
choosing the characteristic impedance of all equivalent transmission ^ 
used to represent the waveguides equal to unity. If the voltages a1* 
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Sc 

hosen in this fashion, [S] will, in general, not be symmetrical. Problem 
4 19 gives an example of a nonsymmetrical scattering matrix. 

The proof of the symmetry property of the scattering matrix is readily 
obtained by utilizing the known symmetry property of the impedance 
matrix. Thus the symmetry of the scattering matrix is basically a conse
quence of reciprocity. For the normalization used in the present section, 

v. = v:+ v- i = i+- r= v+- v 
Thus, since [V] = [V+] + [V] = [Z][I] = [ZJV+] - [Z][V~l we have 

([Z] + [U])[V-] = ([Z}-[U])[V-] 

[V-] = i[Z) + [U)yl{[Z] - [U})[V<] (4.54) 

where [U] is the unit matrix. Comparing this result with (4.526) shows that 
the scattering matrix is related to the impedance matrix in the following 
manner: 

[ S ] = ( [ Z ] + [ i / ] ) - ' ( [ Z ] - [ [ / ] ) (4 .55a , 

Alternatively, we have 

[v+] = k[v] + in) = k[z] + WW] 
and [V-] = | ( [ V ] - [I]) = | ( [ Z ] - [U])[I] 

and this gives 

[V-] = ([Z]-[U])([Z] + [U])-1[V+] 

or [S] = ([Z]-[U])([Z] + [U])-< (4.556) 
The transpose of (4.55a) is 

[ s ] , = ( [ z ] - [ [ / ] ) , ( [ z ] + [ t / ] ) ; ' 

But since the matrices in parentheses are symmetrical, they are equal to 
their transpose; e.g., 

az]-[u]), = [z]-[u] 
Hence [S]t - ([Z] - [V\){[Z\ + [U]} ' 

and using (4.556) now gives 

[S)r = [S] 

a result that can hold only if [S] is a symmetrica] matrix. 

(4.56) 

atte 
ringMat^ for a Lossless Junction 

°r a l o ssless junction the total power leaving the N ports must equal the 
total incident power. The mathematical statement of this power-c -conserva-
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tion condition is 

N N 

Z \v-\2 = Z w;\2 

n=l n = l •5?) 

This condition will impose a number of restrictions on the scatterin 
parameters such as to reduce the total number of independent par ^^ 
to \N(N + 1), the same number of independent parameters as ' * 
impedance matrix for a lossless junction. Replacing V~ by 

N 

K- L sniv; 
i = l 

the power-conservation condition may be expressed as 

A? 

B - l 

N 

Z sn,v; 
i = i 

= Z w;\2 
(4.58i 

The Vn' are all independent incident voltages; so if we choose all V~=Q 
except V,+, we obtain 

Z \snyr? = iv, + l2 _ |T/+|2 

n = l 

N N 

or Lisn,i2= Es n , s* =i 

(4.591 

(4.60) 

The index i is arbitrary; so (4.60) must hold for all values of i. Equation 
(4.60) states that for a lossless junction the product of any column of tl 
scattering matrix with the conjugate of this same column equals unity. 

In addition to the above constraint on the Snm, a number of ad
+

d,t",j?7j 
constraints may be derived. If we choose all V* = 0 except Vs

+ and V r, (4 
gives 

n = l 

N 

z 
n = l 

£ isnsv/+s„rv;i2= z (snsv;+snrv;)(snsv;+snrv;f 

- w;\2 + IV;I2 

Expanding the left-hand side gives 

Z \B„av:f + Z \snrv;\2 + Z 8»s;xW 
n = l 

W 

z 
n = l 

N 
+ Z SnrSn*sVr

+(Vs
+)* = |V3

+|2 + |Vr
H 

n = l 

+ |2 
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TTsine (4-59) results in a number of terms canceling, and we are left with 

N 
Z [snss:rv;(v;f + sn*ssnrv;(vs

+)*] = o 
ra = l 

In view of the independent nature of V/ and V*, choose, first of all, 
V+ = V* We then obtain 
*s '' 

W;\2l (S n sS n* r + Sn*sSnr) = 0 (4.61a) 
n = l 

If, instead, we choose V*=jV*, with V; real, we obtain 

JIV?? I (SnaS*r - S:sSnr) = 0 (4.616) 
n l 

Since neither V* nor V* is zero, both (4.61a) and (4.616) can hold only if 

£ S X = 0 **r (4.62) 
n = l 

This equation states that the product of any column of the scattering matrix 
with the complex conjugate of any other different column is zero. 

The conditions (4.60) and (4.62) are sufficient to restrict the number of 
independent parameters in the scattering matrix to | M A T + 1). A matrix 
with elements that satisfy these conditions is called a unitary matrix. To 
illuminate this unitary property further, it will be instructive to rederive the 
above results by means of matrix algebra. The power-conservation condition 
(4.57) can be expressed as 

[v-],[v-]* = [v+],[v+r 
= ( [ S ] [ V + ] ) , ( [ S ] [ V + ] ) * 

= [v-],[s]f[snv+]* 
Upon factoring this equation, we obtain 

nH,U£7]-[sL[sr)[v+r = o 
This equation can hold only if 

[S]t[Sf = [U] (4 .63a) 

° r IBf-lW (4-636) 

mat6 ^•v i S n 0 t Z e r ° " T h e r e s u l t ( 4 - 6 3 6 ) i s t h e d e f i m t i o n o f a unitary 
rix. The conditions (4.60) and (4.62) are obtained by carrying out the 

tnx multiplication called for in (4.63a). 
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* « • * 

FIGURE 4.16 
A two-port junction. 

4.8 S C A T T E R I N G MATRIX F O R A T W O - P O R T 
J U N C T I O N 

Since many common microwave circuits are two-port junctions, the scatter 
ing-matrix description of these is examined in greater detail. With reference 
to Fig. 4.16. let the scattering-matrix parameters of the junction be S 
S2 1 , S12 , and S22. The incident- and scattered-wave amplitudes are re
lated by 

or 

[v-] = [s][v+] 

Vf = SUV?+ S12V? 

v;=s21v?+s22vi 

(4.64a) 

(4.646) 

(4.64c) 

If the output guide is terminated in a matched load, V2 = 0. From (4.646) it 
is seen that S £ I is the reflection coefficient in the input guide 1, with guide 
2 terminated in a matched load. Also, S2l is the transmission coefficient 
into guide 2 from guide 1. Similar remarks, of course, apply to the parame
ters S22 and S1 2 . 

If guide 2 is terminated in a normalized impedance Z2 at_the terminal 
plane t2, then V2~ may be regarded as the incident wave on Z2, and V2 >s 
the wave reflected from Z2 . The ratio must be equal to the reflection 
coefficient of the load; hence 

YL 
v- ' z2 

Substituting into (4.64), we obtain 

z2-i 
= r, 

(4.65) 

K-suv~=sl2vi=sl2rLv2 

-s2lv^s22rLv2-v2 
Solving for Vf /V* gives 

V\ _ c sl2s2lrL (4J 661 

which shows how the input reflection coefficient in guide 1 is modified 
the output guide is not terminated in a matched load. 
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POT a reciprocal junction, S i 2 = S2 1 , and the scattering matrix con
ns at most, six independent parameters, which are the magnitudes and 

n a s e angles of Su, Sl2, and S2 2 . If the junction is lossless, the scattering 
atrix contains only three parameters, since the S„ „, are related by condi

tions (4-60) and (4.62), which in the present case become 

Si.Sf, + Sl2Sf2 = 1 (4.67a) 

S22S*2 + Sl2St2 = 1 (4.676) 

SnS*2 + Sl2S$2 = 0 (4.67c) 

The first two equations show that 

IS„| = |S22| (4.68) 

and hence the reflection coefficients in the input and output guides are 
equal in magnitude for a lossless junction. In addition, (4.67a) shows that 

IS12I = Vl - IS n | 2 (4.69) 

If we let Su = ISule-"'1, S22 = \Su\e
jB\ and S 1 2 = (1 - | S n | 2 ) l / 2 e ^ , then 

(4.67c) gives 

ISn l ( l - !S I 1 | 2 ) I / 1V t~ y ' * + e^->"0 = 0 

or, equivalently, 

Thus 

and 0 = "1 "* + -j- + nn (4.70) 

The two results (4.69) and (4.70) completely specify the transmission coef
ficient S I 2 in terms of the reflection coefficients Su and S2 2 . Since S„ and 
S 2 2 are readily measured and a knowledge of these suffices for the complete 
description of a lossless junction, the scattering matrix is a particularly 
convenient way of describing a lossless microwave two-port circuit. 

The direct evaluation of the scattering-matrix parameters is illustrated 
by considering two simple examples. In Fig. 4.17a a shunt susceptance jB 
is connected across a transmission line with characteristic impedance Zc. To 
h n d Su, we assume the output line to be matched, so that V2 = 0. The 
reflection coefficient on the input side is 

S - yc ~ ^n Yc - Yc -jB -jB 

" ~ Yc+Yin- 2Yc+jB " 2 Y c + j B 

rom symmetry considerations it is clear that S 2 2 = Sn. The third parame
ter C a n b- e v a l u a t e d using (4.69) and (4.70) or by finding the transmit-

age ^2 with the output line matched. For a pure shunt element, we 

eJt" l + » 2 > = --eV* 

01 + e2 = 20 - n ± 2n — 

4> 
01 + e2 

2 
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SB Zt 

(a) 
A 

J* 
h 

J* 

* - 2 i * - * ! 

\b\ 
FIGURE 4.17 

Shunt and series elements on a transmission l i n e 

must have V,+ + Vf= V2~ = V+(l + S „ ) . Since V^ = S21V+ also, we obtain 

2K 
S 2 ] - 1 + S u - Sv, -

2Ye+jB 

For the second example we consider a series reactance jX connecting 
lines with characteristic impedances Zx and Z2, as in Fig. 4.176. In this 
example the characteristic impedances of the two lines are different; so we 
must first choose normalized voltages. Let V,+, V{, V.J, V2 be the actual 
transmission-line voltages for the waves that can exist on the input and 
output sides. Power flow for a single propagating wave is given by j^ iyf l 2 

and |y2 |V2
+ |2 . If we choose normalized voltages Vf = yi

l/2V1"
h and V!j= 

Y2
l/2V2+, then power flow is given by IIVJ'I2 and ±\V£\2 and is directly 

proportional to the voltage wave amplitude squared. 
If the output line is matched, we have 

V{ Vf Zm-Zx Z2~Zx+jX 

V,+ V* "u Zto + Zt Z2 + Z,+jX 

With the input line matched, we find 

% ?Z „ z1-z2+jx 
V2

+ f* 22 Z2 + Z1+jX 

To find S 2 l , again consider the output line matched. On the input un1 

have V, = V?+ Vf =» V~(l + Su) and 

I> = Y1(V?-Vn = YlV?(l-Sll) 

The current is continuous through a series element, and hence 

-/2 = 4-=A = W ( i - s u ) 
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But /2-= W; so Y2V2 = Yy;a - Su). We now obtain 

S 2 1 - Sl2 -

h 

5. 
1/2 

Y \ 1 / 2 V-
J 2 I v 2 

V, 

2Z, 

Z, 1/2 

2^z7z 

( i - s u ) 

Zi+Z2+jX Zx + Z2+jX 

The equality of S I 2 and S 2 1 occurs because of the symmetrical manner in 
which Z, and Z2 enter into this expression. If unnormalized voltages were 
used, the same expressions would be obtained for Su and S22 , but for S 2 1 

and Sl2 we would obtain instead 

S 2 i -
2Z, 

Z1 + Z 2+yX S{2 -
2Z, 

Z , + Z 2 + j X 

T R A N S M I S S I O N - M A T R I X R E P R E S E N T A T I O N 

When a number of microwave circuits are connected together in cascade, it 
is more convenient to represent each junction or circuit by a transmission 
matrix that gives the output quantities in terms of the input quantities. The 
reason for this is that, with such a representation, the matrix which 
describes the complete cascade connection may be obtained simply by 
multiplying the matrices describing each junction together. The indepen
dent variables may be chosen as the input voltages V„ and currents / „ , the 
incident- and reflected-wave amplitudes V„+, V~ on the input side, or any 
other convenient linearly independent quantities. When voltages and cur
rents are chosen, we shall call the corresponding matrix the voltage-current 
transmission matrix. If incident- and reflected-wave amplitudes are chosen, 
we shall refer to the matrix as a wave-amplitude transmission matrix. To 
simplify the discussion, we shall consider the cascade connection of two-port 
circuits only. However, the general formulation is readily extended to cover 
the cascade connection of JV-port circuits. 

The transmission-matrix formulation is of great value in analyzing 
nitely l ° n g periodic structures such as those used in slow-wave circuits 

r traveling-wave tubes and linear accelerators. Since examples of these are 
•alyzed in Chap. 8, we shall consider only the basic formulation in this 

section. 

' " ' ^e -CW 
e n t Transmission Matrix 

sure 4.18a illustrates a two-port junction with input total voltage and 
as th • ^' a n (^ o u t P u t quantities V2,12. Since V2

 an<^ h m a v De chosen 
e independent variables and the junction is linear, the dependent 
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Kf a 
e 35 

I*) 

I* 

/. 

(a) 

4 A 
a, ffi, 

(a) 

4 
a 2 CB? 

=-*-

Kj 
a, ffi, 

fa 
a 2 CB? a, ffi, a 2 CB? FIGURE 4.18 

pj (a) A two-port junction; (fc), 
cade connection of two-noM l~~ v 'l June. 

variables Vj, I, are linearly related to V2,I2. Consequently, we may write 

Vx=s?V2+M2 (4.71a) 

Jj = WV2 + &I2 (4.716, 

where ^, 33, &, and ^ are suitable constants that characterize the 
junction. Note that we have chosen the positive direction of current to be to 
the right at all terminals. This is done so that the output current J2 

becomes the input current to the next junction, etc., in a cascade connection 
as illustrated in Fig. 4.186. 

In matrix form (4.71) becomes 

<& 

V, 
(4.72) 

The relationship of the voltage-current transmission matrix to the 
impedance matrix is readily found by rewriting the following equations in 
the form (4.71): 

Vi = I\ZU - I2Zi2 

These equations may be solved to give 

h 
Z\\/Zl2 [ZUZ22 Zl2)/Zl2 

1/Zis 12 z^/z VI 

v» (4-1 

of 
The s?£S'%Q> parameters of the junction are readily identified in ter 
the Znm from this relation. The determinant of the voltage-current t' 

mission matrix is 

= 1 i* ,7*) 

for a reciprocal junction, as is readily verified from (4.73). 



CIRCUIT THEORY FOR WAVEGUIDING SYSTEMS 2 5 9 

For a cascade connection as illustrated in Fig. 4.186, we may write 

\V1\ k i •A] fv2] 
h. *i * i . V 
w sis 4 U v3] 
A. sr2 ®i V 

and therefore 

hi 
= 

[j/2 ^21 
r 2 ^2 

V . 1 

J 3 . 

= 
\sfxs/2 + &,% s/i&t + MxBa 1 fv3] (4.75) 

Thus the input quantities are readily found in terms of the output variables 
simply by multiplying the transmission matrices together. The ratio of the 
output voltage to current is determined by the load impedance. 

Wave-Amplitude T r a n s m i s s i o n M a t r i x 

The wave-amplitude transmission matrix relates the incident- and 
reflected-wave amplitudes on the input side of the junction to those on the 
output side. It bears the same relationship to the scattering matrix as the 
voltage-current transmission matrix does to the impedance matrix. Jus t as 
in the case of the voltage-current transmission-matrix representation, it is 
convenient to choose the variables in such a fashion that the output 
variables from one junction become the input variables for the next junc
tion. With reference to Fig. 4.19a, we thus choose 

e T - FT 

c;= v -

c2-= v; 

cs = v3-

(4.76a) 

(4.766) 

(4.76c) 

(4.70a") 

(4.76e) 

(4.76/-) 

he superscript + refers to the amplitude of the wave propagating to the 
r 'gnt, and the superscript - refers to the amplitude of the wave propagat-

S to the left. The input and output quantities are linearly related; so we 
m *y write 

" i \ 

" 1 2 
A22 c, 

(4.77) 

the Anm are suitable constants that describe the junction. For the 
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^21 ^ 2 2 

[4! 

lb) 

Au A,2 

F I G U R E 4.19 
Wave-amplitude transmission-matrix representation of a junction. 

cascade connection of Fig. 4.196, we have 

An A12 

l2J A2 2 

A u A I 2 

A 22 A22 

c | 
(4.78) 

In terms of the scattering matrix for the single junction, we have 

vr cf s u s1 2 [ V 1 + l 
v*. 

et. s1 2 s2 2 [v-t\ 
[Sn S12 <••{ 

"12 s 22 c2" 
(4.79) 

These equations may be solved for c,+ and c, to give 

1 / S ] 2
 _ -S 2 2/S 1 2 

S n / S 1 2 ( S ] 2 - S u S . ^ j / S j a 
c , (4.80) 

Note that 

(4.8D 

from which the Anm are readily identified in terms of the Sn 

the determinant of the [A] matrix equals unity, i.e., 

AnA-22 - A| 2 A 2 1 = 1 

as is readily verified from (4.80). However, if the wave amplitudes ha 
been normalized, so that power was given by îe,71 ~, etc., the determin 
the [A] matrix would be different from unity in general (this follows^ ^ 
the nonsymmetry of the scattering matrix in this case). Some 
problems given at the end of this chapter illustrate these points. 

of the 

*4 .10 S I G N A L F L O W G R A P H S 
ship-' 

A signal flow graph is a graphical representation of the r e l a t l \ t 0 » 
between a set of independent input variables that are linearly rela {if 

set of dependent output variables. For example, the impedance-
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Zn-Zn Z22 ~ Z-,2 

FIGURE 4.20 
(a) A generator connected to a load through an impedance network; (b) signal-flow-graph 
representation of the linear system in (a) . 

description of a two-port network 

V, = Z u 7 , + Z 1 2 / 2 

V2 = Z 2 I 7 t + Z2272 

may be represented by a signal flow graph by drawing four nodes to 
represent the variables Vv V2, 7 : , and 72 and connecting lines having 
transmission factors that show how the inputs 7, and I2 feed signals to the 
output nodes labeled Vt and V2. The graph is shown in Fig. 4.20. The node 
labeled V, has an input Z n 7 , from 7, and an input Z1272 from 72. These 
inputs are represented by the directed line segments having transmission 
factors Zn and Z1 2 as shown in Fig. 4.20. Similar connections go from node 
V2 to nodes 7j and 72. If the output is connected to a load ZL, we have a 
further condition, namely, V2 = - I , 
directed line segment from the 72 

2 = —i2ZL, which can be represented as a 
node to the V2 node and having 

a transmission factor -ZL. If we connect a generator with voltage Vg and 
impedance Zg to the input, then one additional equation Vl = Vg — IxZg is 
imposed on the system. To represent this equation on the graph, a node 
labeled Vg is added along with a directed line segment from this node to V, 
and with unity transmission factor. Also an additional line segment from 
node 7, to node V, with transmission factor -Zg must be added. From this 
example it should be clear how a signal flow graph is constructed to 
represent a linear system. 

Once the signal flow graph has been constructed, the solution giving 
any one variable such as V,, V2, 7„ or 72 in terms of the source variable Vg 

an be determined from the topology of the graph and the application of a 
*« of formal rules known as Mason's rules.f For complicated graphs the use 

Mason's rules can be quite intricate and the chances of making a mistake 

- Mason, Feedback Theory—Some Properties of Signal Flow Graphs, Proc 
Or , ' 4 4 - H 5 6 , 1953; also J. Mason, Feedback Theory—Further Properties 

r aPhs, Proc. IRE., vol. 44, pp. 920-926, 1956. 

IRE., vol. 41, 
of Signal-Flow 
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are quite high. For this reason we will not give Mason's rules but will 
instead how the graph can be systematically reduced to a simple form °* 
gives the desired solution by inspection. The reduction is carried ^ 
applying five basic straightforward rules which we describe below 

RULE 1. A pair of linear relations such as x2 = C21x,, x3 = C. x h 
graphical representation shown in Fig. 4.21a. When there are no .u 
inputs to node 2, we have 

X3 = ^2V~'Z2X\. 

Thus rule 1 states that two series paths are equivalent to a single path ft-
node 1 to node 3 with a transmission factor equal to the product of th 
from node 1 to node 2 with that from node 2 to node 3 as shown in Fj 
4.21a. 

RULE 2. If there are two or more parallel paths connecting node 2 to node 
1, we have 

x2 = A2lxl + B2ix1 + C21xl + • • • 

= (A 2 1 +B2l +C21 + ••• )*i 

Rule 2 states the obvious result that several parallel connecting paths are 
equivalent to a single path with a transmission factor equal to the sum of 
those of the individual paths. This rule is illustrated in Fig. 4.216. 

RULE 3. Consider the linear relationships 

X 2 = ^ 2 1 x l + Q > 3 - r 3 

x3 = ^ 3 2 * 2 

which have the graph shown in Fig. 4.21c. With no other inputs to nodes j 
and 3, we can eliminate x3 to obtain 

X2 = ^ 2 1 * 1 + ^ ' 2 3 ^ 3 2 ' I 2 

*2(1 ~ C23C32) = C21X1 

Xo = 
^ 2 1 * 1 

1 ^ 2 3 ^ 3 2 

C 3 2C 22^J 
— UooXo 

" C23C32 

Thus rule 3 states that a feedback loop may be eliminated by d i v i W ^ 
input transmission factor by 1 minus the transmission factor aro ^ 
loop which is the product C23C32 by rule 1. If there are several mpu ^ 
outputs from node 2, each input transmission factor is divided by 1 pg. 
but all output transmission factors remain unchanged as shown ^ j , 
4.21c. If node 3 is isolated, then the feedback loop becomes a self-'°°p 

loop gain C23C32 = 
u 22-
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RULE 4. Let node 2 have a single output and two or more inputs. Th 
have the relationships we 

— C2lxx + C23x3 '24*4 

*„ * Cntxt = (C n 2 C 2 l )x , + (Cn2C23)x3 + ••• 

This shows that x2 can be spht into a number of nodes x'2, x2, x"2 etc 
with separate inputs C21x1 for node x'2, C23x3 for node x2, etc., and'th 
all feed node n with a transmission factor C„2. This rule is illustrated 
Fig. 4.21rf. If node 2 has a self-loop, it should be eliminated using mlet 
before the node is split. 

RULE 5. Rule 5 is similar to rule 4 except there is only one input but 
several outputs from node 2. In this case each output can be considered as 
coming from a single node such as x2, x2, etc., with each of these split nodes 
having the same input C21x,. This rule is shown in Fig. 4.21e. A self-loop at 
node 2 should be eliminated using rule 3 before the node is spht. 

The above rules are essentially those described by Kuhn.t 
We will now illustrate the application of the above rules to solve the 

circuit problem illustrated in Fig. 4.20. We will choose 72 as the variable to 
be found in terms of Vg. As a first step we combine the parallel paths 
between nodes V,, Ix and V2,12 using rule 2. The new graph is redrawn in 
Fig. 4.22a. None of the rules we have given are of any help in reducing this 
graph any further and it seems as though we have come to an impasse. We 
can get around the dilemma by writing our load terminal condition in the 
form I2 = - V2/ZL, which then provides an input to 72, the variable we are 
interested in. Hence we undo the use of rule 2 between nodes V2 and I2 and 
redraw the graph as in Fig. 4.226. We now split node 2 using rule 4 ti 
obtain the graph shown in Fig. 4.22c. This graph contains a self-loop which 
we eliminate by using rule 3, which requires dividing the input transmission 
factors by 1/(1 + Z22/ZL) = ZL/(Z22 + Z,). The result is the graph shown 
in Fig. 4.22e. Note that we also combined the transmission factors from 
node It to V2 and from Vjj to l2 using rule 1. We again run into a problem 
in reducing the graph in Fig. 4.22e because there is no input to node r 
This is because of the way we chose to state the terminal conditions a 
generator end. Instead of using V, = V^ - Zglv we can use Ij = "gl K^ 
V1/Zg which shifts the generator input to an input to node Ix **" ^e 

provides an input to Ix from Vv The new graph is shown in Fig. 4.5* 1^ 
can reduce this graph by splitting node V, into two nodes and appty1 » 
4 again. This leads to the graph shown in Fig. 4.22g which has a se 

' ' i l P-

tN. Kuhn, Simplified Signal Flow Graph Analysis, Microwave J., vol. 6, no. » ' 
November. 1963. 

59 
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The self-loop is eliminated by applying rule 3 and results in the graph 
shown in Fig. 4.22A. This graph has a feedback loop so we apply rule 3 
again to obtain 

h Zg
 + Zu 1 -

Z12Z2i 

(Z11 + Zg)(Z22 + ZL) 

Zq 

Zr + Z za 

- 2 2 1 V g 

(Zn + Zg)(Z22 + Z,J Zl2Z2l 
(4.82) 

This example is simple enough so that we can easily solve for I2 analytically 
and verify that (4.82) is the correct answer. 

We initially chose to express the terminal conditions at the load and 
generator ends so as to cause difficulty in reducing the signal flow graph in 
order to illustrate the importance of choosing the correct way to express the 
terminal conditions. The terminal conditions should be expressed in a form 
that will result in all nodes in the signal flow graph having both input and 
output signals. 

As a second example we will solve the same problem using a 
scattering-matrix representation of the impedance network; thus we use 

v2-=s21vr+s22v2
+ 

At the load end we have V2 = FLV2~ where the load reflection coefficient is 
given by VL = (ZL - ZC)/(ZL + Zc) and Zc is the characteristic impedance 
of the transmission line assumed to be connected between the network and 
the load impedance. This line is considered to have a negligible length. At 
the generator end we have the terminal conditions 

(V.+ - Vf) 

which can be expressed as 

where the generator reflection coefficient is given by 

r _z*~z< 
s z, + z.. 

char85*1" a s s u m e t h a t a transmission line of negligible length and with 
net a ( T r i s t i c i mPedance Zc is connected between the generator and the 

?ork. The signal flow graph for the above system of linear equations is 
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Vg 1 V, Z , 2 l2 

Z " - Z9\ z„-z •&.' <-\-

/, z m v2 
(a) 

Vg 1 V, Z,2 f 

1 V, Z , 2 /, Vg 1 V, 

V, Z,2 / 2 

_L 'i 

(e) 

Zxz k 
1 

/ % 

9 

/ ZL+Z22 

1 
zn 

/, 

r-l2 

FIGURE 4.22 
Illustration of steps used to reduce the signal flow graph in Fig. 4.206 to a simple form-

shown in Fig. 4.23a. Note that we have chosen to express the ter 
conditions in such a form as to provide an input to the node V2 *? vj 
output from node V-f so as to avoid the problems encountered earU 
reducing the graph to a simple form. The procedure that we will 

iable W 
parallels that used in the first example. We will choose V2~ as the varia . 
be solved since this is the amplitude of the wave that is incident on the 
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Vg Zc + Zg Vt S2, Vi 

v; s,2 v} 

v„ v\Ti-s22rL vi 

s12rL 

VP vf i -s^r ; v2 

Zc V _ ^ 
{Zc+ZgW-

1-S„rg 

(e) 

FIGURE 4.23 
(o) Signal flow graph for the circuit in Fig. 4.20a but using a scattering-matrix formulation; 
(6)-(e) steps followed in reducing the signal flow graph to a simple form. 

The first step is to split node V,J using rule 5 to obtain the graph shown in 
Fig. 4.236. Rule 3 is now applied to eliminate the self-loop and produces the 
graph in Fig. 4.23c. A similar treatment of node Vf but using rule 4 
followed by application of rules 2 and 3 results in the graphs shown in Figs. 
4.23d and e. The final graph gives the desired solution upon applying rule 3 
once more. Thus we find that 

vKzcs2l 

(zc + zg)[(i - snvg)(i - s22\\) - sl2s2lvLrt 

(4.83) 

The load voltage is given by VL = V2(l + TL). 
For simple two-port networks, the use of signal flow graphs does not 

offer a great advantage over the algebraic method of obtaining a solution. 
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However, for three- and four-port networks, signal flow graph techrii 
provide a useful tool with significant savings in the effort required to uS<*° 
a desired solution. ^n 

*4 .11 G E N E R A L I Z E D S C A T T E R I N G M A T R I X F O R 
P O W E R W A V E S 

If we have a load impedance equal to the characteristic impedance of 
transmission line to which it is connected, then all of the power in 
incident wave is delivered to the load. The reflected power will be zero Th'' 
would seem to represent an optimum situation. However, if the generat 
impedance does not equal the characteristic impedance of the interconner/ 
ing transmission line, we do not have an impedance match for maximi 
power transfer from the generator to the load. A partial standing wave oi 
the transmission line can result in a larger voltage being apphed to the load 
impedance and a greater amount of power delivered to the load. In general 
the generator should be terminated in a load impedance equal to the 
complex conjugate of the generator impedance for maximum power trans
fer. This conjugate impedance-matching criterion generally means that 
there will be a partial standing wave on the transmission line. 

It is possible to introduce new voltage and current variables and 
corresponding wave amplitudes that will result in the conjugate impedance-
matching condition being equivalent to having a zero reflection coefficient 
for the load. The new waves are called power waves. The scattering matrix 
that describes a microwave network in terms of incident, reflected, and 
transmitted power waves will be called the generalized scattering matrix. 
We will use script letters to represent the elements of the generalized 
scattering matrix and also to represent the voltages and currents associated 
with the power waves. The theory of the generalized scattering matrix and 
power waves is developed below. This theory provides a useful extension o 
the conventional theory for analyzing systems in which both the source an 
load impedances are complex. The theory can be developed by analogy w 

that of the conventional theory.! We present the key relations from the 
conventional theory first and then use these to obtain similar relations 
the generalized case. 

For the circuit shown in Fig. 4.24a, let the voltage and current *» 
amplitudes on the transmission line be V", V" and I*, I~ at the load. 
current amplitudes are related to the voltage amplitudes as follows: 

V* V-

tK. Kurokawa. Power Waves and the Scattering Matrix, IEEE Trans., vol. MTT-
194-202, March, 1965. 
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zg-zt 

w 

i=i*-r 

v = v*+v-\ zL vgQ 

(a) iOI 

* t 

FIGURE 4.24 
(a) A generator connected to a load impedance by means of a transmission line; (6) a circuit 
with complex source and load impedances; (c) a two-port network. 

When Zt = Zc there is no reflected wave since TL = 0. Thus V~= 0 and the 
voltage on the line at the generator end will be V*eJ" and equals Ve/2 when 
Z= Zc. The incident power is given by 

IV* I2 I V / 
p. = p = = —£— 

,nc ava 2Z„ 8Z,. 

(4.84) 

and is equal to the available power P a v a from the source. If Z, * Zc then 
the power delivered to the load is given by 

p,.= ( i - i r j 2 ) p i n c = ( i - i r , i 2 )p a v a 

The total voltage and current at the load are 

[4.85) 

V = V+ + V" i = r-r= 

We can express the wave amplitudes Vi and V in terms of V and / by the 
relations 

V + ZJ 
2 

V-ZJ 

(4 .86a) 

(4.866) 
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The normalized voltage wave amplitudes are given by 

y ^ V + Z ^ 
2y/Z~ (4.87QJ 

_ V - ZCI 
y-= — 

2y[Z~e (4.876, 

Consider now a generator with internal impedance Z connected 
complex load impedance Zt as shown in Fig. 4.246. By analogy with (do 
we will choose the power wave amplitudes 7/'" and 2s-*- to be 

_ V+Zf!1 

'r+~ 5~~ (4-88Q) 

V - Z*I 

^~= 2 <4-886) 

where V and J are the actual voltage and current in the circuit. When the 
load impedance ZL is equal to the complex conjugate Z* of the generator 
impedance, then 

KZL V8Z* vg vg 

v = s = * * / = -g + zL zg + z* z g + z L zg + z* 
Upon using these expressions in (4.88), we obtain 

M vg vg z* - z* 
2 - 2 Z # + Z ; -

Thus the definitions chosen for T" and '~Y have the desired property 
that when the load impedance is conjugate matched to the generatm 
impedance, for maximum power transfer, the amplitude of the reflect© 
power wave is zero. The power delivered to the load is given by 

I V / | V / 

where Zg = Z£ = Rg + jXg. This also represents the available power hot 
the source and can be expressed in the following way: 

|r+P _ \¥'*\2 

Fava " 2Rg ~ ~2~ 
jo b& 

where the normalized voltage wave amplitude has been chosen 

1 % 1 
z
s
 + zt 

y+Zy/Rg - t o r 

When the load impedance is not conjugate matched to the gen" ^e sner? 

impedance, we will have a reflected power wave with amplitude r\ 
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ralized j o a ( j reflection coefficient, which we designate as V'L, is given by 

V~ V-IZ* V/I-Z* ZL-Z* 
1L <y+ V + IZg V/I + Zg ZL + Zg

 y ' ' 

When Z is real, we obtain the usual load reflection coefficient. For the 
nonmatched case the power delivered to the load is given by 

1 l VR
 V** 

P ^ R e W * = - R e 2 / _ ; ' Z L 

SRg\ZL + Zg\
2 

= MPava (4.90) 

where the impedance mismatch factor M = AR, Rg/\Z, + Zg\
2. The 

impedance mismatch factor M is always less than or equal to one. For 
Z, = Z* we have M = 1. The mismatch factor determines the fraction of 
the available power that is delivered to the load. By using the definition for 
TJ and some algebra, we can readily show that 

M = 1 - \VL\2 (4.91) 

Consequently, we can write 

^ = ( l - H I I 2 ) P a v a (4.92a) 

which is analogous to (4.85). Upon using V = ZLVg/(Zg + ZL) and / = 
Vg/(Z + ZL) in (4.88a), we find that ^"*"= V./2; so we can also write 

1 

"••=2 

<y+ 
(i - \rL\2) = (I - i r[(2)p i n c (4.926) 

where P i n c is the power incident from the power wave launched by the 
generator. 

The new set of variables 7/'* and T~, which are linearly related to V 
and /, form a convenient pair of new variables for analyzing a circuit having 
complex generator and load impedances. If we have a two-port network as 
shown in Fig. 4.24c, we can introduce incident and scattered power waves 
on both the input and output sides. The power wave normalized amplitudes 
are linearly related to the normal voltages and currents on the input and 
output sides as follows: 

_ V, + IXZX _ V, - LZ* 

^7= ' ' ^7= 2 ^ 2/ i? 

y + = 2 2 2 

2jR2 " 2JR2 

- e Z\ and Z2, with real parts i?, and R2, are the complex generator 
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impedances on the input and output sides. The two-port network will <• 
two of the above variables to be linearly related to the remaining two i° rCe 

choose the incident power wave amplitudes as the independent vat- k e 

then the scattered power wave amplitudes are given in terms of the f • 
nnps hv thf crfnoraliypd srat.tprincr-maf.rix rp.nrpspntat.irm fir 

(4.930) 

(4.936) 

ones by the generalized scattering-matrix representation 

^ = • ^ 2 1 ^ + ^ 2 2 ^ 7 

The generalized scattering-matrix parameters S?-^ cannot be measi «J 
directly. However, they can be expressed in terms of the normal two-no 
scattering-matrix parameters S,j. In practice, we would embed the two-no 
network into a transmission line with characteristic impedance Z. (usual! • 
50 fi) and measure the S^. We can linearly relate Vt

+, VL~, V2
+, V^ to V f 

and V2, /2 . The power wave amplitudes are linearly related to the tote! 
voltages and currents. By setting up these linear relationships and express
ing V, and V.J in terms of V? and V.J, we can, after a number of matrix 
manipulations, show that 

\s*\ = [D*y \[S] - [ r * ] ) ( [ t / ] - [ H f S ] ) - 1 ^ ] 

where [D] is a diagonal matrix with elements 

BH - ] i - T?r\l - Tt)Jl - \Tf * = 1,2 
Z,-Z. 

r, = 

(4.94) 

2 , + Z, 

and [T] is also a diagonal matrix with elements fM = I",. The unit matrix 
is[U]. 

We will now examine the network shown in Fig. 4.25a. The two-port 
network can be described in terms of the normal scattering-matrix parame
ters S,j or in terms of the generalized scattering-matrix parameters. In tr 
network shown in Fig. 4.25a, we do not have a generator on the outpu 
side. The termination is the load impedance Z,. Also we have labeled the 
source impedance on the input side as Zs and the source voltage as ^ 
These changes correspond to setting V,2 = 0, Vgl = Vg, Zl = Zs, Z2

 = t , 
the previous analysis. We can visualize the two-port network as conn 
to the source and load by transmission lines of negligible length. <-
Vg2 = 0 the output current is J2 = - V2/ZL. Consequently, 

n= v2 + hzL 

2JTT7. 
= 0 

so there is no power wave reflected from the load. The power derive 
the load is 
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^ 1 1 ' 1 2 

•^21 ^ 2 2 

I, 

^ 

j 
Transmission lines 
of negligible length 

(a) 

ê v, | 

!/.=-/, 

(6) 

FIGURE 4.25 
(a) a two-port network terminated in 
a complex load impedance; (6) 
Thevenin equivalent circuit. 

The transducer gain of a two-port network, which could represent a mi
crowave amplifier, is defined by the relation 

G = 
power delivered to load 

(4.96) 
available power from source 

Since the available power is simply \T?\2/2, we find that 

G = \y21\
2 (4.97) 

From (4.94) we obtain the following expressions for the generalized scatter
ing-matrix parameters: 

i i - r , 
• * u -

5* = 

wi-r* 

i ( i - r s ) ( i -

[(«u - C X I - TLS22) + S12S2irL] (4.98a) 

2 \ l ' / 2 

li - rjii - rj s^ ~ lr»|2)(1 ~ | r^) l (4"986) 

So 21 

•^12 
(4.98c) 

•̂ 22 = ^ j ^ [ ( S 2 2 - rL*)(i - r ssu) + s12s21r3] (4.98d) 

where 

w= (i - rssu)(i - rLs22) - S12S21TJL 

°te that for a reciprocal two-port network with Sl2 = S2l tha t .'Sx2 = y2 
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also. We can now express the transducer gain in the form 

( i - i r / ) ( i - i r j 2 ) i s 2 1 i 2 

G = i^2Ii
2 = 

;i - r .sM)(i - r ts2 2) - s1 2s2 1r ,r j8 (4.99, 

GP » — 
input power to amplifier 

The input power is given by 

PiD = ( i - l^nl 
i ) p 

so we obtain 

GP 

G W 2 
GP 

l - l ^ n I2 1 " I^nl2 

In microwave amplifier design a more useful expression for g a j • 
power gain Gp, which is defined by S<m ,s the 

power delivered to load 

(4.100) 

(4.101) 

(4.102) 

Another gain expression is the available power gain, which is given by 

maximum available load power 
Ga = —— (4.103) 

available input power 
The maximum power that can be delivered to the load is the load power 
when the load impedance is made equal to the complex conjugate of the 
amplifier output impedance Zaut. We will show that the actual power 
delivered to the load is given by 

PL = ( i - L * 2 2 ! 2 ) P L . a v a (4-104) 

where PL<ava is the available load power. This relationship is of the saffl 
form as (4. 101) which relates the input power to the power available 
the source. When we use this expression in (4.103), we get 

Pin °ava °£ 

1 ~ l ^ M l 2
 = G = W ^ (4.106» 

P l - | ^ 2 2 | 2 1 - | ^ 2 2 | 2 1 - l ^ f 
liner** 

The above expressions for the various gains associated with an arn; ^ ^ t r i* 
all expressed in terms of the parameters of the generalized scatte 
and are the main reason for introducing the concept of power w a . s0tf& 

We now return to the derivation of (4.104). We can repla06. 0f t 
and two-port network by a Thevenin equivalent network cons 
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ltage generator with open-circuit voltage VT and a series impedance ZT as 
>nwn m pig. 4.256. The voltage VT is the voltage across the amplifier 
' ltout terminals when ZL is removed. The impedance ZT is the impedance 
PPQ looking into the output terminals with the generator short-circuited. It 

j3 equal to the amplifier output impedance Zo u t . 
From the Thevenin equivalent circuit, it is readily seen that the power 

delivered to the load is given by 

Pi. = o I ' /JX = 
WT\2RL 

2\ZT + ZL\ 

The maximum available load power equals PL when we choose ZL = Z£ 
and is 

L. ava 

ivrl
2 

8R T 

Thus, in general, we can express PL in the form 

|VT|2 ARLRT 

8R r \ZT + ZL\ 8R. 
-M 

where M = ARLRT/\ZT + ZL\2 is the impedance mismatch factor. 
If we can show that M = 1 - |,y22 |2, then we can express Ga as 

G„ = 
L.ava PL 

MP,, 

G 

M 

G 
\-\ST. 22> 

which is the expression we are trying to estabhsh. When Vg = 0 we have 
^i + I\Zg = 0; so %?= 0. The scattering-matrix relations now give 

^ 7 = ^ 1 2 ^ 2 * Z -^ 12' 2 
y2 - hzt 

IJRTL 

which gives us 

-L = ~ v2 - hzt v2/is-zt 
f? 22 ^ ^ ^ ^ V 2 + / 2 Z L V2 /J2 + Z L 

The Thevenin impedance ZT is thus found to be 

Z£ + Sfi
22ZL 

ZT Z£ 

ZT + ZL 

\-s>. : ' • ; . 

file:///-/ST


2 7 6 FOUNDATIONS FOR MICROWAVE ENGINEERING 

We now expand the expression 1 — \S"22\
2 to obtain 

\ZT + ZL\2-{ZT-Zt)(Z$-ZL) 
l'-A2' - " \zr + zj* 

( Z r + Z L ) ( Z ? + Z£) - ( Z r - Z £ ) ( Z * - z ^ 

\ZT + Z J 

ZriZt + iStt+ZftZt + ZZ) 

r 

\zT + zL\2 

4RLRT 

IZr + Zrl'' 
= M 

which completes the proof. 
As a final observation we note that when Zl = Z£ then M = l a n j 

GQ = G. Also if Zg = Z*, then , /"u = 0 and Gp = G„ = G. Thus, with 
conjugate impedance matching at both the input and output, all three gains 
become equal. 

*4 .12 EXCITATION O F W A V E G U I D E S 

The preceding sections have dealt with the circuit aspects of passive mi
crowave junctions. In order to complete the picture, it is necessary to 
consider also the equivalent-circuit representations for typical sources that 
are used to excite waves in a waveguide or transmission line. This particular 
aspect of waveguide theory is somewhat specialized, and it is not possible to 
give a complete analysis in this text without departing too far from the main 
theme. However, we shall present certain aspects of the excitation problem 
that provide a basis for choosing appropriate equivalent circuits and genera
tors for representing typical sources and, in addition, make it possible t 
solve a number of coupling problems of engineering importance. The theor 
is, for the most part, developed by considering specific examples. 

P r o b e C o u p l i n g in a R e c t a n g u l a r W a v e g u i d e 

Figure 4.26 illustrates a typical coaxial-line-waveguide probe coupling-
short-circuit position / and probe length d can be adjusted to acnJ?, g 

maximum power transfer from the coaxial line into the waveguide-
center conductor of the coaxial line extends into the waveguide to tor 
electric probe. Any waveguide mode that has a nonzero electric field 
the probe will excite currents on the probe. By reciprocity, when the p 
current is produced by a TEM wave incident from the coaxial line, the 
waveguide modes will be excited.t It is thus easy to see that, for maxi 

tThis reciprocity principle is very useful for determining what modes a given probe can e»* 
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7, Id 

Side view 

——> a 

End view 

<S> Bottom view FIGURE 4.26 
Coaxial-line probe coupling to a 
waveguide. 

coupling to the dominant TE l n mode in a rectangular guide, the probe 
should extend into the guide through the center of the broad face so as to 
coincide with the position of maximum electric field for the TE10 mode. The 
evanescent modes that are also excited are localized fields that store reactive 
energy. These give the junction its reactive properties. The section of 
short-circuited waveguide provides an adjustable reactance that may be 
used to tune out the probe reactance. The probe reactance can be evaluated 
by determining the amplitudes of the evanescent modes that are excited and 
computing the net reactive energy stored in these nonpropagating modes.t 
Since the details are rather lengthy, we shall evaluate only the amplitude of 
the radiated TE1 0 mode. 

The current on the probe must be zero at the end of the probe. For a 
thin probe a sinusoidal standing-wave current distribution is a reasonable 
approximation to make for the probe current. Thus let the probe current be 
considered as an infinitely thin filamentary current of the form 

I ~ / 0 sin k0( d - y) 0 <y < d x = - 2 = o (4.106) 

We wish to determine the amplitude of the TE10 mode excited by this 
current. A general technique for accomplishing this is a mathematical 
ormulation of the reciprocity principle invoked earlier to determine which 

waveguide modes a given source will excite. The required results are derived 
below. 

Figure 4.27 illustrates an infinitely long waveguide in which a current 
' urce J is located in the region between zl and z2- The field radiated by 

s source may be expressed as an infinite sum of waveguide modes as 

p- ' f o r example, R. E. Collin. " Field Theory of Guided Waves," 2nd. ed., chap. 7, IEEE Press, piscataw ; ay. N.J., 1991. 
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E". H ' E*. H* 

FIGURE 4.27 

A current source in a wavemjin 

follows: 

n 

H-=Ec„-(-hn + h,j< Jtini 

z > zn 

z>z2 

z < z, 

z < z, 

(4.107a) 

(4.1076) 

(4.107c) 

(4.107d) 

In (4.107) n is a general summation index and implies a summation over all 
possible TE and TM modes. The unknown amplitudes C„ may be deter
mined by an application of the Lorentz reciprocity formula (2.135). For the 
volume V. choose that bounded by the waveguide walls and cross-sectional 
planes located at 2, and z2 in Fig. 4.27. Let the field E p H j , to be used in 
the Lorentz reciprocity formula, be the field radiated by the current source. 
This field is given by (4.107). For the field E2 , H 2 , choose the nth waveguide 
mode E ; , H ~ ; that is, 

E2 = E;=(en + e,„)e^ I 

H 2 = H ; = ( - h „ + h , n ) e ^ 2 

Equation (2.135) gives 

<ft(E, x H - - E n - x H , ) -ndS= JE;-JdV 
rS Jv 

since the field E 2 , H2 is a source-free solution ( J 2 = 0) within V. The surfed 
integral is zero over the waveguide walls by virtue of the boundary con 
n X E, = n X E, ;= 0. Since the modes are orthogonal, i.e., 

j E * X H „ ± - n d S = 0 n* m 

all the terms except the nth in the expansion of E „ H , vani sh when 
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integrated over the waveguide cross section S 0 . Thus we have 

f Cn
+[(e„ + e z n ) X ( - h „ + h „ ) - (e„ - e „ ) X (h„ + h „ ) ] • a, dS 

-fC;[(e„-eM)X(-hn + l i J 

- ( e „ - e J X ( - h „ + h j ] -azdS 

= -2C:j enXhn-a,dS = JE-n-JdV 

since the integral over the cross section at zx vanishes identically. Hence 
C* is given by 

C > - • 5 - / E - ' J d V r = - ^ - / ( e „ - e „ ) - J e * » ' r f V (4 .108 o ) 

If E+, H^ is chosen for the field E2 , H.,, we obtain 

C~= -yfyK- *<W= ~yjv(en + e „ ) • Je~^ dV (4.1086) 

where Pn = 2/" e„ X h„ • a, dS (4.108c) 
s 0 

and S0 is a cross-sectional surface of the waveguide. The normalization 
constant P„ depends on the choice of expressions used for e„ and h „ , the 
latter being arbitrary. 

The above results are now applied to the probe problem introduced 
earlier. For the TE I 0 mode with fields given by 

"** 
Ey = eye ~jf)z = sin —e ~** (4 .109 a ) 

o 
TTX 

Hx = hxe-Jti* = -Yw sin — e ~ j P ' (4.1096) 
a 

we have 
ea rb „ TX 

Pio = 2/ [ Yw sin2 — dxdy = abYw (4.110) Jo Jo a 

*nere Yw is the wave admittance for the TE1 0 mode and /? is the propaga-
tlc>ri constant. 

The probe in the short-circuited guide is equivalent to the original 
Probe plus its image at z = -21 placed in an infinite guide, as in Fig. 4.28. 
u we assume that the field radiated into the z > 0 region is 

E;= C+ sin —e--"" (4.111) 
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r • ! • 

tmoqe probe 

J. 
Probe 

t 
z=-Zl / = 0 

FIGURE 4.28 

Probe and its image. 

then application of (4.108a) gives 

C+= -
abY, 

abk0 

/o 

( « " * * " - 1 ) ( 1 -cosk0d) 

£ I0 sin k0(d -y)dy- f I0 sin k0(d - y)e~j'w dy\ 

(4.112) 

since 

^•10 -

rrx . a 
sin — c ^ 2 = = 1 at z = = 0 , * - -

a 2 
,-./20/ at * = —, z = -21 

4t 

We have assumed that the current on the probe can be replaced by a line 
current along the probe axis and with a density given by (4.106). The 
volume integrals in (4.108) are consequently replaced by line integrals taken 
along the probe axis. Note also that the direction of the current in the image 
probe is reversed. This is necessary so that the fields radiated by the probe 
and its image will give a zero tangential electric field at the short-circuit 
position. 

The total transverse field of the TE l 0 mode radiated by the probe is 
thus, for z > 0, 

uz 7TX 
Ey = ^rr-ie-2*' - 1) (1 - cosfe0d)sin — e ~ * * 

abk 

Hx= -YwEy 

a 
(4.113a) 

(4.H36) 

The total radiated power is given by 

P-TJDLV<M, 
2 ' o ' o 

I27 

Aabk2
0 
\e-2Jf" - l\\l-cosk0d)' (4.U*) 

At the base of the probe antenna (y = 0), the total coaxial-line curr« 
is, from (4.106), 

/ s I0 sin k0d 
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» t the input impedance seen from the coaxial line, referred to the base, be 
7 = i?o + i%- The complex Poynting vector theorem then gives [Eq. (4.14)] 

F + 2jmlWm-WM) 
zin = R0 jx = ur 

where P is the power radiated into the guide and W„, - We is the reactive 
energy stored in the vicinity of the probe owing to the excitation of 
nonpropagating (evanescent) modes. Since P has been evaluated and is 
given by (4.114), we can compute the input resistance. We obtain 

2 P Z„ 
R° I*sm2k0d 2abk% 

x l l - e - ^ ' ^ t a n 2 - ^ - (4.115) 

upon using the identities 1 - cos 2ff = 2 sin'2 6 and sin 20 = 2 sin 8 cos 0. 
This input resistance is called the radiation resistance of the probe. Note 
that its value can be varied by varying the parameters / and d, that is, the 
short-circuit position and probe length. Varying these parameters thus 
enables an optimum amount of power transfer to be achieved by adjusting 
fi0 to equal the characteristic impedance of the coaxial line and introducing 
a suitable reactance to tune out the reactance jX. Suitable techniques for 
reactance cancellation are discussed in the next chapter. 

Radiation f r o m L i n e a r C u r r e n t E l e m e n t s 

Figures 2.29a and 6 illustrate linear current elements in a waveguide. For 
the case of the transverse current element, (4.108) shows that 

c;=C;=--/t J,dl (4.116) 

where J, is the line current density in amperes. This result may be 
interpreted to mean that a transverse-current element is equivalent to a 
shunt voltage source connected across an equivalent transmission line 
representing the waveguide when only a single mode, say the n = 1 mode, 
propagates. The reason for this is that the transverse current radiates a 
field with transverse electric field components that are equal on adjacent 

U 
s=0 
(a) 

FIGURE 4.29 
Linear 

J, 

7 = 0 

"^rrent elements in a waveguide. 
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JX 

I , 0000 r— 
n:\ 

"9 

(a) (A) 

FIGURE 4.30 
Equivalent circuits for current sources in a waveguide, (a) Transverse current source; (&) -
current source. 

sides of the current source, and this is equivalent to continuity of the 
equivalent voltage across the source region. The transverse magnetic field is 
discontinuous across the source region, and thus the equivalent current is 
also discontinuous across the equivalent voltage generator. Figure 4.30 
illustrates the equivalent circuit for this type of source for the dominant 
propagating mode. The ideal transformer provides a means of adjusting the 
coupling between the voltage generator and the transmission line so that 
the same amount of power is radiated as in the waveguide. The shunt 
susceptance jB represents the net reactive energy stored in the field of the 
evanescent modes that are excited. 

For an axial current located at z = 0, (4.108) gives 

C:=^jJre2ne^dl 
*n 

C~= -—fjrezne-^dl 
n 

If the current is a symmetrical function of z between -I < z <l> then, 
is not a function of z, we have 

C> -Cn-= yf*i • e„ cos pnzdz (4.117) 

For this case the radiated transverse magnetic field is continuous across 
source but the transverse electric field is discontinuous. The source is 
equivalent to a voltage generator connected in series with an equrva 
transmission line, as illustrated in Fig. 4.306. . „ 

A linear current element may be viewed as an equivalent osciua 
electric dipole. From Maxwell's equation we have 

V X H =j(oeE + J =j<»e0E +ja>P + J 

and hence J enters into the field equations in the same manner as 
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ff 
FIGURE 4.31 
A current loop in a waveguide. 

polarization current jwP. Thus J may be considered equivalent to an 
electric dipole P given by 

J 

J«> 

Radiation from C u r r e n t L o o p s 

Figure 4.31 illustrates a linear current loop in a waveguide. The amplitude 
of the rath radiated mode is given by 

C,:= -^-6E-n-rIdl 

where T/ is the vector current flowing around the contour C. r is a unit 
vector along C. By Stokes' law we obtain 

C:= - _ 0 E B - . r f I = -—fvxE;-ndS 

But V X E ~ = ~ja>B~= -ju>n0H.~, and hence 

Similarly, 

in) I , 
C - — (B--ndS 

C-=—fB:-ndS 

(4.118a) 

(4.1186) 

It is seen that the excitation amplitude of the ra th mode is proportional to 
the total magnetic flux of this mode passing through the loop. 

If the current loop is so small that the field B„ of the n th mode may 
be considered constant over the area of the loop, we obtain 

70)/ r jo)I 
C:=—B;-ndS = J-—- B , t - S 0 

ow / S 0 is the magnetic dipole moment M of the loop, where S0 is the 
vector area of the loop; so we obtain 

c;=—B,T-M (4.119a) 
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and similarly 

/at 

(4.1 

Radiation from a small current loop may be considered to be mam-. 
dipole radiation, as these equations show. For an axial magnetic J 

(transverse current loop), the equivalent source is a shunt-connected vo 
source, whereas a transverse magnetic dipole is equivalent to a seri 
nected voltage source. 

dipole 

*4.13 W A V E G U I D E C O U P L I N G B Y A P E R T U R E S t 

The foregoing formulation of the radiation from currents in a waveguide i 
terms of radiation from equivalent electric and magnetic dipoles is 
applicable to the coupling of waveguides by small apertures, or holes, in a 
common wall. To a first approximation a small aperture in a conducting wall 
is equivalent to an electric dipole normal to the aperture and having 
strength proportional to the normal component of the exciting electric field, 
plus a magnetic dipole in the plane of the aperture and having a streni 
proportional to the exciting tangential magnetic field. The constants of 
proportionality are parameters that depend on the aperture size and shape. 
These constants are called the electric and magnetic polarizabilities of t' 
aperture and characterize the coupling or radiating properties of the aper
ture. t A qualitative argument to demonstrate the physical reasonableness of 
these properties of an aperture is given below. 

Figure 4.32a illustrates the normal electric field of strength E at 
conducting surface without an aperture. When an aperture is cut in the 
screen, the electric field lines fringe through the aperture in the manner 
indicated in Fig. 4.326. But this field distribution is essentially that pro
duced by an equivalent electric dipole as shown in Fig. 4.32c. Note that the 
dipole is oriented normal to the aperture. 

In a similar manner the tangential magnetic field lines shown in ^'"j 
4.32d will fringe through the aperture as in Fig. 4.32e. These fringing neK 
lines are equivalent to those produced by a magnetic dipole located in 
plane of the aperture. . 

In Bethe's original theory the dipole moments are determined by ^ 
field in the waveguide in the absence of the aperture. Thus, for a cir 
aperture of radius r0 •« A0, the dipole moments are related to the u 

tThe theory was originally developed by H. A. Bethe, Theory of Diffraction by Sma" 
Phys. Rev., vol. 66, pp. 163-182, 1944. 

±For a derivation of these results, see Collin, loc- cit. 
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(a) (£) 

„<S) 

If) 

FIGURE 4.32 
Aperture in a conducting wall. 

fields as follows: 

- e 0 a f ( n • E ) n 

M = -amH, 

(4.120a) 

(4.1206) 

where n • E is the normal electric field and H, is the tangential magnetic 
field at the center of the aperture. The electric polarizability ae is given by 

a e = - | r 0
3 (4.121a) 

and the magnetic polarizability am is given by 

a, 3 ' 0 (4.1216) 

The presence of an aperture also perturbs the field on the incident side 
of the screen. This perturbed field is that radiated by equivalent dipoles 
which are the negative of those given by (4.120) and located on the input 
side of the screen. It is important to note that when the aperture is replaced 
by equivalent electric and magnetic dipoles, the field radiated by these is 
computed by assuming that the aperture is now closed by a conducting wall. 
The equivalent dipoles correctly account for the field coupled through the 
aperture in the conducting screen. 

Bethe's theory does not lead to an equivalent circuit for the aperture 
that includes a conductance to represent power coupled through the aper
ture. The reason for this is that the field assumed to excite the dipoles is 
chosen as the unperturbed incident field in the waveguide. In actual fact one 
should use the sum of the incident field and excited field as the polarizing 

eld. Since the excited field is small, the correction to the dipole moments is 
so small. However, by including the excited dominant modes (the propa

gating modes) as part of the polarizing field, we will obtain the needed 
Th"1"6? i0" t l l a t r e s u l t s i n a conductance element in the equivalent circuit. 

e dominant-mode fields react back on the dipoles to account for the 
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radiation of power by the dipoles. Thus, in place of (4.120), the fonn . 
expressions are used for the dipole strengths: t ftg 

For radiation into the output waveguide, 

P = - 6 0 « e [ n • E^ + n • ES r - n • E 2 r ] n 

M= -am[Hgl H, H , llr " 2 r J , 

For the radiation into the input waveguide, 

P = e0ae[n • E g l + n • E l r - n • E 2 r ] n 

M = a m [ H g I + H l r - H 8» 

H-1226) 

(4.122c) 

(4.122d) 

where the generator fields ER l , H g l are the dominant-mode fields in the 
input waveguide in the absence of the aperture, E l r , H l r are the dominant-
mode fields radiated by the dipoles in the input waveguide, and E 2 r , H 2 r are 
the dominant-mode fields radiated by the dipoles in the output waveguide. 
The unit vector n is normal to the aperture and directed from the input 
waveguide to the output waveguide. The subscript t denotes the tangential 
component of the magnetic fields. The field resulting from the aperture is 
determined by closing the aperture by an electric perfectly conducting 
surface and calculating the fields radiated by the dipoles given above 
and located at the center of the circular aperture. 

The theory is readily extended to include noncircular apertures. How
ever, the procedure outlined above is restricted to circular apertures in a 
very thin common wall between two waveguides. There is considerable 
attenuation in the coupling through an aperture in a thick wall and in many 
practical applications this attenuation must be taken into account.^ 

The examples discussed next will illustrate the application of small-
aperture coupling theory to an aperture in a transverse wall and an aper
ture in the broad wall between two identical rectangular waveguides. 

Aperture in a Transverse Wall 

Figure 4.33a illustrates a small circular aperture in a transverse wall& 
rectangular waveguide. To determine the exciting generator field, as»u 
that the aperture is closed. A TE1 0 mode incident from z < 0 is r e f l ec t®L i on 

the conducting wall at z = 0 to produce a standing-wave field in the reg 

tR. E. Collin, he. cit. ^ 

tSee, for example, N. A. McDonald, Electric and Magnetic Coupling Through Small Ap^ 
in Shield Walls of Any Thickness, IEEE Trans., vol. MTT-20. pp. 689-695, 1972. 
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(a) 

tM 

X 

ZH 

le) 

CD/M 

FIGURE 4.33 
Aperture in a transverse 
waveguide wall. 

z < 0. This field is 

TTX 

Ev='C(e--""~e-"")an — 
a 

TTX 
Hx = -CYw(e'jez + e-"»*)sin — 

(4.123a) 

(4.1236) 

plus a z component of magnetic field which is not required to be known for 
the present problem. 

The normal electric field at the aperture is zero; so no induced electric 
dipole is produced. The tangential magnetic field at the center of the 
aperture is, from (4.1236), 

Hx = -2CYW 

and hence an induced x-directed magnetic dipole M is produced. 
In order to determine the total polarizing field using (4.1226) and 

(4.122d), we must find the fields H l r and H 2 r radiated into guides 1 and 2 
by a magnetic dipole Max. The field radiated into the region z > 0 is that 
radiated by the magnetic dipole M, as illustrated in Fig. 4.336. This dipole 
js equivalent to a half circular current loop in the yz plane as illustrated. To 
nnd the field radiated by this dipole in the presence of the conducting 
transverse wall, image theory may be used. Since the image of the half 
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circular current loop in the transverse wall is the other half of the r 
loop, the image of M is another magnetic dipole of moment M. The eff ^ 
the transverse wall is equivalent to removing the wall and doubli 
strength of the dipole, as depicted in Fig. 4.33c. If the field radiated int 
region z > 0 is '"S 

irx 
Bv

+= Ae -** sin — = Aeve"-"" 
a 

TTX 
/ / ; = - A Y ^ e - ^ s i n — = Ahxe~^z 

a 

application of formula (4.119a) gives 

A = — ^ H ; ( 2 M ) 

since the field B~ is -ti^h^ = ^0YU, sin(7rx/a) in the present case. The 
constant P 1 0 is given by 

? i o = - 2 / / eyhxdxdy 

ra cb „ TX 
= 2 Y j / s i n 2 — dxdy = abYw Jo Jo a 

Hence we obtain 

A = ^ 2 M = ^ 2 M (4.124) 
ao ab 

The presence of the aperture causes a field to be scattered into the 
region z < 0 also. For radiation into this region, the effective magnetic 
dipole moment is the negative of that used to obtain (4.124). Application of 
(4.119) now gives 

Ev = A sin —eJ f i* z <0 
a 

for the radiated field in the input waveguide and where A is given > 
(4.124). As expected, the magnetic dipole M a , acts as a shunt source. The * 
component of the radiation reaction fields H l r and H 2 r , at the center ot 
aperture, are 

and the generator field is 

HglI= -2CYW 
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Since M represents the dipole strength for radiation into guide 2, we use 
these fields in (4.1226) to obtain 

J4k0Z0 
M = - a , -2CY„ ; abZ„ 

•M 

which can be solved for M to give 

M 
2a„YjC 

j4kQZQ 

abZ„ 

(4.125) 

-« . 

We can now complete the evaluation of the constant A by using this 
expression for M in (4.124); thus 

A = 

Jk0Z0 

i + 
4jk0Z0 

abZul ' 

(4.126) 

TTX 

The total electric field in the input waveguide is 

Ey = [ O r * * + (A - C ) e ^ ] s i n — 

so the input reflection coefficient T is given by 

A-C 

The input normalized admittance is 

When we substitute for A from (4.126) into the expression for Y, we find 
that 

I L = 
2 -A/C 

= 1 ~j-
3ab 

(4.12?) 
A/C J 8r0

3/3 

l h e equivalent circuit of the aperture, as seen from the input waveguide, is 
a normalized shunt conductance of unit value plus a shunt inductive 
susceptance. The conductance term is called the radiation conductance and 
accounts for the power coupled, i.e., radiated, into the output waveguide. 
* he amplitude of the transmitted electric field is A which is given by 
(4.126). The transmission coefficient is A/C. From the equivalent circuit 
the transmission coefficient is 1 + T = 2 / (1 + F in) which gives the same 
result. The aperture is equivalent to an inductive susceptance connected 
across the transmission line. The conductance term represents the output 
transmission line terminated in a matched load. 
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0 

©• -(D 

FIGURE 4.34 
Aperture in a broad wall separating two waveguides. 

A p e r t u r e i n B r o a d W a l l o f a W a v e g u i d e 

Figure 4.34 illustrates a circular aperture of radius r0 placed in the broad 
wall separating two rectangular waveguides. The incident field is a TE 
mode in the lower guide, and is given by 

U 

E=Csin—e-^z 
3 a 

Hx= - C K . s i n — e - J P * 
a 

Hz=j 
TTY„, TTX 
— - C c o s — e - " * 
lia a 

(4.128a) 

(4.1286) 

(4.128c) 

At the center of the aperture located at z = 0, x = d, the exciting field is 

(4.129a) vd 
Ev = C sin 

a 
ird 

H ' C Y J - a . s i n — +j^-a.cos — \ (4.1296) 
\ a " fia a J 

These expressions show that there will be a y-directed electric dipole and | 
and 2-directed magnetic dipoles excited in the aperture. 

Let the fields E ^ , Ef0, Bf0, and Bf0 be chosen as 

i n 
E,+„ = av sin — e ~ * * 

a ' 10 

E 1 0 = a , sin 
TTX 

,jfc 

TTX TTX 

M0Hio= -»oYw\axsm~-j — azcos — \ 

TTX TT TTX\ 

M o H r 0 - B r 0 = ^ o ^ l a ^ i n — + j ~ a z c o s — 1« 

-m 
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Also let the dominant-mode field radiated by the electric dipole in the upper 

guide be 

•A&n z>0 

" \A2En z<0 

l A ^ z > 0 

\ A 2 H r 0 2 < 0 

whereas that radiated by the magnetic dipoles is 

; A 3 E ; 0 2 > O 

AtE{0 z < 0 

M 3 H ; 0 Z>0 

\ A 4 H r 0 2 < 0 

The electric dipole P is equivalent to an electric current given by j w P . Since 
the dipole is oriented in the transverse plane, (4.108) gives 

1 Trd jo>Py vd 
Ar = A2= - -^-JOJP • av sin = —- sin (4.130) 

" l 0 a a0^us a 

Note that no integration is necessary since P is an infinitesimal dipole of 
total strength Py. The constant Pl0 is equal to abYw. 

The field radiated by the magnetic dipoles may be found by using 
(4.119). Thus 

. JaUfXw I . T?d , 77 vd \ 

ja»li0 I vd vMz Trd \ 
= —— M_sin + j — — c o s (4.131) 

ab \ x a J /3a a ) v 

Similarly, it is found that 

jo)u.a I rrd vM, vd \ 
A4 = -—^-\-Mxsm—+j -cos— (4.132) 

ab \ a pa a ) 
With the above expressions for the amplitudes, the total field radiated 

0 t n e upper waveguide is readily evaluated. It is given by 
( A 1 + A3)E1-0 2 > 0 (4.133a) 
( A 2 + A4)Er0 2 < 0 (4.1336) 

( A 1 + A 3 ) H r 0 z>0 (4.133c) 

( A 2 + A4)Hf0 z < 0 (4.133d) 

that the electric dipole and the magnetic dipole Af.. radiate the same in 
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both directions but the magnetic dipole Mx does not. By correctly ch 
the aperture position d, it is possible to obtain zero radiation • Sl 

direction; that is, A2 + A4 can be made to vanish. We will return * 0 , ,e 

property later. 
For radiation into the lower waveguide, the sign of the dipolp 

reversed. Since the mode functions are the same, this has the eff ^ 
changing the sign of the amplitude constants. By using the expression t 
the mode functions given earlier and the derived expressions for the am 1 
tudes, we find that the radiation reaction fields are given by 

E\rv _ ^2ry ~ 

2W/J.0VM 

10 - ( ^ K v a , 

abYw 

vd 
5111' 

lia2b 

vd vd 
cos sin 

a a 

» i « - H2rx = ~2H2rx = - ( A , + A 3 ) H 10 

2JI3MX -d 
sin' ab a 

ff.M - H2r! = -2H2r! = - ( A , + A3)Hf0 

(4.134a) 

a t - ( A 2 + A 4 ) H f 0 - a x 

(4.1346) 

a , - ( A 2 + A 4 ) H r 0 - a , 

2a>vPy vd vd 2jojp.0Ywv%M: 

sm cos 
pa2b a a 

+ P2a3b 
cos 

vd 

a 
(4.134c) 

Note that in evaluating the reaction fields at the center of the aperture, we 
take one-half of the field at z = 0" plus one-half of the field at z = 0+, that 
is, on adjacent sides of the center of the aperture. The above equations show 
that there is interaction between the two dipoles Py and M,. 

The above expressions for the reaction fields along with the generator 
fields given by (4.129) can now be used in (4.122a) and (4.1226) to write the 
following set of linear equations which will determine the dipole strengt 

- a „ e py = 

M, 

M. = -a 

e c 0 

vd 
C sin 

a 

2jcoP vd 2(o(j.0vM; 
— — ~ sin2 + -
abY a 

pa2b 

vd vd 
sin cos 

a a 

-CY„. sin 
vd 2jpMx vd 

ab s m ' 

jvYw^ vd 2OJVPV . vd vd 2jo>fi0Yu,v
2M 2?q 

- C cos — ^ sm cos 
a Ba2b a a 

cos 
Pa a pa2b a a p2a3b 

We can solve these equations for the dipole strengths which are found 
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given by 

where 

e 0 a e sin 
Py= r-^~C (4.135a) 

rrd 
« m ^ , s i n — 

M* = Pam 2 irrf C < 4 1 3 5 6 > 

•rrd 
ja„wY0 cos — 

Mz= ° C (4.135c) 
« 0aA 

I 2 • 2 " ^ 2 2 * * * 

An sm z 77- cos^ — 
A = 1 + 2jac T~— + 2J<*, 

I3ab "J"m pa3b 

We can use these expressions to find the amplitudes A , , . . . , A., for the field 
in the upper waveguide. Thus for the electric field we have 

( A , + A3)E^0 z>0 

where 

' ( A 2 + A.,)E !n 2 < 0 

rrd i IT \2 rrd 
jaekZsm'~- jam\-\ cos2 

a c + \a ! 
/3a6A 0a&A 

A1+A, = „_LA " C + ^ - ^ - C 

•rrd 
jampwa2  

+ —; z r - 2 TTTC (4.136) 

a o J l + 2 j « , „ — s i n 2 — 

The amplitude A2 + A4 is given by this expression with the sign of the last 
term changed from positive to negative. If we now set A2 + A4 equal to 
zero, we find that this can occur for 

vd An 
sin =-7=2- (4.137) 

a \/6a 

t h u s an aperture position exists such that there is no radiation through 
Port 4. Power entering port 1 in Fig. 4.34 is coupled into ports 2 and 3 only. 
If the incident field were through port 2, we would find that there is no 
Power coupled into port 3. A four-port network with these properties is a 

ectional coupler> about which more is said in Chap. 6. 
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P R O B L E M S 

In the lower guide the aperture dipoles will radiate dominant 
fields with amplitudes that are the negative of those for the modes "^^ 
upper guide since the sign of the dipoles is reversed. Thus the reflected ^' 
transmitted electric fields are ^d 

E = ( C - A 1 - A 3 ) E I 0 z > 0 ( 4 l 3 g Q 

E = ~ ( A 2 + A 4 ) E f 0 z<0 ( 4 l 3 8
Q

6 j 

This shows that when the aperture is positioned so that there is no on 
coupled into port 4, then there is also no reflected power in port 1. 

We will define the aperture susceptanee jB and aperture reactance "f 
by the expressions 

2aekl ird _2am(7r/af vd 

2a np . rrd 

In terms of these parameters, the expressions for the amplitudes A, + A, 
and A2 + AA can be written as 

jB/2 jX/2 
A ' + A ' -rr7i c + mf c <4140°> 

jB/2 jX/2 
A „ + A . = - ~ : C - ^ ^ = C (4.1406) 

4 1+jB 1+jX 

The condition A., + A4 = 0 is met_by setting X = B. Since ae is negative, 
we can obtain a negative value of_S. Thus the amplitude A, + A3 can also 
be made small by setting X = - B . However, in this case Aj + A3 does not 
vanish exactly. In order for A, + A3 to equal zero, we would require 
X + B = 0 and XB = 0 which has only the trivial solution. By using 
X = - B we obtain an imperfect directional coupler. 

4.1. For TM modes in a waveguide, show that the line integral of the transve 
electric field between any two points on the boundary is zero. 

Hint: Note that V,et • d\ = (dejdl)dl = directional derivative of e, &°J 
the path. Integrate this and use the boundary conditions for ez- As an al 
tive, note that there is no axial magnetic flux, so that the line integral arou 
closed path in the transverse plane must vanish. .. 

4.2. For TE modes show that the line integral of the transverse electric ^ 
between two points located on the guide boundary depends on the p 
integration chosen. . -ral 

Hint: Note that, because there is an axia] magnetic field, the line m « 
around a closed path does not vanish. 

4.3. An obstacle located at z = 0 excites evanescent H modes that decay expo 
tially away from the obstacle in the positive z direction. Integrate the cor 
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4.4. 

4.5. 

Poynting vector over cross-sectional planes at z = 0 and z = w and the guide 
walls for the ramth evanescent H mode, and show that there is no power 
transmitted into the region z > 0. Show also that the reactive energy stored in 
the nonpropagating H mode in the region z > 0 is predominantly magnetic. 

Hint: Note from (2.59) that the total inward flux of the complex Poynting 
vector equals the power loss (which is to be taken equal to zero in this problem.) 
plus2jw(Wm -We). 

Repeat Prob. 4.3 for the case of an E mode and show that nonpropagating E 
modes store predominantly electric energy. 

For the circuits illustrated in Fig. P4.5, verify that the slope of the reactance 
function is given by (4.25). 

o T i W -
C 

(a) FIGURE P4.5 

*4.6. For the N-port junction choose an excitation such that all /„ = 0 except I/, 
thus Vj = ZtJlj for all i. Show that all ZtJ must have real parts that are even 
functions of ID and imaginary parts that are odd functions of u>. 

•4 .7 . Generalize the result (4.25) to show that for a lossless iV-port junction 

[i*L 
8Z N A? 

u)=z z n 
n •»1 m = 1 

HZ. 

So} 
-/m = 4 j ( W ; + W m ) 

4.8. Verify that (4.51) and (4.44) are equal. 

4.9. Show that a length I of transmission line of characteristic impedance Zc is 
equivalent to a T network with parameters 

zn = 2 2 2 = ~jZc cot pi Zn = -JZC esc pi 

4.10. Let Z^., Zfc, Z^, Z%. be the input impedance of a T network when terminals 2 
are short-circuited, when terminals 1 are short-circuited, when terminals 2 are 
open-circuited, and when terminals 1 are open-circuited, respectively. In terms 
of these impedances show that the parameters of the T network are given by 

Zu = Zl ^22 - Zoc zh = (zl-zl)zl = {zl-zl)zi 
Use these relations to verify the equations for the circuits of Figs. 4.13d 
and e. 

•«1- For the mircowave circuit shown in Fig. P4 . l l , evaluate the power transmitted 
to the load ZL. Find the standing-wave ratio in the two transmission-line 

f* 
Zt=Z< 

/W=% 
Z 

zc = z, 

fil***A 

Zi 

FIGURE P4. l i 

P4.ll
P4.li
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sections. Assume ZL = 2ZU Xx = X2 = Z„ V, = 5V (peak). Check 
your swers using TLINE. ' "" ' an-

4.12. FOT the microwave junction shown in Fig. P4.12, the equivalent-T 
parameters are Zn =j2, Zl2 =j/ y/2, Z22 = -jO.25. Find the p a r a m ^ ' * 0 ' * 
the alternative equivalent circuit illustrated. ** for 

& = 1 

01 n:\ FIGURE P4.12 

4.13. For the three-port junction illustrated in Fig. P4.13, compute the 
power 

delivered to the loads Z, = 50 ft and Z2 = 100 ft. Assume that V = IQ y 
peak. 

z, ~ so a 

FIGURE P4.13 

4.14. For the transmission-line circuit shown in Fig. P4.14, find (a) the load reflec
tion coefficient, (6) the impedance seen by the generator, (c) the VSWR on 

Z, = 40 il 

j 
fil'J FIGURE P4.14 

transmission line, id) the fraction of the input power delivered to the 
following parameters apply: 

Zg = 50 ft fil = IT/4 ZL = 40 ft 50 ft 
liP* 

4.15. For the circuit shown in Fig. P4.15, find the VSWR on both transmissij* ^ 
and the load impedance at the generator terminals. The following P& 
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)X 

f l = T ' 2 = 4 

zL 

FIGURE P4.15 

apply: 

I _ - l2 = - Zc = 50 n 2g = 50 ft 2L = 25 +>25 /X = / 2 5 

4.16. For the transmission-line circuit shown in Fig. P4.16, find the required value of 
' Z that will match the 20-ft load resistance to the generator. The generator 

internal resistance Rg = 60 (i. Find the VSWR on the transmission line. Is RL 

matched to the transmission line? 

Vg(~ RL = 20 Q 

£>=§ FIGURE P4.16 

4.17. For the transmission-line circuit shown in Fig. P4.17, find the VSWR on each 

FIGURE P4.17 

transmission line and the relative powers delivered to /?, and R2. The follow
ing parameters apply: 

0i = IT e2 - - R1 = 25 n R 2 = 75 n zc = 50 n Rg = so n 

1 8 - for the transmission-Une circuit shown in Fig. P4.18, find the open-circuit 
voltage Vx and the Thevenin equivalent impedance. Use these results to find 
the power delivered to RL. Assume that pi = TT/4, Rg = 75 ft, Zc = 50 ft, 
« L = 30 n . 
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Rg 

|—WV 

& 

Pl=E 
FIGURE P4.18 

4.19. Consider the junction of two transmission lines with characteristic imped 
Z, and Z2 as illustrated in Fig. P4.19. When the usual transmission 1' 

-?12 

s2, 
5 , , ^ ^ 5 2 FIGURE P4.19 

voltages and currents are used, show that the scattering-matrix parameters are 
given by 

2 1 

S]., — 

z2 + z, 
2Z, 

8 ~ - ^ ~ 21 Z , + Z , 

The normalized voltages V/ and V2
+ are given by Vf = /F^VY, V2

+ = / £ # , 
where the unprimed quantities are the usual transmission-line voltages. When 
normalized voltages are used, show that the scattering-matrix parameters are 

0
 Z 2 - 2 , „ „ 2V/Z^2" 

^11 _ ^ 2 2 _ 

Z2 + Z, 
" 1 9 — " S I — 

Z 2 + Z j 

4.20. For the circuit shown in Fig. P4.20. find the scattering-matrix parameters. 

Zc jX2 Zc = 50 £2 

FIGURE P4.20 

When jX, =j25, jX2 = jlOO verify that 

I S u | a + I S , / = 1 

Sn"i2 T •J12°22 ^12^22 - 0 

4.21. Find Z* Z £ , ZL and Z?. for the circuit shown in Fig. P4.21. 

Z„ = 1 

n : 1 "* FIGURE P4.21 
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FIGURE P4.22 

4 22. For the circuit shown in Fig. P4.22, find the input reflection coefficient !*,„. 
4.23- For the circuit shown in Fig. P4.23, find the expressions for Z in, r in , and the 

input VSWR. Find the value of JX that will minimize the VSWR. 
Hint: The VSWR will be minimum when ir jn |2 is a minimum. Why? 

e FIGURE P4.23 

4.24. The field of a T E U mode in a rectangular guide of width a and height 6 is 
derived from 

irx vy 
h, = C cos — cos —r-

a b 

Determine the expressions for the equivalent-transmission-line voltage V* and 
current I' for the two cases (1) when Zc - Zu. = wave impedance of the T E U 

mode, (2) when Zc = 1. 
4.25. Apply the complex Poynting vector theorem to show that, for a one-port 

microwave termination, the reflection coefficient V satisfies the relation 

when the wave amplitudes are normalized, so that W* = II*, that is, the 
equivalent characteristic impedance is unity. 

4.26. Show that the j / ^ 4 f 3 parameters for a section of transmission line of length / 
and characteristic impedance Zt are given by .*' = 's = cos pi, .'£ = jZ,. sin fil, 
&= jYc sin j8/. 

4.27. For a section of transmission line of length /, show that the wave-amplitude 
transmission matrix is a diagonal matrix with elements 

i n - * * A22-e-'»l Al2 = A2i=0 
8- Consider the junction of two transmission lines as in Prob. 4.19. Using conven

tional transmission-line voltages, show that the [ A ]-matrix parameters describ
ing the junction are Au = A& = (Zx + Z 2 ) / 2 Z 2 , A12 = A21 = (Z2 - Z , ) / 2Z 2 . 
When normalized wave amplitudes (voltages) are used, show that A,, = A22 = 
(Zj + Z 2 ) / ( 2 ^ Z , Z 2 ) , A12 = A 2 I = (Z 2 - Z,)/(2>/z7Z2"). 

• r ind the [Aj-matrix parameters for a shunt susceptance jB connected across a 
transmission line of unit characteristic impedance. Repeat for a reactance jX 
connected in series with the line. 

• Show that when normalized voltages are used the scattering-matrix parameters 
ot a two-port junction are given in terms of the equivalent-T-network parame-
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ters by 

A — 1 + Zu — Z22 
11 ~ A + 1 + Z u + Z22 

2Z1 2 
S\2 — S 2 1 — 

•^22 -

A + 1 + Zu + Z22 

A — 1 + Z 2 2
 — Zj j 

A + 1 + Zn + Z< 22 

where 

A — ZllZ22 Z 1 2 

4.31 . Show that the T-network parameters are related to the scattering-matri 
parameters as follows: 

(1 + S n ) ( l - S2 2) + Sf2 
Z„ -

^ o o — a» w 

7 _ 2 S 1 2 

*12 W 

where 

W = (1 - S „ ) ( l - S2 2) - Sfg 

4.32. For a discontinuity in a waveguide, the following scattering-matrix parameters 
were measured: 

^ 1 1 = 5 +Ja " 1 2 = Ja ^ 2 2 = a ~J~S 

Find the parameters of an equivalent T network that will represent the 
discontinuity (Prob. 4.31). 

4.33. For an £-plane step (Fig. 4.6), the following were measured: 

6 1 1 3 +j 2 2 ~ 3 + j 

An equivalent circuit of the form illustrated in Fig. P4.33 is to be J 1 ^ . 
represent the junction. Determine the susceptance jB and the ide 
former turns ratio n:l from the above given data. 

JB 

v.n FIGURE P4.33 
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M f " l Z-c M 
ix 

• FIGURE P4.34 

*4.34. For the circuit illustrated in Fig. P4.34 construct a signal flow graph relating 
the variables Vg, Ig, V„ /„ V2, and I2. Use signal flow graph analysis to find the 
voltage V2 across ZL. 

Hint: See Prob. 4.9 for the T-network parameters of a transmission line. 

*4.35. For the circuit illustrated in Fig. P4.35, construct a signal flow graph. Use 
signal flow graph reduction to derive an expression for the load voltage V3. Use 
t hcwS^S* chain matrix to write relationships between the variables. 

Bint: See Prob. 4.26. 

JX 

' i — <2^ % — ' 

k * t v2\ zc v 3 | 

FIGURE P4.35 

*4.36. For the circuit illustrated in Fig. P4.36, construct a signal flow graph using the 
scattering-matrix relationships between the variables. From a reduction of the 
signal flow graph find the load voltage VL. 

JX 

^ P 
V* . 

V{' 
Zc 

i%+— 

w—-
^ 

0 

FIG URE P4.36 

• '• For the transmission-line circuit shown in Fig. P4.37, find the generalized 
scattering-matrix parameters for the series reactance jX. Use these results to 
derive an expression for the power delivered to ZL. Verify your answer using a 
more conventional method of analysis. 
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Rg+jXg 

v
9Q 

fx 

ZL=RL + jXL 

FIGURE P4.37 

*4.38. Repeat Prob. 4.37 with jX replaced by a shunt element jXs. 

*4.39. Find the TE1 0 field radiated by the current loop illustrated in Fj g p. 
Consider the loop area to be so small that (4.119) is applicable. The area nf i 
equals S 0 . l0oP 

a/2 
/ = 0 FIGURE P4.39 

*4.40. Find the TE„, field radiated by the current loop of Prob. 4.39 if a short circuit 
is placed at z = —/. 

*4.41. A linear constant current / extends across the center of a rectangular wave
guide at J: = a/2, z = 0. Show that the total radiated electric field is 

where 

-jwfigI * 1 nv nir: 
Ev = 2- — sin — sin 

a „„ , 7„ 2 a 
1/2 

, - y » l j 

yn "J0n = 
•2 " 0 
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CHAPTER 

5 
IMPEDANCE 

TRANSFORMATION 
AND MATCHING 

In this chapter we are concerned with the important problem of impedance 
matching, such as the matching of an arbitrary load impedance to a given 
transmission line or the matching of two lines with different characteristic 
impedances. Methods of impedance matching to obtain maximum power 
transfer are presented, along with broadband design methods for quarter-
wave transformers and tapered transmission-line impedance transformers. 
To facilitate the development of the theory, the Smith chart, a graphical aid 
for the solution of many transmission-line and waveguide impedance prob
lems, is described first. 

In a computer-oriented age the reader may very well question why one 
should be interested in a graphical aid, such as the Smith chart, to solve an 
impedance-matching problem. There are two basic reasons why the mi
crowave engineer needs to be familial- with the Smith chart. One reason is 

at Using the Smith chart to solve an impedance-matching problem shows 
m a very vivid way how adding reactive elements moves the impedance 

>mt around and this provides considerable insight into the impedance-
natching problem. The second reason is that the Smith chart is widely used 

1 he industry to display the performance of a microwave circuit in terms of 
nput impedance versus frequency, VSWR or reflection coefficient versus 
^u^ncy , the frequency variation of scattering-matrix parameters, etc. 

in microwave amplifier design the Smith chart is indispensible as a 
aid to show how gain, noise figure, stability, and input and output 

c n ing are interrelated and how these operating characteristics depend 

303 
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on the load and source impedances. Without the aid of the Smith ch 
intuitive understanding of microwave amplifier design would be much ' ^ 
difficult to acquire. m°*e 

5.1 S M I T H CHART 

In Sec. 3.6 it was shown that a load impedance ZL was transformed in* 
impedance 

ZL + jZe tan pi 
Z™ = ZcZc+jZLtanpl (5.1) 

when viewed through a length / of transmission line with characterise 
impedance Zr. This formula is valid for any waveguiding system with phase 
constant /3, provided the impedances are properly interpreted in terms of 
suitably defined equivalent voltages and currents. Alternatively, the reflec
tion coefficient T(Z), a distance / from the termination, is uniquely given by 

r / n Z i " ( f > - 2 c 
r ( / ) - zjiiTz; <5-2> 

with Z-mil) given by (5.1). The reflection coemcient is a physical quantity 
that can be measured, and the normalized impedances Z-n/Zc and ZL/ZC 

may therefore be appropriately defined in terms of the reflection coefficient 
r at any point / on the line and the reflection coefficient YL of the load, as 
follows: 

z. . h.. I l l . i i i if^ (J 
m zc i - r(/) i - y,e-2jPl 

Z, = ljjt* b) 
1 z< i - r£ 

The Smith chart is a graphical representation of the impedance-trans 
formation property of a length of transmission line as given by i 
Clearly, it would be impractical to plot all values of Z, and Zm ° 
rectangular coordinate impedance plane, with one coordinate represei 
the real part, or resistance, and the other coordinate representing 
reactance, since this would require a semiinfinite sheet of paper, y 
other hand, all values of the reflection coefficient lie within a unit cir ^ 
the reflection-coefficient plane since |fl < 1. Furthermore, each value 
specifies a value of normalized input impedance by means of (5.3a). s . 
there is a one-to-one correspondence between reflection coefficient an*: »:O0 
impedance. Instead of plotting contours of constant values of the ren 
coefficient, contours of constant values of input resistance and inp"1 ^e 
tance are plotted on the reflection-coefficient plane. For a given value o ^ 
reflection coefficient, the corresponding input impedance can be rea 
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rectly from the plot. In addition, a movement a distance d along the line 
corresponds to a change in the reflection coefficient by a factor e~2Jpd only. 
This is represented by a simple rotation through an angle 2/3d; so the 
corresponding impedance point moves on a constant radius circle through 
this angle to its new value. The chart thus enables the transformation of 
impedance along a transmission line to be evaluated graphically in an 
efficient and straightforward manner. A more detailed description of the 
chart and its use is given below. In addition, a number of matching 
problems are solved with the aid of the Smith chart in later sections of this 
chapter. 

Let the reflection coefficient T be expressed in polar form as 

Y = peje (5.4) 

where p = \Y\ and 0 = Z T = LTU— 2/3/. Let the normalized input 
impedance be 

Zm _ _ 1 + T 1 + peJ° 

From (5.5) it is readily found that in the reflection-coefficient plane (p, 0 
plane), the contours of constant R and constant X are given by (Prob. 5.1) 

u — -= 
R \ 2 1 

= +v2 = 5- (5 .6a) 
K + l] ( S + l ) 2 

(«-l)»+(*-jLj - i j (5.66) 

where u = p cos 8 and v = p sin 6 and are rectangular coordinates in the 
P, 0 plane. The above constant R and constant X contours are circles and 
plot as illustrated in Fig. 5.1. 

For convenience in using the chart, a scale giving the angular rotation 
2/31 = 4TTI/X in terms of wavelength A is attached along the circumference 
of the chart. Note that moving away from the load (toward the generator) 
corresponds to going around the chart in a clockwise direction, as illustrated 
ui Fig. 5.2. A complete revolution around the chart is made in going a 
distance I = A/2 along the transmission line. At these intervals the input 
impedance repeats itself. The origin for the angular scale is arbitrarily 
chosen at the left side of the circle. 

To illustrate the use of the chart, let a line be terminated in a load 
impedance ft, + J X , = 0.5 +70.5. This point is located in Fig. 5.2 and 
labeled Pv At a distance / = 0.2A away, the corresponding input impedance 
may be found as follows: A constant-radius circle through P, is constructed 
n r s t . The new impedance point P2 lies on this circle at an angle 2/3/ = 0.8-n-
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FIGURE 5.1 

Constant R and X circle 
in the reflection-coefficiem 
plane. 

FIGURE 5.2 
The Smith chart. 

rad in a clockwise direction from P-y. This angular rotation is re ^gctio" 
out by adding 0.2A to the wavelength reading obtained from the inte j.greIjce 
of the radius vector through Px and the angular scale at the circuit jzPj 
of the chart. From the chart it is found that the new value of n° 
impedance is 

R2+jX2 = 2-jl.04 

L 
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If we begin at a point Py, where the impedance is Rx + jXlt and move 
n a constant-radius circle an amount A/4 to arrive at a point diametrically 

opposite, \\ changes into - I \ (2/3/ changes by TT), and we obtain an 
impedance 

«_ i - r, i 
R2 +jX2 = — = •= =- = G, 2 7 2 i + r , R1+JX1 

•JBt 

Thus the input normalized admittance G, + jBt corresponding to a given 
input impedance Rx + jXl may be found from the value of impedance at a 
point diametrically across from the first impedance point, provided R2 and 
jX2 are interpreted as^the input conductance and susceptance. To clarify 
this, note that R2 + jX2 at P2 is the normalized input impedance at point 
P2 and equals the normalized input admittance at point Py at a distance 
/ = A/4 away. 

The Smith chart may be used to find the transformation of admit
tances equally well. All that is required is_to interpret the constant resis
tance and reactance contours (constant R and jX contours) as constant 
conductance G and susceptance jB contours. Note J h a t a positive X 
corresponds to an inductive reactance but a positive B corresponds to a 
capacitive susceptance. 

In order to facilitate the use of the Smith chart in situations where it 
is necessary to convert back and forth between impedances and admit
tances, the impedance-admittance chart is used. This chart has a second 
Smith chart, rotated by 180°, superimposed on the regular Smith chart. 
Thus one set of circles gives impedance values and the second set of rotated 
circles, usually shown in a different color, give the corresponding admit
tances values directly. For the conventional Smith chart, the admittance 

FIGURE 5.3 
Inward spiraling of the impedance 
point on a Smith chart for a lossy 
transmission line. 
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values are obtained by rotating the impedance points by 180° 
impedance-admittance chart, the second set of rotated circles rn t ^e 

unnecessary to rotate the impedance point in order to determ" 
corresponding value of the admittance. e 'he 

On a lossy line the reflection coefficient at any point is given h 

PL (5.7) 
As we move from the load toward the generator, p = />Le"2ul conti 
decreases, and hence we move along a spiral that eventually terminal 
the center, as in Fig. 5.3. In practice, we move on a constant p circle fi * 
through the angle 2/3/ and then move in radially until we are a dista 
p L e - 2 " ' from the center. Many practical charts have convenient seal 
attached to them, so that the amount of inward spiraling is readily obtained 
Note that the center of the chart represents a matched condition (p = 0) 

5.2 I M P E D A N C E M A T C H I N G WITH R E A C T I V E 
E L E M E N T S 

When a given load is to be connected to a generator by means of a 
transmission line or waveguide many wavelengths long, it is preferable to 
match the load and generator to the transmission line or waveguide at each 
end of the line. There are several reasons for doing this, perhaps the most 
important one being the great reduction in frequency sensitivity of the 
match. Although the transformed load impedance as seen from the genera
tor end of the transmission line can be matched to the generator for 
maximum power transfer, a small change in the operating frequency will 
change the electrical length fil of a long line by an appreciable fraction of v 
rad, and hence greatly modify the effective load impedance seen at the 
generator end and thus modify the matching requirements as well. To avo« 
this frequency sensitivity of the matching requirements, the load an 
generator should be individually matched to the transmission line or wave
guide. . . 

Another disadvantage of not matching the load to the transmission 
line is that when a matching network is used at the generator end o . 
there may be a large standing-wave field along the transmission line I 
original load is badly mismatched. This reduces the power-handling ^ P ^ o 
ity of the system since, for a given power transfer, the ^iaximum,^ntL 

strength before dielectric breakdown occurs is reached sooner. In ao 
greater transmission losses are also incurred when there is a standing 
current along the line. t0 a 

The techniques that may be used to match a given load impedanc ^ 
transmission line or waveguide may equally well be used to mate ^ 
generator to the line. Hence it suffices to limit the following discussio ^ 
that of matching an arbitrary load impedance to the transmission line: ^ 
convenience, normalized impedances are used. The first matching tecB 
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V ' V * 

Y,=C 

FIGURE 5.4 
Single-shunt-stub matching network. 

discussed employs shor t -c i rcui ted (or open-circuited) sect ions of t r ansmis 
sion lines as reactive e lements , and is referred to as stub ma tch ing . How
ever, t he principles involved a re genera l in n a t u r e and may be applied to a n y 
waveguiding sys tem by subs t i tu t ing su i tab le s h u n t or series reactive ele
m e n t s for t h e t ransmiss ion- l ine s tubs . A descript ion of some typical reactive 
e lements t h a t may be used is given in a la ter section of this chapter . 

S i n g l e - S t u b M a t c h i n g 

Case 1 Shunt s tub. Consider a line terminated in a pure conductive load of 
normalized admittance YL = G, as in Fig. 5.4. At some point a distance d from 
the load, the normalized input admittance will be Ym = 1 + jB. At this point 
we can connect a s tub with normalized input susceptance —jB across the line 
to yield a resultant 

that is, to arrive at a matched condition. The stub should be connected at the 
smallest value of d that will give Ym = 1 + jB in order to keep the frequency 
sensitivity as small as possible. The stub may be either an open-circuited or a 
short-circuited section of line, the latter being the most commonly used 
version for two-wire lines, coaxial lines, and waveguides because of ease in 
adjustment and better mechanical rigidity. In a microstrip circuit an open-
circuited stub would be preferred since it does not require a connection to the 
ground plane. 

To find the position d, we must solve the equation 

^in = 1 +JB = 
YL+jt 

1 +JYL' 

If we assume that YL = G is pure real, we require 

(l+jB)(l+JGt) =&+jt 

t = tan pd 
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or by equating real and imaginary parts, we obtain 

1 - BGt = G 
- _ (5-8a} 

j(B + Gt)=jt 
(5.86) 

Equation (5.86) gives B = (1 - G)t, and substitution of this into (^ s > , J ° a ) yield, 
1 - G 1-G 

EG ~ ( i - G)Ut 

or il = tan2 Bd = — 
G 

Replacing tan2 fid by (1 - cos2 Bd)/cos2 ,6c? finally gives 

A / G 
d = ^ C 0 S V T T g (5-9, 

where B = 2TT/A. Note that two principal values of d are possible, depending 
on which sign is chosen for the square root. An alternative relation is obtained 
if we replace 2 cos2 Bd by 1 + cos 2Bd; thus 

2G 
1 1 rncfftri 

1 + G 

and 
G - 1 

and (..(Jo A D U — ^~ 

G + 1 
which gives 

A G - 1 
u — COS — 

4TT G + 1 

(5.10) 

If dL is a solution of (5.10), then A/2 - d{ is another principal solution, sine* 
±dx ± nA/2 are all solutions of (5.10). 

The value of the input susceptance jB is given by 

3 - { i - B ) t - ~ ( 5 U ) 

VG 

since tan2 Bd = 1/G. The required length l0 of a short-circuited stub to { 
an input susceptance -jB is found from the relation 

and (5.11); thus 

Yln= -JB= -j cot BlQ 

1 - G 
cot/3/0 = ._ 

VG 

A , /G (5.12' 
or /0 = — t a n " 1 

2TT l - G 

where the sign of \ / G must be chosen to give the correct sign for B in 
:: 
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•;o 

r^\+jB r^=s Z\»*°\*jX Z;»=Vs 

FIGURE 5.5 FIGURE 5.6 
Location of stub relative to a voltage The series stub. 
minimum. 

0 < d < A/4, the positive square root should be used, whereas if the other 
solution, A/4 < d < A/2, is chosen, the negative square root must be used. 

A similar analysis may be carried out when Y, is complex, but it 
becomes more involved. The following procedure is usually followed instead. 
First locate a position of a voltage minimum from the load. At this point the 
reflection coefficient is a negative real quantity and the input admittance is 
pure real and given by 

Ym = 
1 - T 1 +p 

i + r =
 I - P = s (5.13) 

where S is the standing-wave ratio on the line. Let d0 be the distance from 
this voltage-minimum point to the point where F in = 1 +jB, as in Fig, 5.5. 
The equations to be solved for the stub position d0 and stub length /,, are the 
same as given earlier, but with S replacing G. Hence 

A S - 1 

*•-*"• 'sTT 
A , v'S 

(5.14a) 

(5.146) 

The position of the stub from the load is readily computed by finding the 
distance from the load to the V^„ position and adding this to d 0 . Note that a 
stub position d0 ± A/2 is also a suitable one. Thus, if d0 - A/2 is still on the 
generator side of the load, the stub should be placed at this point instead of at 
"o in order to reduce the frequency sensitivity of the match. 

Case 2 Series stub. At a position of a voltage minimum, Zin = S'1. At 
some position d0 From this point, Z^ = I + jX. By connecting a stub with a 
normalized input reactance of -jX in series with the line at this point, the 
resultant input impedance is reduced to unity and a matched condition is 
obtained. This series stub-matching network is illustrated in Fig. 5.6. 
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To find d0, we must solve the equation 

_ S~l +j tan Bdr, 

1 +>S tan/3rf0 

This is the same equation as considered earlier, with X, S~l replac' 
and thus the solutions are g °- S, 

(5.15Q) 

(5.156) 

where the sign of JS must be_chosen to yield the correct sign for tan (3d • that 
is, for 0 < d0 < A/4, use + JiS, and for A/4 < d0 < A/2, use - js. 

The required stub length l0 is determined from the relation 

j tan /3/0 = -jX 

and hence, from (5.156), we obtain 

A ,1-S 
/ - -2? t o n ~7T (516) 

The shunt stub is most commonly used for coaxial lines because it is easy 
to construct a shunt stub for a coaxial line, whereas a series stub is diflicult to 
build. A disadvantage with a single-stub-matching system is that every I08" 
requires a new stub position. The use of two stubs spaced by a fixed amount 
and located a fixed distance from the load may be used to overcome this 
disadvantage. However, a double-stub-matching system of this type will n« 
match all possible values of load admittance. The theory of double-stub 
matching is presented in the next section. 

DOUBLE-STUB MATCHING NETWORK 
r n o t w n r l r I'C il l i ic+ratoH arhRTO&tiCSK 

an 
The double-stub tuner, or matching network, is illustrated schematically 
Fig. 5.7. We may transform_the £iormahzed load admittance I t " 1 ^ 
equivalent load admittance YL = GL +jBL at the plane aa and treat 
problem illustrated in Fig. 5.76 without loss in generality. _ -^ 

Let the point PK on the Smith chart in Fig. 5.8 represent YL- The ^ 
stub adds a susceptance jBl which moves P, along a constant-conduc . 
circle to point P2 in Fig. 5.8. At the plane_66 just on^he right-hand si ^ 
the second stub, the input admittance is Yb = Gb +jBb, and is obtain ,g 

moving along a constant-radius circle from P2 to P3 through an ^ 
#_ = 2/3rf = 47rd/A rad in a clockwise sense. The point P3 must lie o B j 
G = 1 circle if the addition of a susceptance jB» contributed by the sec 
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FIGURE 5.7 
The double-stub tuner. 

stub is to move point P3 into the center of the chart (matched condition) 
along the G = 1 circle. 

From the description just given, it is clear that the first stub must add 
a susceptance of just the right amount, so that after the admittance at plane 
cm is transformed through a length of line d, we end up at a point on the 
G = 1 circle. The required value of susceptance jBl to be contributed by 
the first stub may be obtained by rotating the G = 1 circle through an angle 
- <f>. The intersection of the rotated G = 1 circle and the GL circle deter
mines the point P2, and hence jBv as illustrated in Fig. 5.9. A point P'2 

would also be suitable; the location P'3 then corresponds to the admittance 
just to the right of the second stub. 

_ From Fig. 5.9 it is clear that for all values of YL that lie_within the 
G = G0 circle, a match cannot be obtained since all values G > G0 will not 
intersect the rotated G = 1 circle. The conductance circle G = G0 is tangent 

FIGURE 5.8 
Graphical representation of the 
operation of a double-stub tuner. 
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F I G U R E 5.9 
Graphical determination of ^ 
quired susceptance for the first 
stub in a double-stub tuner. 

to the rotated G = 1 circle at the point Q- It is easy to see that the smaller 
the distance d, the larger the range of load admittances that may be 
matched (see Fig. 5.10 for the case of d = A/8, 4> = TT/2). Also note that G0 

will always be greater than unity; so all loads with_GL < 1 can be matched. 
At plane aa in FigJ5.7 we_have_y,, = G, +jBL. Jus t to the left of the 

first stub we have Ya = GL +jBL +jBy Just to the right of the second stub 

of FIGURE 5.10 
Illustration of range ^ 
impedance which can" 
matched when d = <v 8 ' 

loa* 
be 
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we have 

F * ~ 
GL +JBL + jBl +jt 

t = tan pd (5.17) 
1 +j*{GL +jBL +JBl) 

Since Yb must equal 1 + jB, (5.17) gives, upon equating the real part to 

unity, 

= 0 

or 

_ 1 + t2 

GL = 
2«2 1 ± 1 / 1 -

U\\-Bht-Bxt) 

(1 + ' 2 ) 2 

(5.18a) 

(5.186) 

In (5.186) we note that the term under the radical sign equals one minus a 
positive quantity. Since GL must be real, the term under the radical sign 
must be positive, or zero. Hence the value of the_square-root term lies 
between zero and one. The corresponding limits on GL are 

_ 1 + t2 1 
0 < G L < 

sin2 lid 

For any_ given choice of d, the whole range of load admittances outside the 
circle G0 = esc2 fid may be matched. As an example, for d = A/8,__/3d = 
TT/4, <f> = 2(Zd = IT/2, and all values of load admittance outside the G0 =_2 
circlejnay be matched, as shown in Fig. 5.10. For d = A/4, all values of YL 

with GL < 1 may be matched. 
Although the theory predicts that virtually all load impedances may be 

matched by choosing d near zero, or A/2, so that esc2 [id becomes infinite, 
this is not true in practice. The maximum value of stub susceptance that 
can be obtained is limited by the finite attenuation of the transmission line 
used. If jp were replaced by jp + a, it would be found that, even with A/2 
spacing, all values of load admittance could not be matched. In addition, 
stub spacings near A/2 lead to very frequency-sensitive matching networks, 
so that in practice spacings of A/8 or 3A/8 are preferred. The larger 
spacing is used at the higher frequencies, where the wavelength is too small 
to permit use of A/8 spacing. 

A complete analytical solution to the double-stub matching network is 
readily obtained. Solution of (5.18a) for the susceptance B, of the first stub 
gives 

n - l±\/(l + t*)GL^GTt* 
ts1 nL + (5.20) 

e r e BL, GL, and t = tan pd are all known. Equating the imaginary part 
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V=0 

FIGURE 5.11 
Illustration of the design of a double-stub matching network. 

r 

of (5.17) to jB gives 

s = l^zIiLiIit)(B^ + Bi + t) 
— , 2 _ 2*2 (l-Bj-Sjty+Gfc 

S u b s t i t u t i n g for Bx in to th i s equa t ion yields 

GU 

_ +M(l + ^2)'^5-G t B 
G,t 

(5.2D 

T h e u p p e r and lower s igns in (5.20) and (5.21) go together . T h e suscep ta"* 
of t h e second s t ub m u s t be chosen as — jB in order to provide a m a t e 
condition. 

E x a m p l e 5 .1 . We want to design a double-stub-matching system to ma 

normalized load admittance i j , = 0.4 +jl. The stubs are spaced A/° aP . _, 
We first construct the G = 1 circle rotated by an angle 1$d = 4 7 r ^g 

i r / 2 in the_counterclockwise direction as_shown in Fig. 5.11. Next wei ^ 
the point YL at the intersection of the G = 0.4 and B = 1 contours. ^ { h e 

the point labeled YL in Fig. 5.11. We can move YL so that it interi sects' 
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rotated G = 1 circle by moving it_to P, or P\ along the G = 0.4 contour. At 
p ( > jB =jl.8, so we need to_add jBx =y'(1.8 - 1) = j '0.8 to ?L to get to P±. At 
p-_ jB =j0.2, so to move YL to P[, we need a stub with susceptance jBl = 
#0 ,2 - 1) = - J0 .8 . 

The next step is to rotate P, and_P', by TT/2 rad in the clockwise 
direction. The rotated points lie on the G_= 1 circle at P2 and P2. At P 2 l 

jB = —j3, so we need a second stub with jB2 = -jB — j3 in order to move P2 

into the origin along the G = 1 contour. Similarly, in order to move^Pz in*0 

the origin, we need a second stub with jB2 =• -jB = -jl since jB at P/, 
equals jl. 

We can also use the Smith chart to find the stub lengths. For the first 
solution where we needed a stub with jB2 = j 3 , we will assume that we use an 
open-circuited stub. We draw a radius vector from the origin through the point 
where the jB = jZ contour cuts the outer boundary of the Smith chart as 
shown in Fig. 5.11. When we move along an open-circuited or short-circuited 
stub, we will be moving on the p = 1 circle^ or outer boundary of the Smith 
chart. At the open-circuit end of the stub, Y = 0 and this is the point on the 
left-hand side of the Smith chart as shown. We begin at this point and move on 
the G = 0 or p = 1 circle toward the generator (clockwise) until we get to the 

j3 point. From the normalized distance scale on the outer boundary of the 
Smith chart (not shown), we find that the required stub length is /2/A = 0.199. 

For the second solution where we need jB2 = —jl, we will assume that 
we use a short-circuited stub. At the short-circuit position Y =jx and this is 
the point on the right-hand side of the chart. We begin at this point and move 
on the G = 0 circle until we get to —jl as shown. This gives /'2/A = 0.125 for 
the s tub length. 

The reader can verify that for stub 1 the required length is, for an 
open-circuited stub, 

h 
— =0.107 
A 

= 0.393 

1 stub, 

— = 0.143 
A A 

= 0.357 

^^LE-STUB 

while for a short-circuited stub, 

If series stubs are used, then we work with the normalized load impedance 
and the normalized reactances of the stubs. A point to keep in mind when 
designing t h e j e n g t h of a stub to give a specified reactance is that at a 
short-circuit Z = 0, while at an open-circuit Z = jto. Thus, for an open-
circuited stub, we begin at the right-hand side of the Smith chart and move 
clockwise on the p = 1 circle until we arrive at the desired jX point. For a 
shunt stub that was open-circuited, we start at the left-hand-side edge of the 
Smith chart. 

T U N E R 

e disadvantage of not being able to ma tch all load admi t t ances wi th a 
ouble-s tub t u n e r may be overcome by us ing a t r ip le-s tub tune r , j i s illus-
ated in Fig. 5.12. S tub 1 provides a susceptance jBl such t h a t YL +jBi 
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No. 2 No 

FIGURE 5.12 
Triple-stub tuner. 

FIGURE 5.13 
Transformation of Y^ into Y£. 

6"0=csc* Bd 

transforms to some new admittance Y'L just to the right of stub 2. Stubs 2 
and 3 provide a conventional double-stub tuner for matching Y'L to the line. 
These two stubs will match all values of Y[ for which G'^< esc2 pd. Thus 
the function of stub 1 is to ensure that a susceptance jBx is added 1 
such that the transformed admittance Y'L has a G'L less than esc fid. To 

irele 
of 

find a suitable value_of jBy, we note that, after moving a distance d "° 
YL, the_admittance Y, +jB1 must transform into a pc-int Pi outside 
circle G0 = csc2/3d, as in Fig. 5.13. If we rotate the G0 = csc 2 0d ci: 
through an angle -<£ = — 2(3d, we can_ readily see at once the_ range 
susceptances jBx that may be added to Y^ to keep the resulting Y'L on s 

the G0 = esc2 (3d circle. The procedure _is illustrated in Fig. 5.14. In 
example YL falls within the rotated G0 = esc2 (3d circle, and b e ^ ^ 
susceptance jBx must be added to move the resultant load YL +J&} Qr 
some point beyond P, or P2, say to P[ or Pg, which provides for a marg1" 
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FIGURE 5.14 
Graphical solution for jBt for a 
triple-stub tuner. 

safety. The resultant load when transformed to the position of stub 2 will lie 
outside the circle G0 = esc2 /3d, and hence can be matched by stubs 2 and 3. 

A triple-stub tuner can match all values of load admittances. It may be 
considered to be two double-stub tuners in series, i.e., 

jB2=jB'2+jB2 

so part of jB2 is associated with each end stub of the two double-stub 
tuners even though only one physical stub is present in the center. The 
triple-stub-matching system has more free variables so it can be optimized 
to increase the bandwidth. 

E L E M ^ ^ A N 0 1 3 M A T C H I N G WITH L U M P E D 

Lumped-parameter elements such as conventional inductors and capacitors 
are not compatible with coaxial transmission lines and waveguides and 
consequently are generally not used with these structures for impedance 
matching. However, the widespread use of microstrip transmission lines and 
the minaturization of inductors and capacitors have brought lumped-param
eter elements into prominence for impedance-matching purposes. In a 
nucrostrip-line, series connections of capacitors and inductors are easily 
made. The shunt connection of a capacitor or inductor is somewhat more 
difficult since a connection through the substrate to the ground plane must 

made. In the frequency range up to several gigahertz, the use of lumped 
capacitors and inductors for impedance-matching results in a more compact 
circuit. 
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Air bridge 

Microstrip line 

(a) (b) 

FIGURE 5.15 
(a) A spiral inductor connected in shunt across a microstrip line; (6) a series-connected spiral 
inductor; (c) a series-connected single loop inductor. 

For a microstrip circuit the most common form of inductor is the 
spiral inductor shown in Fig. 5.15a. For a shunt connection the center of 
the spiral can be connected to the ground plane. For a series connection an 
air bridge has to be used as shown in Fig. 5.156. If only a small inductive 
reactance is required, a one-turn loop as shown in Fig. 5.15c may be used. 11 
a spiral inductor is to behave as a lumped inductor, its total length must a 
a small fraction of a wavelength. An estimate of the inductive reactance can 
be obtained by considering the inductor to be a length / of a transmission 
line. By using the formulas for the characteristic impedance and propaga-
tion constant, namely, 

T 

we obtain 

= y- p = cojw 

aiL = fiZc = k0Zc0 Sl/m 

where Ze0 is the characteristic impedance with air as the dielectric 
As can 

where 6c0 is the characteristic impeaance wicn air as tne aieiw-w'"- -7 ^j 
be seen from this expression, a high-impedance line (narrow width) s 
be used in an inductor. As an example, if we have a 100-fi lm<v i 
1-mm-thick substrate with an effective dielectric constant of 4 at 2 Gnz> 
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get 

wL = — y ^ X 100 = —- X 200 = 83.8 ft/cm 
A0 ' 15 

The inductance L is 6.67 nH/cm. A three-quarter-turn loop with a mean 
diameter of 1 cm would have an inductance of about 16 nH. Unfortunately, 
a single-turn loop this long would not function as an ideal inductor because 
every printed-circuit inductor has distributed capacitance associated with it. 
We can gain some insight into the length restriction by treating the single-
turn loop as a short length of a high-impedance transmission line. With 
reference to Fig. 5.15c, let Z0 be the characteristic impedance of the 
microstrip lines, let Zc be the characteristic impedance of the transmission 
line making up the inductor, and let Bl be the electrical length of the loop. 
Transmission-line theory gives 

Z0 + jZet = Z0(Ze +JZ0t) + jt(Z? - Zj) 
in cZc+jZ0t ' Zc+jZ0t 

jt(Z?-Z*)(Ze-JZ0t) 
0 + z* + z$ts 

where t = tan Bl. 
Since we normally would use a large value of Zr and keep Bl small, we 

will assume that Z%t2 « Z,2 in which case we get 

Zl a Zin = Z0 + Z0t> 1 - - | \+jZct 

For a short-circuited line, 

jXL ~jZc tan Bl=jZcBl 

Hence 

7 2 

ZJ 

Zin=Z0+Z0t* l~-%\+jX,\l-
72 

Thus the effective inductance is reduced by the factor 1 - Z%/Zf. A more 
serious departure from an ideal inductor behavior is the change in the real 
part of Zm. For an ideal series-connected inductor, we would have Z^ = 

o +J^L- ^n order that the actual Zm should approximate this ideal result, 
we need to make the factor t \ \ - Z%/Z*) of the order of 0.05. In a typical 
situation where Z0 = 50 ft and Zc = 100 ft, this requires that Bl be no 
arger than 0.26. The corresponding maximum value for the length I is 
'_ " For the earlier example where ec = 4 and f= 2 GHz, we have 

= 15 /2 = 7.5 cm. Thus I should be no greater than 0.3 cm. This leads to 
roaximum usable inductance of only 2 nH. We can, of course, use a larger 

ue for / but the change in the resistive part of Z in away from the ideal 
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Open circuit stub 

(a) (£>) 

Dielectric 

/ 

FIGURE 5.16 
(a) A short open-circuited stub; (b) an interdigital capacitor; (c) a metal-insulator-metal (MLMl 
capacitor; (rf) a chip capacitor soldered across a microstrip-line gap. 

value Z0 must then be taken into account in the design of a circuit 
requiring a series inductance. 

The spiral inductor can provide larger values of inductance. For exam
ple, a five-turn spiral inductor approximately 1.4 mm in diameter, with a 
conductor width of 0.06 mm and spacing 0.038 mm, has an inductance of 25 
nH at 2 GHz.t 

A short open-circuited stub as shown in Fig. 5.16a will function as a 
lumped capacitor connected in shunt across a microstrip line. The dis
tributed capacitance of a microstrip line is typically in the range 0.2y^«. to 
^/f7 pF/cm; so a short stub is suitable for providing a shunt capacitance up 
to about 1 pF. At 4 GHz a 1-pF capacitor has a reactance of about 40 ft. The 
interdigital capacitor shown in Fig. 5.166 can provide a series capacitance 
up to several picofarads depending on the number of fingers used and then 
length. For monolithic microwave integrated circuits, the metal-insulator 
metal (MTM) capacitor shown in Fig. 5.16c is generally used. A capacitance 
up to 20 pF or more can be obtained since the insulator thickness can 
very small. For example, an insulator 1 mm by 1 mm and 10 /xm thick an 
having a dielectric constant of 10 provides a capacitor with a capacitance 
about 9 pF. For hybrid microstrip circuits, the chip capacitor illustrated ^ 
Fig. 5.16a1 is used. It is soldered in place and can provide a capacitance up 
100 pF or more. 

tD. A. Daly, S. P. Knight, M. Caulton, and R. Ekholdt, Lumped Elements in fJiiCT0' 
Integrated Circuits. IEEE Trans., vol. MTT-15. pp. 713-721, December, 1967. 
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FIGURE 5.17 
L-i Two basic lumped-elemetit 
'(. matching circuits, (a) Circuit 
I used when GL < 1; (b) cir

cuit used when RL < 1. 

The basic lumped-element impedance-matching circuit is a circuit 
consisting of a parallel-connected and a series-connected reactive element as 
shown in Fig. 5.17. The topology of the circuit is such that it is commonly 
referred to as an L matching network (compare with the designation of T 
and FI for the impedance and admittance networks for a two-port network). 
For the circuit shown in Fig. 5.17a, the shunt element jBl is connected in 
parallel with the load and the series element jX2 is connected in series. 
This configuration can be_used to match any load admittance Y, having a 
normalized conductance G, < 1. The circuit shown in Fig. 5.176 can be 
used to match any load impedance having a normalized load resistance R t 

less than 1. For some load impedances both GL and RL are less than 1 and 
either circuit may be used. When the normalized admittance lies inside the 
G = 1 circle on the Smith chart, the corresponding normalized load 
impedance, which is the reflection of the normalized load admittance through 
the origin, will lie outside the R = 1 circle and hence can be matched using 
the circuit shown in Fig. 5.176. When ZL lies inside the R = 1 circle, YL 

will lie outside the G = 1 circle and can be matched using the circuit shown 
in Fig. 5.17a. When both Z, and YL lie outside the R = 1 and G = 1 
circles, respectively, either matching circuit can be used. 

The required values of the matching elements are easily found using 
the Smith chart. The procedure to be followed is described below. From this 
the reader will easily understand the rationale that underlies the use of the 
Smith chart to solve the matching problem using lumped reactance ele
ments. Since the Smith chart procedure uses normalized immittance param
eters, the first preliminary step is to determine the normalized values of YL 

and ZL by dividing by the characteristic admittance Ye or characteristic 
impedance Zc, respectively, of the input transmission line.t 

Case 1. The circuit in Fig. 5.17a is used. A match can be obtained only if 
GL s 1. If GL > 1 use the circuit in Fig. 5.176 (see Case 2). 

With reference to Fig. 5.18. 

1. Construct the G = 1 circle rotated by 180". 
2. From the point 7t add jB1 to move along a constant-conductance circle 

until the rotated G = 1 circle is intersected. There are two possible solutions. 

IX: 

Ze=* 
;S; Z,= 1 :B? 

i*r 

(a) (b) 

term immittance is used to designate either an impedance or admittance. 
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FIGURE 5.18 
Illustration of steps followed 
in designing the matching 
circuit in Fig. 5.1 la (Case 1). 

The new values of Y, are Y'L and Y[. Note that if Y, is inside the G = 1 
circle, it cannot be moved to intersect the rotated G = 1 circle because 
adding jB only moves YL on a constant-conductance circle. 

3. Reflect Y'h and Y[ through the origin to get the corresponding impedance 
values Z\ and Z"L. These lie on the ft = 1 circle since we made Y[ and Y£ 
lie on the rotated G = 1 circle. 

4. Since Z', and Z"L lie on the ft = 1 circle, these impedance_points can be 
moved into the origin by subtracting a reactance jX' or jX"._The origin 
represents a matched condition. Hence the required value of jX2 is_either 
-jX' or -jX". The required value of jB^ is ./'(B' - BL) or j(B" - BL)-

The greatest bandwidth is obtained when the reactive elements are a 
small as possible so that the circuit Q is as low as possible. We will return to 
this point after we provide the steps to be followed using the other matchin 
circuit. 

Case 2. The circuit in Fig. 5.176 is used. A match can be obtained only U 
RL < 1. If RL > 1 the circuit in Fig. 5.17a must be used (Case 1). 

1. Construct the ft = 1 circle rotated by 180° as shown in Fig. 5.19-
The 2. Add jX1 to ZL to move Zu to intersect with the rotated ft = 1 circle-

mr\Hnn ia alnno- a cnncfant, r e s i s t ance circlp Thf ro a r e Iwn solut ions &L motion is along a constant resistance circle. There are two solutions 

ZZ-
3. Reflect Z'L and Z"L through the origin to obtain Y'L and 7/,'. 
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FIGURE 5.19 
Illustration of steps followed 
in designing the matching 
circuit in Fig. 5Mb (Case 2), 

4. The admittance points Y{ and Y[ can be moved into the origin along the 
G = 1 circle by subtracting jB' and jB", respectively. Hence the required 
value of jB2 is -jB' or ~jB". The required value of jX, is j( X' - XL) or 
j(X"-XL). 

Analytic solutions for the required values of the matching elements are 
readily derived. The analytic solutions are given in Probs. 5.17 and 5.18 but 
the reader has to supply the derivations. 

Circuit Q and B a n d w i d t h 

When a complex load impedance has been matched to a transmission line 
with characteristic impedance Zc, the input impedance looking toward the 
load equals Zc. Thus the reactive elements present in ZL and the matching 
network make up a resonant circuit that is loaded by RL and Zc. A 
resonant circuit has a quality factor, or Q, that can be evaluated from the 
general definition 

Q 
<o( average stored electric and magnetic energy) 

(5.22) 
power loss 

At resonance the average stored electric energy in the capacitors equals the 
average stored magnetic energy in the inductors. Hence Q can be expressed 
as 

<? = 
2ioWc _ 2toWm 

(5.23) 
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<3 C > RL 

«B = flt: 

(a) 

•'-I 
C >R, 

(&) 

0.707V„, 

*L %L 4=c | f f t 

FIGURE 5.20 
(a) Parallel LCR resonant circuit; (6) loaded resonant circuit; (c) frequency-response curve 
showing half-power bandwidth. 

The bandwidth of the circuit is the frequency band over which one-half or 
more of the maximum power is delivered to the load. This bandwidth is 
called the half-power or 3-dB bandwidth and is inversely proportional to the 
loaded Q of the circuit. 

In order to clarify the above concepts, we will analyze the paralle 
resonant circuit shown in Fig. 5.20. For the circuit in Fig. 5.20a, the voltage 
across R, is given by 

(5.24) V = 
Y-m GL+ja>C-j/a>L 

where GL = 1/RL. The resonant frequency of the circuit is given by 
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The input admittance can be expressed in the form 

( OJ2 - ft) 

yfa = GL + > C ^r 

When o> = «0 then V = 7 , / G i = IgRL, which is the maximum load voltage 
hat can be obtained. When jwC{u>2 - o»g)/w2 =y"Gz,, we see from (5.24) 

that |V| = / / v^Gx,, and hence the power in i? L is only one-half that at 
resonance. In terms of the circuit elements, the Q is given by 

RL u>0C 
Q ^ — T ^ R L O O C - — (5.26) 

io0L O7. 
The reader can verify that this is the same Q as would be found using the 
definition (5.23) (see Prob. 5.19). When Q > 10 the frequency w is close to 
&)„ over the useful band of operation; so we have 

o) 
2 'I-- CO'Q = (OJ - o»„)(w + «o) » 2w(w - w„] 

2w(w — w0) 2(w — &>0) 
and Yi„ * GL +jwC —2 = G;, +7'o>0C-

IO UJi, 

= Gjl + 2JQ^~\ (5.27) 

where A&> = w — w0. From this expression it is readily seen that the 3-dB 
fractional bandwidth is given by 

Aw BW 
2Q = 2Q—- = 1 

<o0 2 
or BW = 1/Q since the half-power points occur when 2jQ Ato/(o0 = ±j. 

When the circuit is connected to a matched source as shown in Fig. 
5.206, it is clear that 

V=— S (5.28) 
2GL(l + 2jQLlu>/w0) 

where QL = Q / 2 is the loaded Q of the circuit. Consequently, for the loaded 
circuit, the bandwidth is twice as great. A typical response curve showing 
the bandwidth is given in Fig. 5.20c. 

In an impedance-matching problem, there are generally two solutions 
available. If we want a narrowband design, we should choose the solution 
that gives the largest loaded Q. On the other hand, when we want a 
broadband match, we should choose the circuit with the lowest loaded Q. 

load impedance plus matching network will contain either one capacitor 
and two inductors or one inductor and two capacitors. Thus, when using 

—3) to evaluate the circuit Q, the energy stored in the single reactive 
ement or that stored in the two opposite reactive elements must be 
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V\2r 

(a) 

FIGURE 5.21 
Two matching networks. 

• « i 
CifRL 

evaluated. We will illustrate the evaluation of circuit Q by means of s. 
examples that show the steps involved. By making use of the facts th ' 
resonance Z in = Zc and that P i n = PL, the evaluation of the circuit Q J' 
be reduced to a few simple steps. 

For the circuit shown in Fig. 5.21a, we will base the evaluation of the 
circuit Q on the energy stored in the capacitor CL. The power dissipated in 
RL is given by 

PL-T: 
IIVJ 
2 RL 

The average electric energy stored in CL is 

Hence from (5.23) we get 

2u>0We 

Q = — 5 — = UOCLRL 

The loaded Q is QL = Q/2 since the system is matched at w0. The 
operating bandwidth is determined by the loaded Q. 

For the circuit in Fig. 5.2lb, we note that 

1 |V|S 

P = — 
» 2 Z, = PL= TT 

I IVJ 

2 RL 

since Z^ = Zc at w = w0. The energy stored in C2 is 

we2 = {ivi2c2 

while that stored in CL is 

wei = \\vJcL - \cL^\vf 

where we used the equality of Pin and PL to express |V£I in t^ 

of IVI-
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The circuit Q is given by 

2«0(W e 2 + WeL) o>0(C2 + (RL/ZC)CL)\V\ 
Q = 

PL WL\A/RL 

= to0C2Zf + co0CLRL 

This circuit Q is larger than that for the circuit in Fig. 5.21a. In general, 
the smallest circuit Q is obtained when the matching circuit contains two 
similar reactive elements that are opposite to the reactive element in the 
load- i.e., if the load contains an inductive element, the matching circuit 
should be made up of capacitive elements only, and vice versa. 

For circuits with a loaded Q of 5 or more, the frequency response is 
very nearly the same as that of the parallel resonant circuit shown in Fig. 
5.20, over the useful operating frequency band. Thus the 3-dB fractional 
bandwidth is !/<?/,- For circuits with a low Q, the frequency behavior is 
different but similar. 

The discussion above has been based on the assumption that idea) 
lossless inductors and capacitors are used. As a general rule, lumped 
capacitors have very little loss and tbe assumption of negligible loss does not 
introduce significant error. However, lumped inductors do not have negligi
ble loss, and in high-Q circuits inductor loss should be taken into account. 
The Q of an inductor is the ratio of the reactance o>L to the series 
resistance R of the inductor. Lumped inductors may have Q values in the 
range of 25 to several hundred. If the loaded circuit Q is less than about 
one-fifth of the inductor Q, then neglecting the loss in the inductor will not 
produce serious error. When several inductors are used in a matching 
circuit, the losses in the inductors should be taken into account since these 
losses can account for a significant fraction of the total power delivered to a 
circuit. 

For microwave circuits the useful bandwidth is often much smaller 
than the 3-dB bandwidth. It is not uncommon to require an impedance 
match providing a VSWR of no more than 2, or even less than 1.5 in critical 
applications. A VSWR of 2 corresponds to a reflection coefficient of 0.333. 
With this mismatch a fraction of 0.889 of the incident power is delivered to 
the load. 

The degree of mismatch is usually described in terms of the input 
VSWR or in terms of the return loss. The return loss is the ratio of the 
reflected power to the incident power, expressed in decibels; thus 

V S W R - 1 
Return loss = RL = - 20 log p = - 20 log — S W R + 1 

A well-matched system will have a return loss of 15 dB or more. A VSWR 
equal to 2 gives a return loss of 9.54 dB, while a VSWR of 1.5 gives a return 
loss of 13.98 dB. Thus a return loss of 15 dB, corresponding to a VSWR of 

•4,J> does indeed represent a well-matched system. 
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In order to get a feeling for how narrow the bandwidth of 
using this criterion, let us assume that the loaded Q equals ' i a « y S t e n i i* 
VSWR = 1.43, we have p = 0.178. We can use ' ^ e n tL the 

A co 
Yin m Ye 1 + 2jQ— 

a>0 

P = 
Y - Y 

Y, + Y.. 

2QAco/co0 A w 

where Q = 2QL. Hence the fractional bandwidth is 

Aw 2p p 
2 = — = — - 0.0356 

to Q Q Q L 

This is much smaller than the 3-dB bandwidth which equals 1/Q or 0 9 

5.6 DESIGN OF COMPLEX IMPEDANCE 
TERMINATIONS 

In microwave amplifier design, we often require a complex load impedance 
for the output and a complex source impedance for the input even though 
the final input and output connections are to 50-fl lines. In a typical 
amplifier circuit as shown in Fig. 5.22a, the function of the input and 
output matching networks is to transform the 50-fi line impedances into 
the required complex source impedance Zs and load impedance ZL. In a 
broadband amplifier design, the design of the matching networks can be 
quite complex. In narrowband amplifier design, elementary matching net
works can be used. 

The matching problem for an amplifier is the reverse of that f 
matching a complex load impedance ZL to a transmission line. The t 
step is to choose a network topology to be used. In Figs. 5-226 to d we i-
three possible networks that could be used. Many other choices caI} 
made. We will illustrate the use of the Smith chart to design m a t c H 
networks of the type shown in Fig. 5.22. The methods used can be exta 
to more complex networks. 

Design procedure for the circuit in Fig. 5.226. The matching netw^ ^ 
Fig. 5.226 consists of a transmission-line stub placed at a distance ^ git 

input. The stub may be either an open- circuited or a s h o r t - c i r c u r ^ ^ c e 
lumped susceptance since its function is to provide a normaliz j„pUt. ^e 

jBi connected across the transmission line at a distance l_ fr°ra 

following procedure should be used to determine / and B\-

find ? 
1. Locate the_ required value of ZL on the Smith chart ani ^ ^ 5 

reflecting ZL through the origin. This procedure is illustra 
for the case where ZL = 0.4 -J0.2. 
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Amplifier Zc Amplifier 

i 

Zc 

— 1 

Amplifier 

i 

Input 
matching 
network 

Output 
matching 
network 

ZL ,5. G= 1 

(o) 

A. 
ZL ,8. <3 = t 7»1 

jXs 

G~ t 

(c) m 
FIGURE 5.22 
(a) Microwave amplifier circuit; (6) transmission-line matching network; (c) and (d> alterna
tive matching networks. 

2. Rotate the point Ytj on a constant-radius circle until it intersects the G = 1 
circle. There are two possible solutions. From the angle of rotation the 
normalized length l/\ is found. Note that the rotation is in a 
counterclockwise direction since we are mooing toward the load. 

3. When we move to the right of the point where jBx is connected, Ym 

decreases by jBl to become Yjn ~ I + jB - jBv But to the right of jBv we 
require Y^ = G = 1 so Bx = B. Thus the values of jB on the G = 1 circle, 
where the rotated YL intersected the circle, gives the required values of jBx 

for the two possible solutions. 

Note that if we begin at Ym = 1 and move left across JBU then Yin 

changes to 1 +jBx = 1 +jB. A rotation in the clockwise direction through an 
angle 2/3/ then makes J^ = YL. Thus using the reverse of the usual matching 
procedure results in the desired value of YL. 

For our specific example, / = 0.0626A or 0.4375A and the corresponding 
values required for jBx are jl or -_/ l , respectively, as shown in Fig. 5.23. 
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FIGURE 5.23 
Illustration of design procedure for the matching network in Fig. 5.226. 

The analytic solution for the above matching network is 

B , = ± 
Bl + Gl + 1- 2GL 

G, 

tan pi = 

1/2 
R'i+Xl+l- 2RL 

= !«/* 

R, 

GL-1 Rl+Xt-RL 

BL + BfiL XL-B1RL 

(5.29a) 

(5.296) 

Fig-
Design procedure for t h £ circuit in Fig. 5.22c. The circuit shown in ^ 
5.22c can be used only if RL < 1. The following steps should be folio" 
design this circuit using a Smith chart: 

1. Construct the R = 1 circle rotated by 180°. 
2. Locate the desired impedance ZL on the Smith chart. g * 
3. Move ZL in a counterclockwise direction (toward the load) on t ^ ^g. 

constant circle until it intersects the rotated R = 1 circle as sho ^ . ^ a 
5.24. There are two possible solutions. Therequired value for th e ' -
jXl is given by jXt =jXL -jX, where jX equals jX' or j* 
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FIGURE 5.24 
Illustration of design proce
dure for the matching net
work in Fig. 5.22c. 

value obtained where ZL intersects the rotated R = 1 circle. The two 
possible values of jX are always equal in magnitude but opposite in sign. 

4. Reflect the two new values of Z^ through the jprigin to obtain the 
corresponding values for F i n . This gives Vln_= 1 +jB. As we move to the 
right of the element jB2, we obtain Yin - jB2, which must be equal to 1. 
Hence the required value of jB2 is equal to jB. 

The reactance jXx and susceptance jB2 can be realized using lumped 
elements or transmission-line stubs. 

Design procedure for the circuit in Fig. 5.22<f. The matching network 
shown in Fig. 5.22d can be used only when GL < 1 (can you explain why?). 
The network can be designed using the Smith chart by following the steps 
given below. 

1. Construct the G = 1 circle rotated by 180°. 
2. Locate the desired load admittance point YL (reflection of ZL through the 

origin). 

3. Move YL on the G = GL circle in a counterclockwise direction until it 
intersects the rotated G = I circle. There are two possible intersections. 
The required value of jBl is given by jBx = j(BL - B), where jB equals 
jB' or jB", as shown in Fig. 5.25. 

4. Reflect the admittances 7{n and Y"n through the origin_ to get the 
corresponding impedance points Z'm and Z"„ that lie on the R = 1 circle. 

5. When we subtract jX2 we must get Zm = 1, so jX2 =jX, where jX equals 
JX' or jX". 
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FIGURE 5.25 
Illustration of design proce
dure for the matching net
work in Fig. 5.22d. 

5.7 I N V A R I A N T P R O P E R T Y O F I M P E D A N C E 
M I S M A T C H F A C T O R 

Consider the network shown in Fig. 5.26 a. The T network between the load 
impedance ZL and the source will be assumed to be lossless. The impedance 
looking into the network toward the load is Z m . For this network the input 
current is 

V. 
1 = 

z , + zin 
and the input power is 

P- = — 
2 

Rm = gUlX. 
zs + zm 

If Zi0 = Z* then Rm = Rs, Xio = ~XS, and we get maximum power t 
fer from the source to the load resistance RL. This power is 

P = 
IJKTfita 
2\Rin + Rs 

1.1V/ 

2 4R< 
= P -

(5-30) 

7 * Z* w e 

and is called the available power from the source. When Lxn * ^oTta 

an impedance mismatch and Pm < Pava. We can express Pm
 m 

hav« 

P „ = -
l WfR, 1 IVJ 

2 \ZS + Z-\° 2 AR„ 
*R*R-m M 

(5-31) 

where M = 4RinRj\Zin + ZJ2 is called the impedance 

— * ava 

mismatch j 
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?-•• 

M 

(b) 

ava. 1 

(,c) 

ML 

ava. L 

FIGURE 5.26 
(a) A T matching network; (6) Thevenin equivalent network; (c) a cascade connection of 
lossless networks for which Po v o , s = PKV» i = P a v a 2 = • • • Pavo ./ . a n ^ W = M, = Af2 = • • = 
M,.. 

We can use the Thevenin equivalent circuit shown in Fig. 5.266 to 
calculate the power delivered to RL, which is PL and must equal Pin since 
the network with elements Z u , Z12, Z2 2 is lossless. 

From circuit theory we find that 

V = if.* 
00 zn+z, 

Z;.= 
A + Z22ZS 

Zll + Zs 

where A = Z, ,Z 2 2 - Z2
2 = Xfz - XUX22, upon using Z„ = . /X u , Z22 = 

JX22, Z12 =jXl2. The available power from the network is 

UVJ 
2 4fl , 

where ZT = RT + jXT 

The power delivered to RL is 

P, = -
i IVJ2 4RTRL i iv; 

2 4 i ? r | Z r + Z J 2 2 4i2 
-M, = P.. 
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We will now show that the power available from the netw 
that available from the source, i.e., 0 r l c ^ u ^ 

We must then have 

WJ 
8f l , 8fl, 

iv/ IK,12 

-M = pin = ir^ML~pL 
8RS 8R1 ^ ^ ^ ^ ^ ^ ^ 

which gives M = ML, that is, the impedance mismatch at the output I 
equals that at the input plane. The Thevenin resistance is mvfn k„ ] equals that at the input plane. The Thevenin resistance is given by 

Z.„Z 
if — xvtr £j-r-

2 U + Zs 

We can express ZT in the form 

= (A + Z ^ Z j t Z f . + Z * ) (A + Z 2 2 Z J ( Z * +ZS*) 
T {Zn + ZMZ?i + z?) \zu+zf 

The numerator equals 

(X?2 - XnX22 - X^Xs+jX22Rs)( -jXu -jXs + S,) 

and has a real part which is readily found to be simply Xf2Ra. Hence 
RT = X*2Rs/\Zn + Zf. We now get 

\yj x&vf 
8RS 

= p 
8R j. \Zn+Z/8Rr 8RS 

= p 

Since the available power at the output plane is the same as that from « 
source, the impedance mismatch ML = M. 

If we have several lossless networks (reciprocal) between the s 
and ZL as shown in Fig. 5.26c, we can repeat the analysis using Thevenin 
equivalent circuits at each stage to find that at any plane the ava 
power and impedance mismatch are invariant quantities. ^ e n 

If the networks are not reciprocal, i.e., are linear active networ , ^ ^ 
the impedance mismatch is not invariant, e.g., an amplifier supp 
output power than is fed in at the input. etw°r'c 

The invariance of the impedance mismatch factor in a lossless j t j . 
places an important constraint on interstage matching networks i ^ e 

stage amplifier. The design of the interstage matching network n 
this constraint into account. tra118'5 

In Fig. 5.27 we show a multistage microwave amplifier. oJ» ggnet^-
tors at microwave frequencies are often not absolutely stable, ' 0utpu t 

not possible to use conjugate impedance matching at the m P u
 n e in to ^e 

of each stage. For the first stage let Z jn. x be the impedance looW 
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Input 
matching Matching 
network Amplifier 1 network Amplifier 2 

, 

Zc 

i 

1 

PZ> 
Zsy Zlr , 1 ^oul. 1 Z\_\ Zs2 Z-m ? 

FIGURE 5.27 
A multistage microwave amplifier. 

first amplifier and let Z s l be the source impedance presented to this stage 
by the input matching network (the networks are called matching networks 
even though they do not produce conjugate impedance matching). The input 
impedance mismatch is 

M, 

This same impedance mismatch must exist between the input transmission 
fine and the input to the matching network. Hence on the input line we will 
have a reflection coefficient p that satisfies the constraint 

1 - p2 = M, 

Thus p = (1 - M x ) 1 / 2 and the input VSWR will be 

VSWR = 
1 + ^ 1 - M , 

1 - ^ 1 - Af" 
(5.32) 

Consequently, an input VSWR greater than unity is unavoidable when 
conjugate impedance matching cannot be used. A resultant problem in 
microwave amplifier design is to find an optimum load impedance that will 
result in an input impedance ZmA that is close to the complex conjugate of 
the optimum source impedance Z s l so as to minimize the input VSWR. The 
optimum source impedance is constrained by the requirement for a low 
noise figure for the input stage. 

For the interstage network the matching network must transform the 
>nput impedance Z jn 2 into the required load impedance Z £ 1 for stage 1 and 
simultaneously transform the output impedance Zou l , of stage 1 into the 
required source impedance Z,2 for stage 2. The design of the matching 
network is constrained by the condition that the impedance mismatch be 
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'out. I 

ye, J 
Z,= 1 

zc=i ZC=A 
\ JB2 jB, I 

m 
FIGURE 5.28 
(a) A II matching network; (6) and (c) transmission-line matching networks. 

constant; thus 

4 * z . i * out, 1 4fli„.8-B.2 

I Z ^ + ZOUMI2 12*,,, 

(5.33) 
's2* 

The design of microwave amplifiers is described in detail in Chap, l 
As part of the design procedure, the four impedances ZLl, Zmli\. Z^.* a 

Zs2 are determined so that the impedance mismatch constraint given j 
(5.33) is satisfied. Hence we can assume that we know the admittances Y 
yout,i- yin.2. and Ys2. In terms of these self-consistent quantities, we c^ 
determine the parameters of the U matching network illustrated 
5.28a. By conventional circuit analysis, we readily find that 

y ' .i - ? u " • 
y 2 

r ! 2 

' 2 2 + * i n , 2 

* v9 ~ Y9.9 =-
y,2 

12 

* 1 1 + * o u t . l 

and Yn=JBz2: For a lossless network Yu =jBu, Yl2 = jBl2, 
equate the real and imaginary parts of the above two e< 
number of algebraic steps, the following pair of equations 

After9 
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can be derived: 

{Gs2 + S L . » ) B n - (Go u t . , + GIA)B22 

= GLlBin,2 + BLlGm2 - Bs2GoutA - Gs2BuuiA (5 .34a) 

(Bs2 + Bin_2)Bn - (BIA + BimlA)B22 

= G s2Goo t , , - GLlGm,2 + BL,Bm.2 - B s 2 B 0 l l l | 1 (5.346) 

After Bn and B 2 2 have been found, we use 

B\2 = BJK*.i + (Bn + BuulA)(B22 - Bs2) (5.35) 
to find B1 2 . The expressions for Yu and Ys2 generate four equations which 
would generally not allow a FI network to be determined unless (5.33) was 
also satisfied. 

Many matching networks can now be designed by relating their pa
rameters to those of the Tl network. Two possible transmission-line net
works are shown in Figs. 5.286 and c. The parameters of the network in 
Fig. 5.28 are given by 

csc /» = | S 1 2 | (5 .36a) 

jBx = j( B , , + cot pi) (5.366) 

jB2 = j( B 2 2 + cot pi) (5.36c) 

where jBl and jB., are the stub susceptances. This network can only be 
used if |Bi2 | > 1 since esc pi > 1. When |B 1 2 | < 1 the network shown in 
Fig. 5.28c can be realized. Its parameters are given by 

jB, =j(Bu+Bi2) (5.37a) 

jB2=j(B22 + B12) (5.376) 

T*. = Bl2 (5.37c) 

where Y^ is the characteristic admittance of the center one-quarter-wave
length-long section. 

WAVEGUIDE R E A C T I V E E L E M E N T S 

In the place of transmission-line stubs, any other element that acts as a 
shunt susceptance may be used for the purpose of matching an arbitrary 
load impedance to a waveguide or transmission line. A number of such 
reactive elements for use in rectangular waveguides supporting the domi
nant TE1 0 propagating mode are described in this section.! The formulas 
given for the normalized susceptance of these elements are approximate 

tDetailed 
information on susceptance values and equivalent circuits are given in N. Marcuvitz 

(ed.), "Waveguide Handbook," McGraw-Hill Book Company. New York, 1951. 
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FIGURE 5.29 
Shunt inductive elements, (a) Symmetrical d 
(/>) asymmetrical diaphragm; (c) thin cireular'aP 

small circular aperture. 

ones, with accuracies of the order of 10 percent or better. The derivatio 
these formulas requires the detailed solution of boundary-value probk 
and is outside the scope of this text.f 

Shunt Inductive Elements 

Figure 5.29 illustrates a number of rectangular waveguide elements that act 
as shunt inductive susceptances for the TE,0 mode. These consist of thin 
metallic windows extending across the narrow dimension of the guide as in 
Figs. 5.29a and b, a very thin cylindrical post as in Fig. 5.29c, and a small 
circular aperture as in Fig, 5,29rf. When a TEU , mode is incident on any of 
these discontinuities, evanescent TE„ 0 modes are excited in order to provide 
a total field that will satisfy the required boundary condition of a vanishing 
tangential electric field on the obstacle. These nonpropagating modes stoi 
predominantly magnetic energy and give the obstacle its inductive chart 
teristics. 

Approximate values for the normalized inductive susceptance of the: 
obstacles are: 

For Fig. 5.29a. 

_ 2TT -d I ay-, - 377 rrd 
B = — cot2 — 1 + -^ sin2  

pa 2a I 4TT a 
where p = [&2 - ( T T / O ) 2 ] " * and y3 = [(3ir /a)2 - A2,]1'2-

For Fig. 5.29b, 

_ 2TT . ird I „ ted 
B = — cot2 -— 1 + esc' — 

/3a 2a \ 2a 

(5.38) 

(S 5.39> 

tN. Marcimte, he. eft. piartltaway 
R. E. Collin. "Field Theory of Guided Waves," 2nd. ed., IEEE Press, n s c 
L. Lewin, "Theory of Waveguides." Newnes-Butterworth, London. 1975" 
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F I G U R E 5.30 
Shunt capacitive elements, (u) Asymmetrical capac-
itive diaphragm: (6) symmetrical diaphragm; (c) 
capacitive nid; (d) capacitive post. 

For the thin inductive post of Fig. 5.29c, 

4 -
15.40) 

where y„ = [(n~/a)'2 - A5]1'- and t is the post radius. For the small 
centered circular aperture of Fig. 5.29d, 

B = 
Sab 

8fR 
(5.41! 

Shunt Capaci t ive E l e m e n t s 

Typical shunt capacitive elements that may be used for matching purposes 
are illustrated in Fig. 5.30. Those consist of thin metal septa extending 
across the broad dimension of the guide to form capacitive diaphragms as in 
Figs. 5.30a and 6, a thin circular rod extending across the guide as in Fig. 
5.30c, and a short thin circular post extending into the guide as in Fig. 
5.30d. The post illustrated in Fig. 5.30a" behaves more like an LC series 
network connected across a transmission line. When the depth of penetra
tion is between 0.76 and 0.96, it becomes resonant and acts almost like an 
ideal short circuit. For lengths greater than this resonant length, the post is 
equivalent to a shunt inductive susceptance. Actually, for a post of finite 
thickness, the equivalent circuit is a T network, but for small-diameter 
posts, the series elements in this T network are negligible (for post diame
ters less than about 0 .05a). 

Approximate expressions for the normalized susceptance of the obsta
cles illustrated in Fig. 5.30 are: 

For the asymmetrical diaphragm of Fig. 5.30a, 

s = i^ 77 d -d -a 1 - \ 
In esc •—• + 1 cos' 

26 \byl ) 26 
(5.42) 

where 0 = [k\ - (TT/O) 2 ] '
 2 and y , = [{v/bf - 0"]' 2. 
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For the symmetrical diaphragm of Fig. 5.306, 

vd I 2v 

2b + \b^' T 2b 
S = ^ 

vd I 2ir \ -ffd 
In esc —— + 1 cos4 

(5, 

where y2 = [{2ir/b)2 - fi2}1/2. 

For the capacitive rod of Fig. 5.30c and the post illustrated • 
5.30d, no simple approximate formulas are available. Analytical e • ln -^ 
for the T-network parameters for the capacitive rod are given by L e ^ 8 ' 0 " 8 

are not reproduced here.t n ' "Jut 

The inductive and capacitive properties of the waveguide oh 
described above are determined by the electric and magnetic energy! th 
evanescent modes excited by the obstacle. For example, the inductive oh t 
cles discussed only excite TE evanescent modes and these modes store m 
magnetic energy than electric energy. The evanescent modes are nonpropa*. 
gating modes so they represent the local field in the vicinity of the obstacles 
The evanescent modes are excited with amplitudes such that the combina
tion of all of the evanescent modes with the incident, reflected, and trans
mitted dominant mode, produces a total field with a zero tangential electric 
field at the surface of the obstacle. 

There is no way to assign a unique inductance or capacitance to these 
obstacles since there is no unique way to define the voltage, current, or 
characteristic impedance for a waveguide. Nevertheless, these obstacles do 
produce a reflected wave with a reflection coefficient that is correctly 
determined in terms of the equivalent normalized reactance and suscep-
tance of the obstacle as connected into the equivalent-transmission-line 
model of the waveguide. 

Waveguide Stub Tuners 

An approximate equivalent of a single-stub matching network is the s 
screw tuner illustrated in Fig. 5.31a. This consists of a variable-depth sc 
mounted on a sliding carriage free to move longitudinally along the g u ^ 
over a distance of at least a half guide wavelength. The screw P® .^ 
into the guide through a centered narrow slot in the broad wall ( 
This slot is cut along the current flow lines so that it has a n ^ ^ 
perturbing effect on the internal field. Since the position of the ^ ^ 
adjustable over at least a half guide wavelength, its penetration ^ ^^ 
need to be so great that it will behave as an inductive element; ' " ^ ^vie* 
can be obtained with a shunt capacitive susceptance in all cases, 
of single-stub-matching theory will verify. 

tOp. cit., chap. 2. This text contains many excellent and instructive deri 
circuit parameters for a variety of waveguide structures. 

<>(<*> tfi**
-
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FIGURE 5.31 
Output Waveguide tuners, (a) Sliding-

screw tuner; (6) triple-screw 

tuner; (e) E-H tuner. 

Three variable-depth screws spaced a fixed distance of about 3A g /8 
apart as in Fig. 5.316 are essentially equivalent to a triple-stub tuner and 
can match a large variety of loads even though the range of susceptance 
values obtainable from a single screw is limited. 

Circuits that are physically more like the actual short-circuited trans
mission-line stub are also possible. Figure 5.31c illustrates combined E-
plane and /f-plane stubs, referred to as an E-H tuner. The positions of the 
sliding short circuits in the E- and H-plane arms are variable, so that a 
wide range of load impedances may be matched. The equivalent circuit of 
either an E-plane or H-plane junction is, however, much more elaborate 
than a simple shunt- or series-connected transmission line because the 
junctions are of the order of a wavelength in size and hence produce a very 
complicated field structure in their vicinity. Nevertheless, since no power 
now is possible through the arms terminated in the short circuits, these do 
still provide adjustable reactance elements that may be used for matching 
purposes. 

WAVE T R A N S F O R M E R S 

quarter-wave transformers are primarily used as intermediate matching 
sections when it is desired to connect two waveguiding systems of different 

aracteristic impedance. Examples are the connection of two transmission 
es with different characteristic impedances, connection of an empty wave-
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Zc = Z> Zr = Z, ZL 

V« ~? FIGURE 5.32 
H A quarter-wave transformer. 

guide to a waveguide partially or completely filled with dielectric 
of two guides of different width, height, or both, and the match11**1'011 

dielectric medium such as a microwave lens to free space. If a match"8 °f a 

narrow band of frequencies suffices, a single-section transformer <^*x* 
used. To obtain a good match over a broad band of frequencies, two three 
or even more intermediate quarter-wave sections are commonly used Th 
optimum design of such multisection quarter-wave transformers is * 
sented in this section. 

The essential principle involved in a quarter-wave transformer is 
readily explained by considering the problem of matching a transmission 
line of characteristic impedance Z, to a pure resistive load impedance 2,, 
as illustrated in Fig. 5.32. If an intermediate section of transmission line 
with a characteristic impedance Z., and a quarter wavelength long is 
connected between the main line and the load, the effective load impedance 
presented to the main line is 

ZL+jZ2tan(PA/4) _Zj 
2 Z 2 + j Z L t a n ( 0 A / 4 ) ZL 

If Z2 is chosen equal to }/Z^ZL~, then Z = Z, and the load is matched to the 
main line. In other words, the intermediate section of transmission line i 
length A/4 transforms the load impedance ZL into an impedance Z\ a 
hence acts as an ideal transformer of turns ratio y}Zx/ZL . A perfect i 
is obtained only at that frequency for which the transformer is a qua1 

wavelength (or n A / 2 + A/4) long. / 
Let 8 be the electrical length of the transformer at the frequency ^ 

that is, p(f)l = 0, where the phase constant p has been ^ " t t e ? / r # 
function of frequency. For a TEM wave in an air-filled line, pi - 27r> 
any frequency the input impedance presented to the main line is 

ZL+jZ2t (545) 
Z'»-Z2Z2+jZLt 

where t = tan 0 = tan pi. Consequently, the reflection coefficient 

Z.n ~ Zx Zi(ZL'Zl)+jt(Zj_-LZM, 

' zm + z, z2(zL + zx) + jt(zi + zxzL) 
ZL ~ Zx 

ZL + Zl+jt2yJZ^l 

(5.46) 
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8m'"h 
fll=6 

FIGURE 5.33 
Bandwidth characteristic 
For a single-section quarter-
wave transformer. 

The latter form is obtained by using the relation Z\ = ZXZ,. The magni
tude of F, denoted by p, is readily evaluated and is given by 

\ZL - Zx\ 
P = 

[(ZL + ZX)Z + U*ZXZL\ 
1/2 

1 + 2v^zT sec0 

1/2 
(5.47) 

For 0 near TT/2, this equation is well approximated by 

\ZL -Z,\ 
P = 2/Z^ 

ICOS0 (5.48) 

A plot of p versus 0 is given in Fig. 5.33, and this is essentially a plot of p 
versus frequency. The variation of p with frequency, or 0, is periodic 
because of the periodic variation of the input impedance with frequency; i.e., 
the impedance repeats its value every time the electrical length of the 
transformer changes by ir. If pm is the maximum value of reflection 
coefficient that can be tolerated, the useful bandwidth provided by the 
transformer is that corresponding to the range A0 in Fig. 5.33. Because of 
the rapidly increasing values of p on either side of 0 = rr /2 , the useful 
bandwidth is small. The value of 0 at the edge of the useful passband may 
be found from (5.47) by equating p to pm; thus 

0„ = cos - l 
2PmJZ\ZL 

( 2 L - 2 I > I / W I 
(5.49) 

!n the case of a TEM wave, 0 = /3/ = (f/f0Y.ir/2), where f0 is the fre
quency for which 0 = TT/2. In this case the bandwidth is given by 

A/-=2(f0-fm) = 2 ( / - 0 - ^ X ) 
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and the fractional bandwidth is given by 

A/" 4 
— = 2 - - c o s ' 1 

/o "" ( Z / . - Z i ) ^ ! ^ (5.50, 

where that solution of (5.49) that gives 0m < TT/2 is to be chosen 
Although there are a number of instances when the bandudrk 

vided by a single-section transformer may be adequate, there a" 
number of situations in which much greater bandwidths must be ^ 
for. The required increase in bandwidth can be obtained by using rjT 
tion quarter-wave transformers. The approximate theory of these mul 
tion transformers is discussed first, in order to develop a theory that 
has application in the design of other microwave devices, such as directir 
couplers and antenna arrays. This is followed by a discussion and present; 
tion of results obtainable from a more exact analysis. 

It should be noted that in the previous discussion it was assumed that 
the characteristic impedances Z, and Z2 were independent of frequency. 
For transmission lines this is a good approximation, but for waveguides the 
wave impedance varies with frequency, and this complicates the analysis 
considerably. In addition, for both transmission lines and waveguides, there 
are reactive fields excited at the junctions of the different sections, brought 
about because of the change in geometrical cross section necessary to 
achieve the required characteristic impedances. These junction effects can 
often be represented by a pure shunt susceptance at each junctions The 
susceptive elements will also vary the performance of any practical trans 
former from the predicted performance based on an ideal model when 
junction effects are neglected. In spite of all these limitations, only 
theory for ideal transformers is developed here; i.e., junction effects an 
frequency dependency of the equivalent characteristic impedances 
glected. Thus the theory given will only be indicative of the perfor 
that can be obtained in the nonideal case.J 

IRE Tro"*-to1 

t S . B. Cohn. Optimum Design of Stepped Transmission Line Transformers. ^ Q 

MTT-3. pp. 16-21, April. 1955. This paper presents an approximate theory^ ^ ^ 
transformers, together with a method of accounting for the reactances introdu 
tFor typical application to waveguide transformers, see: firs for 

R. E. Collin and J, Brown, The Design of Quarter-Wave Matching Lay 
Surfaces, Proc. IEE, vol. 103. pt. C, pp. 153-158, March, 1956. M V r ^ pp 47*T 

L. Young. Optimum Quarter-Wave Transformers, IRE Trans., vol. M* ' j o n g . iW-
September. 1960; also Inhomogeneous Quarter-Wave Transformers of Two 
645-649. November. 1960. noubl*' fM 

E. S. Hensperger. Broad-Band Stepped Transformers from Rectang u l a r 

Waveguide, IRE Trans., vol. MTT-6, pp. 311-314, July, 1958. 



IMPEOANCK TRANSFORMATION AND MATCHING 3 4 7 

o R Y O F SMALL R E F L E C T I O N S 

As a preliminary to the approximate analysis of multisection quarter-wave 
transformers, some results pertaining to the overall reflection coefficient 
arising from several small reflecting obstacles are required. Consider the 
case of a load impedance ZL connected to a transmission line of characteris
tic impedance Z, through an intermediate section of line of electrical length 
81 = 0 and characteristic impedance Z2, as illustrated in Fig. 5.34. For each 
junction the reflection and transmission coefficients are 

?i 
Z, ~ Z, 

z, + z, r 2 = - r , 

T2l = i + r, = 
2Z, 

z, + za 
TV, = i + r2 = 

2Z, 

z2 

r8 = 
ZL - Z, 

zL + z2 

A wave of unit amplitude is incident, and the total reflected wave has a 
complex amplitude V equal to the total reflection coefficient. When the 
incident wave strikes the first junction, a partial reflected wave of amplitude 
T[ is produced. A transmitted wave of amplitude T2l is then incident on the 
second junction. A portion of this is reflected to give a wave of amplitude 
r 3 r 2 1 e - 2 - ' 8 incident from the right on the first junction. A portion 
Tv2T2ir3e~2J,> is transmitted, and a portion I'^/r^T^e'2'" is reflected 
back toward ZL. Figure 5.35 illustrates the first few of the infinite number 
of multiply reflected waves that occur. The total reflected wave of amplitude 
1 is the sum of all the partial waves transmitted past the first junction 
toward the left. This sum is given by 

r = r, + T12T21r3e-2^ + r12r21r;?r2e-
4-"' + • • • 

= F, + Tl2T2ir3e-W £ r2'T3"e^"" 
n 0 

2J r, -5 C r , 

01 = 6 

. •' 

FIGURE 5.34 
A microwave circuit with two reflecting 
junctions. 
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l ^ r , * - * * -

r*r„rtrl*-*-

'21 ' 3 ' 

r 2 , r 2 r 5 f -^ • 

/ • a r | r | * -w 
FIGURE 5.35 
Multiple reflection of waves f a r . 
curt with two reflecting junction* 

This geometric series is readily summed to give [note that Fx « 
( 1 - r ) - 1 ] n ' ° r 

r = i\ 
Tl2T.nr3e-W 

i - r2r3e-2^ 

Replacing T12 by 1 + f2 = 1 - I^ and T2l by 1 + I\ gives 

r = 
r, + r3e - 2 7 0 

1 + r^e"1^ 
(5.51) 

If | r j and |T3| are both small compared with unity, an excellent approxima
tion to T is 

r = r, r3e-2-"' (5.52) 

This result states that, for small reflections, the resultant reflection c 
cient is just that obtained by taking only first-order reflections into accoun^ 
This is the result that will be used to obtain a first-order t h e o r y ^ 
multisection quarter-wave transformers. As an indication of the acci 
the approximate formula, note that if If,I = |T3| = 0.2, the error in 
not exceed 4 percent. 

docs 

5.11 A P P R O X I M A T E T H E O R Y F O R M U L T I S E C T I O N 
QUARTER-WAVE T R A N S F O R M E R S 

Figure 5.36 illustrates an AT-section quarter-wave transformer 
junction the reflection coefficient is 

. At the fir?' 

^ 1 Z Q 

Z1+Z0 

(D.530) 

= Po 
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FIGURE 5.36 
A multisection quarter-wave 
transformer. 

Similarly, at the nth junction, the reflection coefficient is 

rs- = P„ 
Z«+l+Zn 

The last reflection coefficient is 

z,.-z r" = zL + z, 
N 

= PN 

(5.536) 

(5.53c) 
N 

Note that Z() is a characteristic impedance, and not necessarily equal to 
(fig/e0)

i/2 here. Each section has the same electrical length fil = 6, and will 
be a quarter wave long at the matching frequency fQ. The load ZL is 
assumed to be a pure resistance, and may be greater or smaller than Z0 . In 
this analysis it is chosen greater, so that all Vn = p„, where p„ is the 
magnitude of f„. If Z, is smaller than Z„, all P„ are negative real numbers 
and the only modification required in the theory is replacing all p„ by — pa, 

For a first approximation the total reflection coefficient is the sum of 
the first-order reflected waves only. This is given by 

r = Po + Pi« 
-2jtt 

P2e 
4jll + +pNe 

-2J:V« (5.54) 

where e~2jn" accounts for the phase retardation introduced because of the 
different distances the various partial waves must travel. 

At this point it is expedient to assume that the transformer is symmet
rical, so that p0 = pN, p, = pN_l3 p2 = p#_ 2 , etc. In this case (5.54) becomes 

T = e-'A W[P o(e>"« + e~JN*) + Pi(e«N 2>" + e * * - « » ) + • • • ] (5.55) 

where the last term is p ( N _ 1 ) / a ( e ; 0 + e~->") for N odd and pN/;2 for N even. 
is thus seen that for a symmetrical transformer the reflection coefficient 

!s given by a Fourier cosine series: 

T = 2e'JNB[p0 cos NO + Pl cos( N ~ 2)6 + • • • 

+ p„cos(N - 2n)0 + ••• ] (5.56) 

8 h 0
( 5 j5 6 ) t h e l a s t t e r m ^ P(N-i)/2 cos 0 for N odd and \pNn for N even. It 
1 n 0 w be apparent that by a proper choice of the reflection coefficients 

«> and hence the Z„, a variety of passband characteristics can be obtained. 
ce t , l e series is a cosine series, the periodic function that it defines is 
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periodic over the interval - corresponding to the frequency r a n 

which the length of each transformer section changes by a half wavel °V 

The specification of />„ to obtain a maximally flat and an eon 1 ^^ 
passband characteristic is given in the following two sections. r'p-D'f 

5 .12 B I N O M I A L T R A N S F O R M E R 

aand characteristic is obtained if p ^ | r | j 

^ match 

A maximally flat passband characteristic is obtained if p = |f] and th 
N - 1 derivatives with respect to frequency (or ft) vanish at the mat w 
frequency /"„, where ft ~ TT/2. Such a characteristic is obtained if we ch " 

for which 

p = | r i = | A 2 ; V ( c o s « ) v | ( 6 ( W J 

When 0 = 0 or ~, we have V = (ZL- Z0)/{ZL + Z„). and from (5.57a) we 
obtain T = A2 . Thus the constant A is given by 

A = 2 , £ ^ (fi 58) .v "**• o 
^ t + Zo 

However, if we use the theory of small reflections, then the constant A 
should be chosen in a different way, which we will explain shortly. 

Expanding (5.57a) by the binomial expansion gives 

r = 2 - " ~ ~ d - e-W)S = 2 " * | ^ £ C > — (5.59, 

where the binomial coefficients are given by 

2 ) - - - ( i V - . _ N[N-l){N-2)---(N-n+l) _ ^ _ ( 5 - 6 0 ) 

Note that C* = C£_„, C„v = 1, C,A =N = C^_u etc. Comparing 
with (5.54) shows that we must choose 

since C,;V = C ^ „ . 
To obtain a simple solution for the characteristic impedances 6n> ", 

convenient to make a further approximation. Since we have already I 
fied that all pn are to be small, we can use the result 

z„ z„ + 1 + zn
 zpa 
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Thus we have 

l n % i = 2P„ = 2 - ^ v l n | t ( 5 . 6 2 ) 

where we have also used the approximation 

z0 zh + zn s\zL + z,j zL + z„ 
When we use the theory of small reflections (5.55) gives, for 0 = 0, 

HO) = P 0 + Pi + P 2 + ••• +/',v 
When we use (5.62) to evaluate the characteristic impedances, and also use 
A = 2'<N+l)MZL/Z0), we obtain 

2NA = P(0) = - In — + In —- + •• • + In —-
Z0 Z , ZN 

\ t z l z 1 Zj\ \ z^ 

2 \Zn Zx ZN J 2 Z 0 

Thus the approximations introduced above for finding the characteristic 
impedances should be used along with (5.63) to evaluate HO). This will 
make the quarter-wave transformer designs using the theory of small 
reflections self-consistent.t In place of (5.58) we use the expression given 
above for A. 

Equation (5.62) gives the solution for the logarithm of the impedances, 
and since these are proportional to the binomial coefficients, the trans
former is called a binomial transformer. Since the theory is approximate, 
the range of ZL is restricted to about 

0.5Z0 < Z, < 2Z„ 

for accurate results. 
As an example, consider a two-section transformer. From (5.62) obtain 

2 , 1 , ZL 

and 

ln T = 4 ln T or z> = z " " z ° / 4 

Z Z 
In -^ = - ln -± or Z„ = Z¥*Ztf* Z, 2 Z0 

' 2 _ "L " 0 

since C0 — l and Cf = 2. Although the approximate theory was used, it 
urns out that the above values for Z, and Z2 for the special case of the 

« author is indebted to Dr. E. E. Altschuler for pointing this out. 
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#m "/t 

FIGURE 5.37 
-8 Passband characteristic for a 

flat transformer. 
maximally 

two-section transformer are the correct nonapproximate solutions a res 1 
that gives an indication of the accuracy of the approximate theory. 

The type of passband characteristic obtained with a maximally fiat 
transformer is illustrated in Fig. 5.37. Let pm be the maximum value of « 
that can be tolerated. The angle 0m that gives p = pni is given by 

= cos ' 
2/>„, 

m ( Z , / Z 0 ) 

l/N 

(5.64) 

as obtained from (5.576). In the case of transmission-line sections, 6 
irf/2f0, and hence the fractional bandwidth is given by 

Af 

A, 
= 2 -

4 
cos 

It 

2pm 

/o A, 
= 2 -

4 
cos 

It \n(ZL/Z0) 

l/AT 

(5.65) 

since 6m = irfm/2f0. Note that in (5.65) the solution to the inverse cosine 
function is chosen so that 6m < ~/2. By comparing Figs. 5.33 and 5.37 i t» 
clear that a multisection maximally flat transformer can provide a muc 
greater useful bandwidth than a single-section transformer. 

5 .13 C H E B Y S H E V T R A N S F O R M E R 

Instead of a maximally flat passband characteristic, an equally uset ^ 
acteristic is one that may permit p to vary between 0 and pm, , ^ 
oscillatory manner over the passband. A transformer designed to y ^ 
equal-ripple characteristic as illustrated in Fig. 5.38 is of this y^ n5. 
provides a considerable increase in bandwidth over the binom1' ^ p 

former design. The equal-ripple characteristic is obtained by m ^. 
behave according to a Chebyshev polynomial, and hence the nam^ ifl-eren t 

shev transformer. It is possible to have p vanish at as many ^ 

frequencies in the passband as there are transformer sections. ™°B^y W 
Chebyshev polynomials may be used in the design, it is nece 
consider the basic properties of these polynomials first. 
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FIGURE 5.38 
Equal-ripple characteristic obtained 
from a Chebyshev transformer. 

The Chebyshev polynomial of degree n, denoted by Tn(x), is an 
rath-degree polynomial in x. The first four polynomials and the recurrence 
relation are 

Tl(x)=x 

T2(x) = 2x°- - 1 

T3(x) = 4x3 - 3x 

T4(x) = 8x 4 - 8x2 + 1 

Tn(x) = 2xTn^ -T„_2 

The polynomials T„ oscillate between ± 1 for x in the range 1*1 < 1 and 
increase in magnitude indefinitely for x outside this range. Figure 5.39 gives 
a sketch of the first four polynomials. If x is replaced by cos 6, we have 

r„(cos0) =cosrafl (5.66) 

FIGURE 5.39 
Chebyshev polynomials. 
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which clearly shows that |T„I < 1 for -1 < x < 1. As 0 varies fr0rn n 
the corresponding range of x is from +1 to - 1. Since we wish tn 
have the equal-ripple characteristic only over the range 0 to — _ ^ p 
cannot use T^teos 0) directly. If we consider instead »••• w * 

cos 0 \ / cos 0 
= cos n cos 

cos 0m J \ cos 0„, J 

we see that the argument will become equal to unity when 0 = Q 
be less than unity for 0m < 0 < - - 0„,. This function will therefore co 
the equal-ripple oscillations of Tn to the desired passband. 

The function given in (5.67) is an nth-degree polynomial in 
variable cos 0/cos 0m. Since (cos 0)" can be expanded into a series of cn 
terms such as cos 0, cos 2 0 , . . . , cos nti, it follows that (5.67) is a series of th 
form (5.56). Hence we may choose 

p = 2e-JNB[Po cos NO + p, cos( N - 2)0 + • • • 

+p„ cos{N - 2n)B + •••] 

= Ae - •*"%(sec 0„, cos 0) (5.68) 

where A is a constant to be determined. When 0 = 0, we have 

Zr — Zr, 1 Z, 
r = ^ — / = A r N ( S e c 0 m ) ~ - I n - ^ 

and so 

l n (Z , . / 2 0 ) 
A = 

2TA,(sec0„,) 

Consequently, we have 

r = L - / « i n ^ 7 ' y ( s e C ' ' " C O s 9 ) (5.69) 

2 Z0 T iV(sec0m) 

In the passband the maximum value of !TjV(sec 0„, cos 0) is unity, and hen 

= \n(ZL/Z0) (5l0a) 
Pm 2Tw(secem) 

[B 

If the passband, and hence 0„„ is specified, the passband tolerance Pm 
fixed, and vice versa. From (5.70a) we obtain 

1 , ZL 
T w ( sec0 m ) = -p>~^In — 

or by using (5.67) for cos 0 = 1, 

(1 ln( ZL/Z0)\ {5.70b) 
sec Bm = c o s | - cos 2 p m ' ^ ™ 

which gives 0„, in terms of the passband tolerance on p, that is, Pm-
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In order to solve (5.68) for t h e u n k n o w n p„, we need t h e following 

resu l t s : 
n 

( c o s 0 ) " = 2-"e'-""'(l + e2j")" = 2 " e ^ " 6 £ C£eJ2mt 

m I' 

= 2" + l [C o "cos? i0 + C,"cos( / i - 2 )0 + ••• 

+ C ^ c o 8 ( n - 2 m ) 0 + • • • ] (5 .71 ) 

T h e last term in (5.71) is kC"n for n even a n d C , " _ 1 ) / 2 cosfl for « odd. 

Us ing (5.71) and t h e earl ier expression for T„(x), we can obtain t h e follow

ing: 

Tx( sec 0m cos 0) = sec Bm cos 0 ( 5 . 7 2 a ) 

r 2 ( s e c &m cos 8) = 2(sec 6m cos fff-l = sec2 8J1 + cos28) - 1 (5.72b) 

T 3 ( sec 6m cos 0) = sec 3 0„,(cos 30 + 3cos 8) - 3 sec 0„, cos 0 ( 5 . 7 2 c ) 

T4(sec 0„, cos 0) = sec 4 0 m ( c o s 4 0 + 4 c o s 2 0 + 3) - 4 s e c 2 0„,(cos20 + 1) 

( 5 . 7 2 d ) 

These resu l t s a re sufficient for des igning t r ans fo rmer s up to four sect ions in 
length. A grea te r n u m b e r of sect ions would rarely be required in pract ice. 

Example 5.2 Design of a two-sec t ion Chebyshev t r a n s f o r m e r . As an 
example, consider the design of a two-section transformer to match a line with 
Z0 = 1 to a line or load with ZL = 2. Let the maximum tolerable value of p be 
Pm = 0.05. Using (5.70a), we obtain 

T2(sec0m) = 2 sec 2 0 m - 1 = — = 6.67 
2 " m 3(0.05) 

and hence sec 0„, = 1.96, and 0„, = 1.04. Thus the fractional bandwidth that is 
obtained is 

A0 A/1 4 / w \ 
= — = - - - 1.04 = 0.675 TT/2 f0 7T\2 

From (5.68), (5.69), and (5.726), we obtain [refer to the remarks following 
(5.56) as regards the last term in the cosine series for p] 

2p ocos20 + p, = , , „ , r 2 ( s e c 0 m c o s 9 ) 

= p„, sec2 em cos 20 + i>m{sec2 0m - l) 

and hence 

P o = {pm sec2 0m = p2 = 0.099 

P , = P m ( s e c 2 0 m - 1) = 0.148 

The impedances Z, and Z% are given by 

Z, - e2""Z0 = 1.219 Z2 = c2"'Z, = 1.639 
A plot of the passband characteristic is given in Fig. 5.40. As a check on the 
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0.33 

r**-0.05 FIGURE 5.40 
—H*—i— 1—•• Passband characteristic for a two «»-. 
1.04 »/2 * she, transformer with ,,„, » 0.05, P ^ T ^ 

accuracy, we calculated Zin for H = 0 using 

From Zm we obtain 

Z2 Z, 
Z in= ip^i = 1-1063 

Z - 1 
P = - ^ — r = 0.05047 

which is within 1 percent of the design value. 

*5.14 CHEBYSHEV TRANSFORMER 
(EXACT RESULTS) 

An exact theory for a multisection transformer having an equal-ripple 
passband characteristic has also been developed (see the references at t 
end of this chapter). Since the analysis is rather long, only the final res 
for the two- and three-section transformers are given here. 

In the exact theory of multisection ideal transformers, it is cotivei 
to introduce the power loss ratio P, K, which is defined as the < 
power (incident, power) divided by the actual power delivered to the ^j 
the incident power is P,, the reflected power is p2P, and the power 
to the load is (1 - p2)Pt. Hence 

P. 1 (5.730' 
Pr.R = 

(1~P2)P, 1 

and P = 
P , R - 1 I.R 

,5-73*1 

LR 
2 

If T is the overall transmission coefficient, then \T\~ = 1 ~~ p utained. ' 
For any transformer an expression for Z„, is readily o ^ ,g toUn< 

from this p, and hence P, R, can be computed. When this is 
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zrJs\~ 

8 9 

T1 * 1*1 

Pm - 1 

"T I 
fl» & T/2 

FIGURE 5.41 
Passband characteristic for a two-section Cheby-
shev transformer. 

that P L R can be expressed in the form 

P L R = l + Q2*(COSfl) (5.74) 

where Q2N(cos, fl) is an even polynomial of degree 2 AT in cos 6, with coeffi
cients that are functions of the various impedances Z„. To obtain a" 
equal-ripple characteristic, P L R is now specified to be 

P L R = l + /e27^(sec0,„cos0) (5.75) 

where k2 is the passband tolerance on PL R ; that is, the maximum value of 
PL R in the passband is 1 + k2, since T'£ has a maximum value of unity. By 
equating (5.74) and (5.75), algebraic equations that can be solved for the 
various characteristic impedances are obtained. 

Figure 5.41 is a plot of p versus 6 for a two-section transformer. For 
this transformer 

P< » = 1 + LR 

\ZL-Z0f (sec2 9t cos2 0 - 1) 

*ZLZa tan 40 z 

(5.76) 

where 0Z is the value of 0 at the lower zero where p vanishes. The 
maximum value of P L R in the passband is 

(ZL~Z0)
A 

and hence 

1 + k2 

1/2 

(5.77) 

iere k2 = Cot4 02(Z^ - ZQ)2/4ZLZ0. The required values of Z, and Z2 
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are given by 

7 2 - 7 a (zL-z0y 
AZl tan4 Bt 

1 V 2 

+ + ~~2~tan2_i 

z - — z 
The value of B,„ is given by 

and 

9m = cos ' \/2 cos 0., 

±f 4 
— = 2 cos ' V2 cos ^ 
/u W 

(5.786) 

(5.79a, 

(5.796) 

provided 2 A « / - = A/•//'„ [if not, (5.796) gives 2 Afl/rr]. If the bandwidth is 
specified, then B2, and from (5.79a) B,„, are fixed. Equation (5.77) the 
specifies />,„. On the other hand, if />,„ is given, the bandwidth is deter
mined. 

In the limit as B, approaches TT/2, the two zeros of p coalesce to give a 
maximally flat transformer. From (5.78) it is found that, for this case 
(compare with the approximate theory), 

zx = zrz^ 
Z2 = 2 * / % v < 

For the maximally flat transformer, the value of 0„ 
P =Pm

 is given by 

Bm = cos - i cote. 

(5.80a) 

(5.806) 

at the point where 

(5.81) 

where 0, is the previously defined quantity for the Chebyshev transfoi 
Equations (5.79) and (5.81) provide a comparison of the relative bandwidt 
obtainable from the Chebyshev transformer and the maximally flan 
former. This comparison is illustrated in Fig. 5.42 for N = 2 and j 
shows that the Chebyshev transformer can give bandwidths that art 
erably greater for the same maximum tolerable value pm-

p. 
0 0.4 0.6 1 ^ 1.6 2.0 
FrocMonal bandwidth foe maximally Mot transformer 

FIGURE 5.42 ,^ ft 

Chebyshev and n"*" 
transformers. 
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9m Sr % 

FIGURE 5.43 
*.g Passband characteristic for three-sec

tion Cbebyshev transformer. 

Figure 5.43 illustrates the passband characteristic for a three-section 
Chebyshev transformer. The power loss ratio is given by 

? L R = 1 
( Z L - Z0f (sec2 0, cos2 0 - l ) 2 cos2 B 

*ZLZ0 

The passband tolerance A2 is given by 

tan4fl 

fez = 
(ZL-Z0)

2I 2 c o s 0 z 

4Z L Z 0 I 3 /3 tan2 6Z 

(5.82) 

(5.83) 

from which pm may be found by using (5.77). Again the general result that 
specifying k2 determines the bandwidth, and vice versa, holds. The value of 
6m is given by 

= cos 
- 1 

1/3 
cos 6, 

and for transmission lines for which A f/f^ = 2Aff/ir, 

Af 2(71/2 -tim) 4 2 
— = — = 2 cos -7=- cos Bz 
fo T / 2 TT V3 

The characteristic impedance Zl is determined by solving 

z,. - z0 zl 
tan^ 0. 

ZL 
1/2 

2 ^ Z,-
Zi,Z0 

0 

1/2 

(5.84a) 

(5.84*) 

z* ~2\fJ zrzi (5'85a) 

and Z2 and Z3 are given by 

Z<i — ( Z h Z0) 

z^z,, 

1/2 

Z a = 
^ 

(5.856) 

(5.85c) 
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When 0Z approaches TT/2, all three zeros coalesce 
at » , maximally flat transformer is obtained. The required value p " ^ ' ^ 

obtained from (5.85a) by equating the left-hand side to zero Tt° Z> "fy b! 
that Z, = ZlZl~", where i < a < \. With ZL/Z, near unity, „ ? > f««3 
to |, and for large values of ZL/ZI}, a will approach - By Di v °^ 
values of a, a solution for Z, can be found quite readily by a tr ^ VarioUl 

process (note that the equation for Z.x is a fourth-degree equati fnd"errii! 
maximallv fiat transformer the value of fl and rHo KO„J . . ^ . . . . ' ° r u i t maximally fiat transformer the value of 0,„ and the bandwidth 

cos 

1/2 
cosfl 

3\ /3 / (sinSJ 2 /3 

A/1 4 

T = 2 " v6" 
/o ^ 

** given by 

(5.86a I 

(5.86b) 

The Chebyshev transformer represents an optimum design in that no 
other design can give a greater bandwidth with a smaller passband toler
ance. If it is assumed that some choice, other than (5.75), for the polynomial 
Q2iv in (5.74) can give a smaller passband tolerance for the same bandwidth. 
it will be found that a plot of the polynomial Q2N will intersect the 
polynomial T£ in at least N + 1 points. Since the polynomials are even in 
cos 0, they have at most N + 1 coefficients. Thus Q2N must be equal to TR 
since they have N + 1 points in common. But this equality contradicts the 
original assumption that Q2N could yield a better result, and hence proves 
that the Chebyshev transformer is an optimum one. 

5.15 F I L T E R D E S I G N B A S E D O N QUARTER-WAVE-
T R A N S F O R M E R P R O T O T Y P E C I R C U I T 

A very interesting filter design based on the theory of multisection q 
wave transformers was given by Young.t The quarter-wave trans '°"n e . yt 

bandpass filter but would normally not be used as a filter since t ^^ 
and output impedances are very different. In a multisection qu 
transformer, the impedances increase monotonically from &o ^ 8 t 
most filter applications we desire equal input and output impedan ^ 
Young showed was that every other impedance step in a n,.m_edanc* 
quarter-wave transformer could be replaced with an °PP°s^,e

a s t ep do** 
step. By alternating between a step up in impedance level an ^ u f l j # 

in impedance level, we can end up with a final output i r n * v a jhed bel"* 
that at the input. The filter design based on this concept is desc 

tL. Young, The Quarter-Wave Transformer Prototype Circuit, IEEE Trans 
483-489, September, 1960. 

vol MTTA ,«* 
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T 

& " i . 1 . 
(a) (b) 

FIGURE 5.44 
(0) An impedance step; (6) an equivalent junction when Z'.,/Z\ = Zl/Z.i. 

Consider the two junctions shown in Fig. 5.44. The first junction is a 
simple impedance step from Z, to Z2 . The second junction is also an 
impedance step from Z\ to Z2, but, in addition, it has an idea) 
transmission-line section of electrical length TT/2 on either side. Further
more, we assume that this electrical length does not vary with frequency. 
Obviously, we have introduced a nonphysical element and the reader may 
rightfully question whether anything useful can come from introducing 
such nonphysical elements. We will show that in the final filter configura
tion these nonphysical transmission lines can be eliminated. Thus their 
introduction is only to facilitate the development of the theory for the filter 
design. The two junctions will be fully equivalent if the scattering-matrix 
parameters S ' u and S 2 2 are the same as Su and S22. If the output is 
terminated in a matched impedance Z2 , we get 

_ Z 2 - 2 , = (Z2/Zt) -1 

" Z2 + Z, ( Z 2 / Z , ) + l 

for the first junction. Similarly, [or a matched termination on the input side, 
we get 

l-(Z2/Z,) 

** i + (z2/Zl) - _ S j l 

For the second junction we use the quarter-wave-transformer formula to 
evaluate Z i n with the output matched. This gives 

7 (*a* 

from which we get 

' 2 

_ (Z\)2/Z2~Z\ 
11 (Z[f/Z2 + Z\ 
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FIGURE 5.45 

Microstrip filter design obtained from a multisection quarter-wave-transibrmer prototype 
circuit by replacing every other impedance step by the equivalent junction shown in Fig 

In a similar way we easily find that S22 = -S'n. By comparing the expres
sions for Su and S'n , we now conclude that the two junctions are equiva
lent if 

Z^ Z^ 

z, == z:2 
(5.87) 

This is precisely the property we are interested in because if Z2/Zx >s a 8t 

up in impedance, then Z'2/Z\ must be a step down in impedance level. 
Our next step is now to replace every other impedance step »n 

multisection quarter-wave transformer by this new 
equivalent junction, vv» 

assume that the multisection quarter-wave transformer we use as 
type circuit has already been designed to give a desired power loss ra "* .on 

filter design procedure is illustrated in Fig. 5.45. In order that eac j s . 
be one quarter-wave long at the center frequency, we make eac 
sion line have an electrical length 20 - ~/2. Thus, when ^. = . Y n r t h 20 
TT/2 *= 77/2. In other words, we use a physical line of electnca 
and a nonphysical line of electrical length - TT/2 for reasons^ 
fully explained later. For the first junction in the filter, we 

simply use 

Z[ Zx 

which is the same as in the quarter-wave transformer 
. T h e second** 

5.88°' 
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is replaced by the new equivalent junction; so we make 

~ - ~ %~-—• = - + (5.886) 

This new junction incorporates the two nonphysical transmission lines of 
electrical length TT/2. The next junction is an impedance step like that in 
the quarter-wave transformer; so 

-£ = ^ Z'9=-~ = -=$ZZ (5.88c) 

The next junction is again the new equivalent junction which requires 

This procedure is continued until we have worked our way through all the 
impedance steps in the quarter-wave-transformer prototype circuit. 

The filter illustrated in Fig. 5.45 is a three-section filter. If this filter is 
examined, it will be seen that each section contains a transmission line of 
electrical length 20 — —/2 + —/2 = 20, so the nonphysical lines have been 
eliminated. We chose each transmission fine to have an electrical length of 
20 — IT/2 specifically for the purpose of eliminating the nonphysical lines 
that are part of the new junctions that replace every other impedance step 
in the quarter-wave-transformer prototype circuit. However, this means 
that the power loss ratio of the filter is obtained by replacing 0 by 26 — IT/2 
in the expression for the power loss ratio for the quarter-wave transformer. 
If the quarter-wave transformer is a Chebysbev transformer with power 
loss ratio given by (5.75), then the power loss ratio for the filter is given by 

P,.R = 1 + k2T* sec 0„, eos|2fl -

= 1 + &2T*[sec 0,„ sin 20] (5.89) 

i nus sin 20 replaces cos 0 as the frequency-dependent variable. At the 
center frequenc}' 28 = TT, SO each filter section is one half-wavelength long. 
For this reason the filter is called a half-wave filter. The band edges which 
occur at cos 0 = ±cos 8m for the quarter-wave transformer now occur when 
sec 0„, sin 2 0 = ± \ or 

which gives 

sin 20 = ±cos0,„ = ±s in | — ± 0m 

pi = 20 = - ± e„ ± nv 
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The upper band edge will be at (3! = 3w/2 - 6m and the lowe 

will be at /3/ = TT/2 + 0„,. Consequently, the fractional vJ "d <&» 
MPD/IT = 1 - 29m/v, which is one-half that of the quarter - d l h 

former prototype circuit. Thus the prototype circuit should be'd^"1 1**-
have a bandwidth twice as large as that required for the filter t 
this change the frequency response of the filter is the same a<= u^ 
prototype circuit. t h a t '-

As a final point we note that, in a quarter-wave transform 
odd number of sections, the power loss ratio is unitv at thn 

ouencv. Since * ** <*"** fft. quency. Since 

zL z%^ zi 
^m 72 72 7'2 ^ 0 

for an odd number of sections, the final impedance Z'L in the filter equal* 
Z<j. Hence the filter operates between impedance levels of ZQ and Z 
last nonphysical transmission line that appears in the output line (see Fk 
5.45) for an odd number of sections can be deleted since this is a matched 
line of arbitrary length. 

For an even number of sections. Zin does not equal Z0 at the center 
frequency because the power loss ratio does not equal unity; it equals 1 + *3 

for this case. This means that the last impedance element in the filter. 
which is given by 

~, _ y , _ Z I Z3 ZN-l ? _ y 

will be different from Z0. By using (5.77) for p at the center frequew 
can solve for Z i n to get 

z- = z ° f ^ = ( * + / r T ^ ) 2 ^ (5.90) 

Since k is normally very small, the output line for the filter has i 
istic impedance not quite equal to that of the input line. ^ j - o r a 

In Table 5.1 we list the required values of the lmpec ia^ vg}aef, 
Chebyshev quarter-wave transformer with three sections for se 
of the passband tolerance k2. We will use this table to design ^^ ; n t 
filter in the example that follows. More extensive tables are e 
literature.t 

- = M. T. * - " - 5 tSee, for example. G. L. Matthaei, L. Young, o..- — -— 
Impedance Matching Networks, and Coupling Structures," Artec 
Mass. 1980. 
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C h e b y s h e v q u a r t e r - w a v e - t r a n s f o r m e r d a t a 

• — — A / V / o - 0 . 2 \f/f0- 0.4 A f / f „ = 0.6 

Z * . / 2 o z,/z0 k* Zx/Z0 fc2 Z,/Z„ fe* 

2 
•1 

10 
20 

100 

1.09247 1.19 X 10~ 7 

I !<)474 5.35 x 10 7 

1.349 1-92 x 10 ' 
1.48359 4.29 x 10 7 

1.87411 2.33 x 10 '' 

1.09908 7.89 > 10 " 
1.20746 3.55 X 1 0 - S 

1.37482 1.28 x 10 ' 
1.52371 2.85 x 10 ' 
1.975 1.55 x 10 '•' 

1.1083 9.57 x 10 6 

1 23087 4.31 x 10 •' 
1 42.12 1.55 x 10 ;i 

1.60023 3.45 x 10 :' 
2.17928 1.87 x 10 ~ 

7. . vZ 2o ^;i " ^fc^o/"] 

Example 5.3 Filter design. We want to design a bandpass filter with a 
fractional bandwidth of 0.2 and having a VSWR of 1.02 or less in the passband. 
From the given VSWR we find ,>,„ = (1.02 - 11/2.02 = 9.9 x 10 :>. By using 
(5.77) we get k'1 = t>f„/(l p%) = 9-8 X 10 r'. The quarter-wave-transformer 
bandwidth must be chosen as 2 x 0.2 = 0.4. From Table 5.1 we find that, for 
Z,JZ0 = 10 and Hf/f,, = 0.4. k* = 1.28 x 10 '. This value of k'~ would give 
a maximum value of VSWR equal to 1.023 in the passband. We will accept this 
value since an entry for k'1 = 9.8 X 10 5 is not given. From Table 5.1 we gel 
Z,/Z0 = 1.37482. We will use 50-S1 input and output lines. T h u s ^ Z ^ 1.3748 
X 50 = 68.74 SI. The required values of Z2 and Z:l are Z., = v .Wi 5 0 = 158.1 
(1. Z, = 500 x 50/68,74 =» 363.69 (1. This completes the design of the 
quarter-wave-transformer prototype circuit. For the filter we need Z\ = Z, = 
68.74 SI, and by using (5.886) and (5.88cI Z'2 = 29.89 il. Z':! = 68.74 SI. These 
impedance values are readily realized for a microstrip filter. 

The maximum out -of-band attenuation occurs at # = 0 and is the same 
as what is obtained when the input line is connected directly to a load 
ZL = 10Z0. The reflection coefficient will be 9 /11 so 66.9 percent of the 
incident power is reflected. The transmission through the filter is reduced by 
—10 logfl - pz) = 4.8 dB. This is a small attenuation and shows that the 
particular filter configuration used here will generally not have a large out-of-
band attenuation. If we use Z,_/Zu = 100. we would obtain an attenuation of 
14 dB. But in this case the passband tolerance would be larger. The required 
passband tolerance could be achieved by using a filter with more sections. 
However, there are better filter configurations to use when large out-of-band 
attenuation is needed (see Chap. 8). 

C ^ C p e n n
S a C t r o P n a C i t a n C e a n d L e n ^ h 

* an ab rup t s tep in the width of a micros t r ip line, t h e r e will be an 
ladit ional fringing electric field from the open-circuited por t ions of the 
wider s t r ip as shown pictorially in Fig. 5 .46a . T h e efFect of th i s fr inging 

e ' d can be modeled as a s h u n t capaci tance a t t h e junct ion . T h e equivalent 
-ircuit of the s tep is shown in Fig. 5.466 and consis ts of an ideal impedance 
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S„ 2 Z< C* 

(b) 

-Of 

au -? y' '* V» C JR. 3 22 

(C) 

FIGURE 5.46 
(a t Fringing electric field at a step change in width for a microstrip line; (6) equivalent i 
for a step-change-in-width junction: <c) an alternative equivalent circuit. 

step and a shunt capacitive susceptance. The susceptance is small but does 
modify the performance of the filter if not properly compensated. The 
junction capacitance can be compensated for by changing the length of each 
filter section. The equivalent circuit in Fig. 5.466 will be shown to be nearly 
equivalent to the circuit in Fig. 5.46c. The latter consists of the ideal 
impedance step plus two short lengths of transmission line. The electrical 
lengths of these transmission lines are denoted by 0, and 0-z. The two 
electrical lengths are of opposite sign. 

For the equivalent circuit in Fig. 5.466, we have 

S , , = 
Yl-Y2-jB Yx-Yt 

1 -
jB 

Y,-n 
Yt + Y2 +jB Yt + Y2l 

+ 
JB 

Yl + Y2 

Since B/(YX + Y.,) is very small, we can use 
obtain 

the binomial expand 

1 -

B 
Yi + Y2 

*i- Y2 

r,+ Y-i 

r,- Y2 

Y,~Y2 
l-J 

B 

Y\TY~2 

JB B 

Y1 + Y2 

1 -
_2jBY}_ 

Y? - Y£ 

Yl + Y2 
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»1 

~0/=;r-e2-e',-
e, 

FIGURE 5.47 
Length compensation of a filter 
section. 

For the circuit in Fig. 5.46c, we have 

Y,-Y2 , . Yr- Y, 

when 8, is small. In a similar way we obtain 

' 2 2 

y 2 - y , 
F2 + F, 

1 -
2jBY2 

s: n-y. 22 Y, + ^ r ( l - 2 ^ ) 

(5.92) 

(5.93) 

(5.94) 

A comparison of Su and S 2 2 with S',, and S 2 2 shows that the two 
junctions are equivalent, to the order of approximations used, if we choose 

BY, 
<?.= 

Y,z 

• » - -

- Y2 

r 2 
BY, 

Y * - Y2* 

(5.95a) 

(5.956) 

In the half-wave filter the length of each section is now changed to 
compensate for the junction capacitance as shown in Fig. 5.47. The required 
section length is 2ft including 0., and 0',. Hence the physical length / is 
chosen to make 

/3/ = 20 - 02 - 0\ = 7T - 02 - 0\ (5.96) 

at the center frequency. Since 0, and 02, etc., vary with frequency like 
B = coC, compensation is obtained at all frequencies. The parameters 02 

and Q\ are small so the change in physical length of each section is small but 
important enough to take into account in the design of a filter. 

Similar junction capacitance effects also occur in some quarter-wave-
transformer realizations and can be compensated for by changing the 
Physical length of each section by a small amount. 

The application of the above method of compensation will be illus
trated in Example 5.4, but first we need data for the junction capacitance. A 
number of investigations of junction equivalent circuits for microstrip 
discontinuities have been carried out, but surprisingly very little data for 
design purposes are available. Gupta and Gopinath have evaluated the 
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0 2 4 6 

(a) 

FIGURE 5.48 

W, 
10 H 

0.15 -

0.5 E 
1 J 
2 fc 0.1 

$ 
° " 0.05 

(a) Junction capacitance Cf for a step change in width for a substrate wi 
PTlhlrO-taH n n r t i n r * r . r . . . . « . r t ~ I— '-enlarged portion of curves in (a) . with 

• 

0.6 _ Ws 
«,= 9.6 T7=°1 

E My 4 u. 0.4 / . 0 , 
a. 
1 / y . 1 
o" 0.2 

--•^--—f^- ' — • i . 
4 H 

(b) 

FIGURE 5.49 4 | 

(o) Junction capacitance C, for a step change in width for a substrate with e, -
enlarged portion of curves in (n). 

shunt capacitance at a step in width for a microstrip line for subst 
dielectric constants of 2.3, 4, 9.6, and 15.1.t Their data give the i 
capacitance normalized by the distributed capacitance per meter c 
wider microstrip line. We have used these data to evaluate the s " 
capacitance for the two cases where the dielectric constant of the s 
is 2.3 and 9.6. The junction capacitance Cs divided by the substrate 
ness H is shown in Figs. 5.48 and 5.49. 

Example 5.4 Microstrip half-wave filter. The filter d e s c r i b e ^ ^ 4 
5.3 is to be built using microstrip construction. The substrate is a 

fC. Gupta and A. Gopinath. Equivalent Circuit Capacitance of Microstrip 
IEEE Trans., vol. MTT-25, pp. 819-822, October, 1977. 

Wi**' 
Change m 
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iM 

FIGURE 5.50 
(a) Three-section half-wave filter using microstrip construction; CM scaled drawing of filter. 

a dielectric constant of 9.6 and is 1 mm thick. By using the computer program 
MSTP, we find after a few iterations the following required widths and the 
effective dielectric constants of each section: 

For Z, = 50 il W = 0.99 mm ee = 6.49 

For Zc = 68.74 JI W = 0.466 mm ee = 6.18 

For Zc = 29.89 (1 W = 2.45 mm e, = 7.07 

With reference to Fig. 5.49, we identify Wa/H and Wh/H for the junction 
between the 50- and 68.74-Sl lines to be 

H 
= 0.466 

H 
= 0.99 

Prom Fig. 5.496 we estimate CJH to be 0.03 and since H = 1 mm, C„ = 0.03 
pF. The center frequency of the filter passband is to be 4 GHz. Hence 
B = ioCs = 7.5 X 10 4 S. The characteristic admittances y„ and Yt are (see 
Pig. 5.50) 

* • - » - * * *k-
1 

68.74 
= 0.01455 

We now use (5.95) to obtain 

BY0 

e, Y2 - V s = 0.08 
>', 

6.2 = --=-0, = - 0 . 0 5 8 

For the junction between the 68.74-fl line and the 29.89-$! line, we have 

H 

Prom Fig. 5.496 we estimate C, to be 0.18 pF which gives B = 4.52 x 10~ 3 S. 

0.466 £-"• 
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We now determine D\ and ff.z shown in Fig. 5.50. 

BY Y 

where Y3 = 1/29.89 = 0.03346 S. In the 68.74-fl section e 
wavelength is Atl/ JTe = 7.5/ \f6A8 = 3.017 cm. The reauini i ' 
this section is ^ ** le"e«» / 

A 3.27 
'l = 2^{v ~ "2 ~ ffi) = "2VA = °-5 2 A = L 5 7cm 

For the 29.89-12 line, we have ec = 7.07 and a wavelength 
7.5/ vT07 = 2.821 cm. The required length l.t is given by 

h = r - ( i r - 20'1) = 0.447A = 1.261 cm 
2-ir 

Note that the length corrections are about 4 and 10 percent. If the filter were 
designed for 2-GHz operation, the length corrections would be half as large or 
about 2 and 5 percent. Below 1 GHz, compensation for the junction 
susceptances could be ignored. A proportionally scaled drawing of the foil 
pattern for the filter is shown in Fig. 5.506. 

5.16 TAPERED TRANSMISSION LINES 

In a multisection quarter-wave transformer used to match two transmission 
lines with different characteristic impedances, the change in impedanc 
is obtained in a number of discrete steps. An alternative is to use a taper 
transition which has a characteristic impedance that varies continuous!} 
a smooth fashion from the impedance of one line to that of the other line. 
transition, or matching section, of this type is referred to as a P& 
transmission line. An approximate theory of tapered transmission 
analogous to the approximate theory presented earlier for mul 
transformers, is readily developed. This approximate theory is pf • 
below. A following section gives a derivation of the exact differenti ^ 
tion for the reflection coefficient on a tapered transmission line 
gives a brief evaluation of the validity of the approximate theory. ^ 

Figure 5.51a illustrates schematically a tapered transmission ^ ^ ^ 
to match a line with normalized impedance unity to a load wit n ^ . 
impedance ZL (assumed to be a pure resistive load). The 1*^ 
normalized impedance Z which is a function of the distance ^^ j , , 
taper. Figure 5.516 illustrates an approximation to the c o n t m u o ^ e r e n t i s 
considering it to be made up of a number of sections of one J olinis <+ 
length dz and for which the impedance changes by different1' 
from section to section. 

file:///f6A8
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FIGURE 5.51 
Tapered-transmissinn-line matching section. 

The step change dZ in impedance at z produces a differential reflec
tion coefficient 

dr0-
Z + dZ - Z dZ 

- ^d(\nZ) dr0-
Z + dZ + Z 2Z 

1 d 
- - — ( l n Z ) c k 

2 dz 

- ^d(\nZ) 

(5.97) 

At the input to the taper, the contribution to the input reflection coefficient 
From this step is 

d l , = e •+ml± 
2 dz 

(lnZ)rfz 

If it is assumed that the total reflection coefficient can be computed by 
summing up ail the individual contributions, as was done in the approxi
mate theory of the multisection quarter-wave transformer, the input reflec
tion coefficient is given by 

*-ir*~so-*)* (5.98) 

where L is the total taper length. If the variation in Z with z is known, I', 
may be readily evaluated from the above. A problem of much greater 
practical importance is the synthesis problem, where Z(z) is to be deter
mined to give I', the desired characteristics as a function of frequency. 
Before taking up the synthesis problem, two examples of practical taper 
designs are presented. 
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2w 3ir 4JT 5ir 6TT 7V 

FIGURE 5.52 
-—/3i.=2v-x Input reflection 

lor an e x p o n e n i k u j * " 

Exponential T a p e r 

The exponential taper is one for which In Z varies linearly, and hence Z 
varies exponentially, from unity to In ZL\ tha t is, 

In Z = — In ZL 

2 = e{z/L)\n2,_ 

Substituting (5.99) into (5.98) gives 

(5.99a j 

(5.996) 

1 , i ,m Z, 1 s i nSL 

r, = 2^^re dz ~ r'JliL ta Zi-^r ,5100) 

where it has been assumed that we are dealing with a transmission line ' 
which (i = k = 2ir/A and is not a function of z. A plot of p, = (HI versus / 
is given in Fig. 5.52. For a fixed length of taper, this is a plot of P-. * 
function of frequency since k = 2TT f(, fj.e)> 2. Note that when L is grea 
than A/2, the reflection coefficient is quite small, the first minor lobe 
about 22 percent of the major-lobe maximum. 

Taper wi th Triangular Distribution 

If dlln Z)/dz is chosen as a triangular function of the form. 

d(lnZ) 

dz 

T l l n Z , 
42 

1 
4 

i. 2(L-z)lnZL 

0<z<j 

— <z <L 

(5.10D 

a matching section with more desirable properties is o btained. Integ* ati^ 
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H-t*i 

FIGURE 5.53 
Input reflection coefficient 
for a taper with a triangu
lar distribution of reflec
tions. 

(5.101) gives 

Z = 

el»z/fcr*lbffc 

e ( 4 j / I , - 2 s 2 / / - i d - l ) l n Z , 

I 

L 
~ < z < L 
2 

(5.102) 

Substituting (5.101) into (5.98) and performing the straightforward integra
tion give 

(5.103) I- = - e - ' « M n Z , 
sin(/3L/2) 

0 ^ / 2 

A plot of p, versus /3L is given in Fig. 5.53. Note that, by comparison with 
the exponential taper, this taper has a first minor-lobe maximum which is 
less than 5 percent of the major-lobe peak. However, this small value of 
reflection coefficient occurs for a taper length of about 3A/2, or for a length 
twice that for the exponential taper. If ZL is considerably greater than 
unity, this latter taper will be preferable because of the much smaller values 
of p, obtained for all frequencies, such that the taper length is greater than 
0.815A, which corresponds to the lower edge of the passband in Fig. 5.53. 

Y N T H E S I S O F T R A N S M I S S I O N L I N E T A P E R S 

Equation (5.98) is repeated here for convenience: 

1 ,/ d([nZ) 
r,(2/3) = - f V * * - (5.104) 

2J0 ' dz 

Ants equation may be interpreted as the Fourier transform of a function 
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diln Z)/dz, which is zero outside the range 0 < z < L.f As such 
inversion formula gives e

 ^"HJIW 

1 d(\nZ) 1 -« 

2 dz 2 W - . 

This formula, in principle, solves the synthesis problem since "t 
required value of c/(ln Z)/dz to yield the .specified r,-(2/3). To '" ^^ t n e 

d i s c u s s i o n l.n fol low it will hp e n n v p n i e n f to i n t m r l n m 4L- /• i> '">' the 

ized variables: " u w , n e normal. 

^ - L / 2 

'5 106a, 
0 L 2L 

TT A (5.1066) 

In this case (5.104) becomes 

1 H, f* d(lnZ) 
• 2e J J dp 

dp (5.107) 

Now define g( p) to be 

d()n Z) 
(5.108a) 

and F (« ) by 

F ( M ) = / " e~J"ug(p)dp (5.1086) 

Thus F, = ±,e-jl,LF(u) (5.109) 

The Fourier transform pair (5.104) and (5.105) now may be expressed as 

Flu)-f_j-»"g(p)dp (5- J l 0 o ) 

1 /•» . , r T 1106) 

The synthesis problem may now be stated as follows: Specily a
 for. 

tion-coefncient characteristic F( u) that will give the desired ^ ^ j ^ a 
mance and yet be such that the g (p ) computed by (5.1H .trjctio« 
function identically zero outside the range \p\> -._This iaitf* e n t from 
corresponds to the physical requirement that d(ln Z)/dz be di 

. Tranaf, 
tThe Fourier transform relation was first pointed out by F. Bolinder. F o u r ' j g g 4 i Nov*"* 
the Theory of Inhomogeneous Transmission Lines, Proc. IRE, vol. 38, P-
1950. 
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pro only in the range 0 < z < L. Obviously, any arbitrary F(u) cannot be 
cified, for m general this would lead to a g(p) that exists over the whole 

'nfinite range - * < p < x- For example, if F( u ) were chosen to be equal to 
nitv for — 1 < w S 1 and zero otherwise, then (5.1106) would give 

sin p 
g(p) = - x < p < » 

irp 
To realize such a g(p) would require an infinitely long taper, clearly an 
impractical solution. Before further progress with the synthesis problem 
can be made, restrictions to be imposed on F(u), to obtain a physically 
realizable solution, must be deduced. 

In order to derive suitable restrictions on Fin), let g(p) be expanded 
in a complex Fourier series as follows: 

g(P) = 
Z aneJ,:p 

n * —M 

0 

~rr < p < tr 
(5.111) 

\p\> IT 

where the o„ are as yet unspecified coefficients subject to the restriction 
a„ = a* „ so that g will be a real function. Substitution into (5.110c) now 
gives 

sin TT( U — n) 
F(u) = 2tr Z <** 

= 2TT Z a „ ( - l ) 

TT(U - n) 

sin 7r u 

v(u - n) 

sin TTU " u 

Z a„(-l) "-
(5.112) 

The coefficients a„ can be related to F(u = n), for when u equals an 
integer «,, 

sin TT( u — n) 
lim = 1 

and 

*n TT{U — n) 

sin TT(U — m) 
lim ~ —- = 0 

(5.113) 

tt—n ir(u — m) 

Thus F\n) = 2-an, or an = F(n)/2w; so 

™ sin-?r( « - n) 
F(«)= £ * < » } — -i 

his result is a statement of the well-known sampling theorem used in 
communication theory and states that F(u) is uniquely reconstructed from 
a knowledge of the sample values of F(u) at u = n, 

n = 0, ± 1, ± 2 , . . . 
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by means of the interpolation formula (5.113). One possible wav t 
F(u) is now seen to be a relaxation on the specification of F( ? FestHct 
specify F(u) at all integer values of u only. This, however, is not" ' t f l a t **» 
satisfactory solution, because we have no a priori knowledge tu e n i ' r e 'y 
specify F(u) at the integer values of u only, the resultant F(U) *' 'f We 

(5.113) will be an acceptable reflection-coefficient characteristic f ^^ ^ 
ues of u, even though it can be realized by a g(p) given bv f*vi ^ Val" 
an=F(n)/2ir. y l 0 - 1 1 D with 

We should like to obtain greater flexibility in the choice of F( \ 
see how this may be accomplished, let it be assumed that all a for i T^ ^ 
are zero. In this case •* " 

N 

g(P)= L a„e 
jnp 

( 5 - l l * 0 

sin vu j j „ u 

F{u),^~zj-1)a.— (5,144) 
The series in (5.1146) can be recognized as the partial-fraction expansion of 
a function of the form 

Q(u) 

where Q(u ) is, apart from the restriction Q( -u) = Q*(u) so that a„ = a*., 
an arbitrary polynomial of degree 2N in u, and the denominator is the 
product of the N terms (u2 - 1),(u2 - 4), etc. Using the partial-fraction-
expansion formula, we have 

Q{u) » Q(m) QOO 
= E 77 _xn.. .nA? 7772 157 + hm_ -aw n£.x(««-ii*) " ^ ( « - m ) 2 m n ^ w > 2 - « 2 ) • " " ^ ^ 

«Q(u) * i ^ i ^ — ^ — r 
= uWf.Au2 - n2) =

 m r_ ' i V (" " / n ) 2 m 2 n n
A ' = 1 . T T j ^ r 

Q(0) (5.H5) 
+ n^1(-n2) 

where the prime means omission of the term m = 0. This is clear. 
same form as the series in (5.1146), with 

,„ Q(m) ( 5 .U 6 0 > 

( 1] ° - = 2m2n»_1.n*m(m2-n2) 

Q(Q) [5.n6b} 
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e expression for F( u) now can be written as 

sin—u Q(u) 
F{u) = 2v n V , 2 ,• (5.117) 

•here Q(u) is an arbitrary polynomial of degree 2N in u, subject to the 
restriction Q(-u) = Q*(u). This result states that the first 2N zeros of 
in TTU which are canceled by the denominator in (5.117), can be replaced 

by 2N new arbitrarily located zeros by proper choice of Q(u). If g(p) were 
a constant (exponential taper), we should have F(u) proportional to 
(sin-u)/iru. But with 2N +• 1 coefficients available in the expansion of 
g(p), we are at liberty to rearrange 2N of the zeros of (sin TTU)/TTU to 
obtain a more desirable F( u). We have now reduced the synthesis problem 
to one of specifying an arbitrary polynomial Q( u ). To illustrate the theory, 
two examples are discussed below. 

A qualitative insight into how Q( u) should be specified may be ob
tained by imagining that F(u) is a rubber band stretched horizontally at 
some height above the fiL or u axis. The zeros of F(u) may then be 
thought of as points at which this rubber band is pinned down to the it axis. 
If the band is pinned down at a number of closely spaced points, it will nod 
rise much above the u axis in the regions between. The corresponding 
reflection coefficient will then also be small in this region. At a double zero 
the band is pinned down in such a fashion that its slope is zero at the point 
as well. This results in a less rapid increase in the height with distance away 
from the point. The number of zeros available (the points at which the band 
may be pinned down) is fixed and equal to those in the sin TTU function. The 
polynomial Q( u) permits only a relocation of these zeros. 

With reference to Fig. 5.52, which illustrates the characteristic for an 
exponential taper, let the zero at /3Z, = IT be moved to 2- to form a double 
zero at this point. Likewise, let the zero at 377 be moved to form a double 
zero at 4 - , etc. The function Q(u) that will provide this shift in every 
other zero so as to produce double zeros at u = ± 2 , + 4, ± 6, ± 8, etc., can 
be chosen as 

From (5.117) we obtain 
n = l 

^ s i n ^ n ^ - 4 ^ 

e now wish to let N go to infinity. However, the products do not converge 
m t n i s c a se ; so we must modify the expression for F( u) to the following: 

nsimrunZ=1(l-u
2/4n2)2 

f(u) = C N , . 2 . 
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This modification is permissible since Q contains an arbitr 
multiplier. All constants can be incorporated in the one consb> C°I1st«iit 
following infinite-product representations for the sine functions 

sin TTU - / u2\ 

— = n i i -TTU n = l 

sin(7T«/2) i Z 

n 
n= 1 

-u/2 

it is readily seen that as N -* x we obtain 

1 -
4u2 

W « ) - C 
sin(-u/2) 

TTU/2 

12 

(5.118, 

This is the reflection-coefficient characteristic for the taper with a tria 
lar d(ln Z)/dz function discussed earlier. In the present case we hav 
arrived at this solution for a taper with equally spaced double zeros bv a 
direct-synthesis procedure. As Fig. 5.53 shows, the specification of double 
zeros holds the values of Flu) (that is, p,) to much smaller values in the 
region between zeros. 

As shown earlier, the coefficients a „ in the Fourier series expansion of 
g(p) are given by 

1 C r S i n ( m r / 2 ) i : 

a„ = ^-F(n) = — 
rnr/2 

(5.119) 
2TT'X'' 2TT 

from (5.118). The reader may readily verify that the expansion (5.114a) 
g(p), with the above coefficients, is a triangular wave. To fix the constant ( 
we integrate (5.108a) to obtain 

, - ,TT d(\n Z) _._ = 
[ g(P)dP= [ ; dp = In Z\U = In ZL 
•' rr f-ir dp 

But from (5.111) we have 

/ g(p)dp = 2 i ro 0 

and hence a 

From (5.119) we now find that 

= — In ZL 
2TT L 

(5.120) 

°° = 2^ " "L
 2TT 

1 _ C 
In Z, = — 

so C = In Z,. With this value of C. the reflection coefficient c°"*=^en & 
(5.118) is easily verified to be the same as th 

fin' 
As a second example, consider the synthesis of a t a P ^ r n)0vin*> 

having a triple zero at u = ± 2 . This can be accomplished by 

to the F(u) in ( 
(5.103). 
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FIGURE 5.54 
Reflection-coefficient charac-

«. u teristic lor a taper with a 
5 triple zero at | « | = 2. 

zeros at ±1 and ±3 into the points u = ±2. The resultant rejection 
coefficient should remain very small for a considerable region around \u\ = 2. 
In the present case N = 3, and we choose 

Q(«) = C ( V - 4 ) ' : 

Thus F(u) = 2TTC-
s i n 77 u (« 2 -4r 

7T« ( z / 2 - l ) ( u 2 - 4 ) ( u 2 - 9 ) 

A plot of |F(«)/F(0)l is given in Fig. 5.54. As anticipated, F(u) remains 
small in a considerable region around the point | « | = 2. Since the zeros at 
l« l= 3 have been removed, F(u) reaches a relatively large value at this 
point. However, for a range of frequencies around which L = A, this taper 
represents a very good design. 

The coefficients in the expansion for g( p) are given by 

o , = a , = 
1 0.316 

— F(l)= ~—lnZL 

a.} = a_„ = 0 

a , = a _o = 
1 0.098 

-F(3) = — ^ - \nZL 2-rr 

Hence 

S(P) 

a„ = a_„ = 0 

d ( l n Z ) \nZL 

dp 2TT 

2TT 

« > 3 

( o 0 + 2a , cos p + 2a 3 cos3p) 

(1 + 0.632cos p - 0 .196cos3p) 
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Integrating gives 

_ In Z, 
In Z = ~~( P + 0-632 sin p - 0.0653sin Zp) + c 

The^ constant of integration C is determined from the rea.ui 
In Z = 0 at p =- ,7, or In Z, at p = -; thus C = A |n ZL and r e m e W t h a i 

In Z, 
• n Z = - ^ — - ( p + - + 0.632 sin p - 0.0653sin3p) 

Replacing p by 2rr(z - L/2)/L from (5.106a) now specifies In Z 
function of g and completes the design of the taper. 

The foregoing synthesis procedure must be used with some cauti 
stemming from the approximations involved. The theory is valid as Inn 
</(ln Z)/dz is small; that is, In Z must be a slowly varying function of 2 
order that the reflection coefficient everywhere along the taper be sma 
that is, \\'(z)\l « 1. This means that \g{p)\, and hence all |o„|, must not be 
permitted to assume excessively large values. Consequently, \F(n)\ must not 
be permitted to become too large. If too many zeros are closely grouped 
together around a particular vaiue of u, then outside this range F(u) mav 
become excessively large and the accuracy of the theory will suffer. Such 
' 'supermatched" designs must be avoided. 

*5 .18 C H E B Y S H E V T A P E R 

If the number of sections in a Chebyshev transformer is increased indefi
nitely, with the overall length L kept fixed, we obtain a Chebyshev taper 
This taper has equal-amplitude minor lobes and is an optimum design in tt 
sense that it gives the smallest minor-lobe amplitudes for a fixed tap< 
length, and conversely, for a specified minor-lobe amplitude it has t e 
shortest length. As such it is a good taper by which to judge how far 
tapers depart from an optimum design. It has been shown that, in t 
as the number of sections in a Chebyshev transformer goes to infim y 
reflection coefficient becomest 

2 cosh li0L 

where 0„ is the value of 0 at the lower edge of the passband, as 1 s ^ , 
in Fig. 5.55. As ji increases from_ zero to /30, the magnitude' ''^/a 
decreases to a final value of (In ZL) / (2cosh 0OL), since in 

Proc « * " 
tR. E. Collin. The Optimum Tapered Transmission Line Matching Section. 
pp. 539-548, April. 1956. 
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FIGURE 5.55 
-0L Reflection-coefficient characteristic 

for a Chebyshev taper. 

cos L-\fp2 - Po = c o s n ^VP?> _ ^2 • Beyond this point the function in the 
numerator is the cosine function that oscillates between +1 and produces 
the equal-amplitude minor lobes. The major-lobe to minor-lobe amplitude 
ratio equals cosh jiQL. Hence, if this is specified so as to keep p, less than or 
equal to some maximum value p,n in the passband. the taper length L is 
fixed for a given choice of the frequency of the lower edge of the passband 
which determines /3„. We have 

cosh ji^L = 
InZ, 

*P, 
(5.122) 

Conversely, if /3„ and the taper length L are given, the passband tolerance 
pm is fixed. 

The theory given earlier may be used to determine the function g{ p) 
that will produce the reflection coefficient given by (5.121). Introducing the 
u variable again, we find that the function Fiu) is 

_ cos -Ju2 - u2 

F(u) = (\nZL)-
C O s h 77 U i 

(5.123) 

where -u = pL, -utl = fi,,L. The function cos TT-\Ju2 - u% can be ex
pressed in infinite-product form as 

1 -cos Try u2 - u\ = cosh TTU„ ]~I 
n • (n - | ) 

and this is the limiting value of the polynomial Q(u) in (5.117) a s N - " : . 
t h e sin — u term has been canceled by the infinite product rT^=lCl ~ u2/n2) 
3S in the first example presented on taper synthesis. However, we do not 
need this product expansion since 2TTO„ = F(n) in any case. From (5.123) 
we have 

« * - « — -
1 In ZL cos ir-Jn2 - u% 

2~ 2 77 Cosh 77 Un 

(5.124) 
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Thus 

I n Z , 
#(p) = 9 ZT (cOshl7U„ + 2cOS7rv/l - ul COS fa 

+ 2 cos Try7 4 - ul cos 2p + • • • ) 

(cosh iru 0 + 2 Z cos i r ^ " * 3 " ! c o s np 

[aZL 

2TT cosh TT&(. 

Integrating with respect to p gives 

InZz. 

n = l (5. -

I n Z 
I " cos Tr-Jn2 - ul 

2 , cosh ™ 0
 p C 0 8 h ™ » + 2

< | ? 1 n " ^ H + C 

(5.126) 

where C is a constant of integration. To render this result more suitable for 
computation, it is expedient to add and subtract a similar series: i.e., 

p l n Z L In Zh " cos nv . 
in Z = —z + : 2- sin np 2v — cosh u j i r , . ] 

In ZL
 x cos 

TT COSh U 07T n = , 

—y n2 - u% — cos nir 
sin np + C 

The second series converges rapidly because cos vyn2 - u% approach 
cos n IT as n becomes large. The first series may be recognized as 
Fourier sine series for the sawtooth function Sip), 

P &ZL 

S(p) = { 2TT cosh IT ut 

- T T <P < TT 

p = ±ir 

and the periodic continuation of this function as illustrated in 
5.56. 

Sip) 

-ZlT 

FIGURE 5.56 
Sawtooth funcWW-
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Hence we obtain 

I n Z 
P 1° Z/ 

2l7 
+ S( P) 

Ir 
+ 

77 CO 

zL 
ih TTU„ 

X 

L 
cos Txyn2 — K| - cos » TT 

sin np + C 
n 

At p = rr, we have In Z = In Z t , and since Sip) and sin np are zero at this 
point, C + | In ZL = In Z ; . or C = | in Z , . Our final result is 

p i p \ 
i - + - - ; In Z ; 

2JT 2 2T7 cosh — «„ | 

In Z, * cos ir-Jn2 - u'i - cos /? rr 
£ sinrap (5.128) 

l n Z = 

77 cosh 7ru0 n j 

for -77 <p < TT. An interesting feature of the above result is that In Z 
changes in a stepwise fashion from 0 to (In Z ; )/(2cosh TT;/,,) as p changes 
from -IT — e to -TT + e, where e « 1. Likewise, at the other end of the 
taper, In Z changes abruptly from a value In ZL - (In ZL )/(2cosh -ua) to 
In Z; as the point p = TT is reached. This means lhat the optimum taper 
has a step change in impedance at each end. The physical basis for this is 
readily understood by noting that when the frequency is very high, so that 
the taper is many wavelengths long, the reflection from the smooth part of 
the taper vanishes. Thus, in order still to maintain equal-amplitude minor 
lobes, the two-step changes in impedance must be provided to give a 
reflection coefficient 

In Z, cos jiL 
f>, = —zr— —; r for P *• Pn 

2 cosh (i{lL
 H H[> 

As an indication of the superiority of the Chebyshev taper, computa
tions show that it is 27 percent shorter than the taper with d(ln Z)/dz a 
triangular function, for the same passband tolerance and lower cutoff 
frequency. If the tapers are made the same length, the Chebyshev taper 
provides a major- to minor-lobe ratio of 84 as compared with 21 for the 
taper with a triangular distribution. 

C 0 E 9 P F I C n f T E Q U A T I O N F O R T H E R E F L E C T I O N 

The basic equation (5.98) for the input reflection coefficient T, was derived 
by neglecting all multiple reflections between individual differential sec
tions. The exact equation, derived below, enables an estimate of the range of 
validity of the approximate theory to be made. First of all, the differential 
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equation describing the total reflection coefficient f at any point 
line, according to the approximate theory, is derived for later co 

With referenceto Fig. 5.57, let d\\, be the reflection coeffic-11^50'1-
from the change dZ in characteristic impedance in the interv 1 ^ '^"g 
This differential reflection was shown earlier to be given by [see te a 3t *• 

l d ( l n Z ) 

The total reflection coefficient at z is the sum of all differential 
tions rfr0 from z to L and is 

1 ,/, .„ d ( l n Z ) 

where u is a dummy variable that measures the distance from the point 
2 = 0 toward the load end. The phase angle of the reflected wave arising at 
u is 2(3(z - u) relative to the forward propagating wave at z. 

Differentiating Hz) with respect to z gives 

rfr 2jp ,L M d ( l n Z ) 1 .„ d ( l n Z ) 

dz 2 / , du 2 du 

= 2 ^ r - - \ (5-129) 
2 dz 

This is the approximate differential equation for the total reflection coeffi
cient at any point z along the taper. _ 

To find the exact differential equation for T, let Z in be the input 
impedance at z and Zm + dZin be the input impedance at z + dz. We 
have 

Z i n + d Z i n + j Z t a n O d z ) 
Zj„ — L _ 

Z + . / ( Z i n + d Z m ) t a n ( 0 d z ) 

Zm + dZm+jZpdz 

Z+j(Zin + dZin)fSdz 

( z 

z2 

aZ-n + dZto+jfiZdz-j-fpdz 
zH 

upon replacing the tangent by its argument /? dz, neglecting 
orodu^ 



IMPEDANCE TRANSFORMATION AND MATCHING 3 8 5 

Z Z*dZ 

FIGURE 5.57 
Tapered transmission line. 

differential terms, and replacing the denominator by 

[Z+j(Zinpdz)\ ~JT** 
The above gives 

Now we also have 

and hence 

dz -JP 
Z^-z 

i + r _ 
Z„ = - — = z 

I - r 

dZ„ r dz 
+ 

2Z dr 

(i - n 2 ~dz~ dz i - r dz 

Combining these two equations for dZm/dz and replacing Z,n by Z(l + 
T ) / ( l - r) finally give 

dV 1 rf(lnZ) 

cfe 0*2 
(5.130) 

upon using the relation Z~x dZ/dz = d(ln Z)/dz. If we compare (5.130) 
with (5.129), we see that the approximate equation differs only by the factor 
1 - T2 that multiplies the dlln Z)/dz term in the exact equation. If 
IT2| <K 1 everywhere along the line, the approximate equation would be 
expected to yield good results. 

The exact equation (5.130) is called a Riccati equation. It is a nonlinear 
equation because of the term in f2 and does not have a known general 
solution. This equation can be integrated only in certain special cases (one 
such case is for the exponential taper, as in Prob. 5.48). However, the 
practical difficulty in applying the exact theory does not stem so much from 
the lack of a general solution of (5.130), since numerical integration or 
iteration schemes can always be employed, as from being unable to specify 
what the characteristic impedance Z is along a general taper. If the taper is 
very gradual, then Z(z) can be taken as the characteristic impedance of a 
uniform line having the same cross-sectional dimensions as the taper has at 
the plane z. But for such gradual tapers the approximate theory is valid and 
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gives good results, so that the more complicated Riccati equaf 
required. For more rapidly varying tapers, the field structure T 'S n o t 

taper is perturbed to such an extent that no simple method of °n^ l^e 

Ziz) exists. In actual jact . the new boundary-value problem will i*'pec'Iying 
solved to determine Zlz), and this solution will also provide the 
the reflection coefficient along the taper. Thus one concludes tiT 
inability to specify Z(z), except for the case of gradual tapers m ^ 
exact equation of minor importance in practice. 

In the case of waveguide tapers, fi is a function of the cross-serf 
geometry and hence a function of z along the taper. In order to h 
the approximate equation (5.129), in this case, an auxiliary variable^ 
introduced as follows: 

6 = (~2p(z)dz d0 = 2(idz 

d d dd d 
and hence —- = — — = 26 — 

dz dO dz dd 
We now have 

dY dY d(lnZ) 

dd J 2 dti 

This is readily integrated to give (multiply both sides by e'J" and note t 
dVe-'"/d8 = -JTe-* + e _ ' " r f r /d«) 

d(lnZ) ,« 1 HI " ( In Z) 

where 0Q = (L2p dz 

If Z = ZL at z=L, then T10O) = 0, and since T(0) = T,, we have 

° ^ esso
in terms of the new variable 0. the problem is formally ^ ^ h e r d i ^ " ! 
However, the specification of Z(ti) as a function of 6 may be r syntt** 
to translate back into a function of z. Consequently, a gen ^ ^ u g h ' 
procedure applied to (5.132) may be difficult to carry o u ^ ^ p t 
principle it is formally the same problem as considered ear ^ jeter" 
the last step, i.e., expressing Z(H) as a function of * in or e 
the shape of the taper. 
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5.1 . Show that the R = constant and X = constant contours in the reflection-
coefficient plane are circles given by (5.6a ) and (5.66). 

5.2. In the circuit shown in Fig. P5.2. what is the smallest value of d that will 
make the resistive part of Zm equal to 50 SI at the plane /,? Find the required 
value of jX to make Zm equal to 50 ii at the plane t2- Use a Smith chart to 
find d and jX. 

/ f = 5on 
j* 

f j / ; =ton 

tz t, FIGURE P5.2 

5.3. On a certain line terminated in a normalized load impedance ZL> it was found 
that the standing-wave ratio S was equal to 2 and that a voltage minimum 
occurred at A/4 from the load. What is Z t ? Find the position and length of a 
single shunt stub that will match the load to the line. Use a Smith chart. 

5.4. What are the length and position required for a series stub to match the load 
specified in Prob. 5.3? Use a Smith chart. 

5.5. A normalized load ZL = 2 terminates a transmission line. Does a voltage 
maximum or minimum occur at the load? Find the position and length of a 
shunt stub that will match the load to the line at a frequency /",, where the 
wavelength is A,. With the stub parameters and the load fixed, let the 
wavelength be increased to 1.1 A,. What is the new value of stub susceptance 
and the standing-wave ratio on the line? If at the wavelength A, the stub is 
placed A, /2 farther toward the generator from its original position, what is 
the standing-wave ratio on the line when the wavelength is increased to 1.1A,? 
This illustrates the greater frequency sensitivity of the match when the stub is 
placed farther from the load. 

5.6. A double stub with spacing 0.25A is used to match a normalized load admit
tance YL = 0.5 + j \ . Find the required stub susceptances by using a Smith 
chart. 

Answer: 

Solution 1: fi, = - 0 . 5 L, = 0.176A B.z =1 L> = 0.375A 

Solution 2: B, = - 1.5 Lx = 0.0936A B2 = - 1 L2 = 0.125A 

5.7. Can a normalized load admittance YL = 2.5 + j\ be matched with a double-
stub tuner with stub spacing A/10? 

5.8. What is the minimum stub spacing in a double-stub tuner that will permit a 
normalized load admittance YL = 1.5 + jl to be matched if the spacing is 
restricted to be greater than A/4? If the spacing must be less than A/4, what 
is the maximum stub spacing that can be used? 
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5.9. Show that, for a double-stub tuner with d = A/4, the required val 
susceptances are given by 

B>= -BL±[GL(l-GL)]l/'-

1 -G, 
B.,= 

GL 

1/2 

Hint Take the limit of (5.20) and (5.21) as tan fid becon* 
5.10. A normalized load admittance YL = 0.8 +./0.5 is to be matched to 

mission line using a double-stub tuner. Use a Smith chart to 
required stub susceptances and lengths. Assume that short-circuited 
spaced by a distance 0.4A are used. 

Answer: 

es infinite. 
a 
find 

Solution I j 

Solution 2: 

Bx - -3 .171 i, = 0.0486A B2 = -2.994 L2 = 0.0513* 

B, = -0 .582 L , = 0 . 1 6 6 A B.z = 0.2416 L2 = 0.288A 

5.11. A line with an attenuation constant « = 0.01 N p / m is used as a short-cir
cuited stub. Using the formula Y,„ = Yc coth(« + jB)l, find the maximum 
value of normalized susceptance this stub can give. If a = 0.02, what is the 
maximum value of stub susceptance that can be obtained? Use I = 1 m. 

5.12. Consider the series-shunt matching circuit illustrated in Fig. P5.12. What 
values of series stub reactance and shunt stub susceptance will match an 
arbitrary load YL = G, + jBL a distance d away? 

Hint: Note that Ym at the position of the shunt stub equals (j.Y -
Z'mY '. where Z'm is the input impedance just to the right of the series stub. 
Next impose the condition r'm = I + jB to find the required value of jX. 

FIGURE P5.12 

5.13. Develop a graphical method, using the Smith chart, to solve Pro • ^oVltig 

"- '- '- v must lie on the G = 1 circle. But Ym is obtained ^ 
2L point. Hence, to mak 

Hint: V... 
180° around the chart from the Z , -jX+_Z[n point " ^ ^ e r o t a 
on the G = 2 circie, choose jX to make Zin he on the n 
through 180°. TE o &(& 

5.14. A horn antenna is fed from a rectangular waveguide in which l ^ ^ praduCe£ 

propagates. At the junction a reflection coefficient ' = ° * , t n e n 
What is the normalized input admittance to the horn? Fin _ ^fQltl t 
normalized susceptance and the spacing in guide wave l en^egUide « 
junction of an inductive diaphragm that will match the 
horn. 
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-JBt 

FIGURE P5.14 

5.15. A load impedance 40 I j lO is to be matched to a 50-ii line using lumped 
elements. Use a Smith chart to find the parameters of a suitable matching 
circuit. Evaluate the loaded Q of the circuit. Two solutions are possible; 
choose the one with the lowest Q. Check your answers using LCMATCH. 

5.16. Use a Smith chart to design a lumped-parameter matching network that will 
match a load admittance Yt = 0.04 ; _/0.08 1.0 a 50-11 transmission line. Find 
both solutions and evaluate the loaded Q for each. Check your answers using 
LCMATCH. 

5.17. For the matching circuit shown in Fig. 5.17«, shown that the required values 
of jBy and JX., are given by 

0x -j[-Bt ±)/Gjl -GL)) 

Mi - ±J 

Hint: Note that Zm = JX., + (JBX + ¥h) ' must equal I. 
5.18. For the matching circuit shown in Fig. 5.176. show that the required values 

of jX: and JB-, are given by 

^ - / ( - . X i i / B ^ l - R i ) ) 

JBX =±j] 
I-Ml. 

RL 

5.19. Show that the definition (5.23) for Q gives the expressions in (5.26). 
5.20. A load admittance G, + ; 'wC t = GL +,jBL = 0.02 + ./0.05 is to be matched 

to a 50-11 transmission line using a double-stub tuner with short-circuited 
shunt stubs spaced by 0.18A. The stubs have a characteristic impedance of 40 
11. Use the computer program STUBMACH to find the required stub lengths 
for the two possible solutions. Use the frequency scan option with a normal
ized frequency step of 0.02 and five steps below and above the matching 
frequency to evaluate the frequency sensitivity of the two solutions. Plot the 
return loss as a function of normalized frequency and find the bandwidth o( 
each circuit for which the return loss is less than - 20 dB. 

5.21. Repeat Prob. 5.20 but use open-circuited stubs. Compare the bandwidths 
obtained with those when short-circuited stubs are used. 
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5.22. 

5.23 

5.24 

5.25. 

5.26. 

5.27. 

5.28. 

5.29. 

5.30. 

5.31. 

5.32. 

A load impedance ZL = R,, + jioL = RL + jXL = 30 +j\00is tn 
to a 50-Ii transmission line using open-circuited series stubs 
apart- The stubs have a characteristic impedance of 75 Si. Use f ^ ^ °-l5>. 
program STUBMACH to find the required stub reactances 
Carry out a frequency scan to determine the bandwidth ove^ 
VSWR remains below 1.5. 

and Sm*. 
which 

Answer: The two bandwidths are 0.045 and 0.087. 
(a ) For Prob. 5.22 replace the first stub by a short-circuited shunt 
this improve the bandwidth? (6) Replace the second stub by a sh rt^ 
shunt stub but keep the original first stub. How does this a r W a 
width? m t h e band-

Answer: (a) BWs are 0.01 and 0.017. (6) BWs are 0.03 and 0 07~ 
A load impedance Z,_ = 5 + .;50 is to be matched to a 50-!l transmission r 
Design a lumped-element matching network that uses a capacitor "in 
with the load as the first element plus a second shunt element Use 
computer program LCMATCH. Evaluate the return Joss as a functtor 
normalized frequency using normalized frequency steps of 0.01. For the ti 
solutions plot the return loss as a function of the normalized frequency Find 
the 3-dB bandwidth for the two circuits. Evaluate the loaded QL for the two 
circuits and compare the bandwidth with that given by \/QL. 

Answer: QL = 5 and 6.5. The bandwidths are 0.21 and 0.16 and are 
close to the respective 1/QL values. 

Repeat Prob. 5.24 but use a shunt element for the first element in the 
matching network (option b in the computer program LCMATCH). 

Aload admittance YL = 0.002 t j '0.1 is to be matched to a 50-Jl transmiffl 
line. Use a matching network with the first element being a shunt elemeni 
Evaluate the return loss as a function of (he normalized frequency and find 
the 3-dB bandwidth of the two circuits. Evaluate the loaded QL and compar 
the bandwidth with that given by l/QL. Use LCMATCH. 
Repeat Prob. 5.26 but use a series element as the first element. 
A load admittance G, = 0.002 - ./'0.05 is to be matched to a 50-H tra 
sion line. Find solutions for four different matching networks t h a t c l">

t l t t , 
used. Evaluate the loaded QL of each and identify the network gJ« 
greatest bandwidth. Use LCMATCH. ^ 

A load impedance ZL = 80 ~J10 is to be matched to a 40-ii ^ " ^ r r * -
line. Find the elements for two possible matching networks an 
sponding bandwidths for which the VSWR remains below 
LCMATCH. .gj, tjse * 

A microwave amplifier requires a load termination 
Smith chart to design a matching network of the form s h o * " o n , i n es ha** 
The transmission line is an open-circuited one. The transr/us* 
characteristic impedance of 50 Jl. . 
Use a Smith chart to design a lumped-element network of t e 

Fig. 5.22c that will provide a load Z, = 30 + ./50 for an amp ^^ 
What are the required length and impedance of a quarter- .0^ 

a 5 0 - H l i n e a t T ~ " * » * £ , * 
line)? What is the frequency band of operation over whic 
coefficient remains less than 0.1? 

that will match a 100-fi load to 
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5.33. Design a two-section binomial transformer to match the load given in Prob. 
5.32. What bandwidth is obtained for pm = 0.1? 

5.34. Design a three-section binomial transformer to match a 100-12 load to a oO-il 
line. The maximum VSWR that can be tolerated is 1.1. What bandwidth can 
be obtained? Plot /> versus f. 

5.35. Design a two-section Chebyshev transformer to match a 100-ii load to a 50-11 
line. The maximum voltage standing-wave ratio (VSWR) that can be toler
ated is 1.2. What bandwidth is obtained? Plot p versus f. Use the approxi
mate theory. 

*g.36. Use the exact theory to design a two-section Chebyshev transformer to 
match a normalized load Z, = 5 to a transmission line. The required frac
tional bandwidth is 0.6. What is the resultant value of p„,? 

*g.37. Design a three-section Chebyshev transformer (exact theory) to match the 
load specified in Prob. 5.36. The same bandwidth is required. Compute />„, 
and note the improvement obtained. 

*g.38. Let x„ be a zero of Ts(x); that is. T^ixJ = 0. Let the corresponding value of 
cos 0 be cos 02. Note that TlV(sec Hm cos 0) = 0 when sec fl„, cos " = 
sec 0m cos H!. Use the result 

Tv(cos</>) = cos Ntl> 

to compute the zeros of '/'.,(.v). Note that the zeros occur when cos2<ft = 0, or 
<i> = TT/4. 3 - / 4 , and that .v„ = cos <!>.. Using these results together with the 
relation sec 0m = xs sec «,. show that, for a two-section transformer, 

P L R = 1 + k2Ti(sect)mcos(t) 

reduces to (5.76). Note that when H = 0, p'2 = (ZL - Z0)-/{ZL + Z,,)2, and 
hence 

k2= ( z L - z K t f 
4ZLZ0Ti(sect),„) 

5.39. For a particular application it is desired to obtain a reflection-coefficient 
characteristic 

The normalized load impedance equals 2. What must the value of C be? Use 
the approximate theory for an JV-section transformer to design a four-section 
transformer that will approximate the above specified /»,. Expand pt in a 
Fourier cosine series to determine the coefficients i>„. Plot the resultant p, 
versus 0 and compare with the specified characteristic. Show that the 
approximation to the specified />, is a least-mean-square-error approxima
tion. If the number of sections in the transformer were increased indefinitely, 
could the specified p, be realized? 

5.40. An empty rectangular waveguide is to be matched to a dielectric-filled 
rectangular guide by means of an intermediate quarter-wave transformer. 
Find the length and dielectric constant of the matching section. Use a = 2.5 
cm, f= 10,000 MHz, er2 = 2.56. Plot /;, versus frequency f. Note that the 
appropriate impedances to use here are the wave impedances for the TE1(, 
mode. t r 2 is the dielectric constant in the output guide. 
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FIGURE P5.40 

5.41. Design a two-section binomial transformer to match the empty 
dielectric-filled guide in Prob. 5.40. Use intermediate sections with' 
constants en and er2. Plot the input reflection coefficient as a f. 
frequency. 'Unct">n of 

5.42. Find the required impedances for a three-section half-wave filter ha 
fractional bandwidth of 0.3 and a passband tolerance k2 = 1.87 x i n - ' " ? 3 

input and output transmission lines have a characteristic impedance of "in n 

5.43. Find the required impedances for a two-section half-wave filter havin • 
fractional bandwidth of 0.2 and a passband tolerance k2 = 10~2. The in 
transmission line has a characteristic impedance of 50 il. What is the 
required characteristic impedance of the output transmission line? You will 
need to design the quarter-wave-transformer prototype circuit first. 

5.44. The filter described in Prob. 5.42 is to be built using microstrip construction 
on an alumina substrate (e, = 9.6) 1 mm thick. The center frequency is 2 
GHz. Determine the line widths and lengths including compensation for 
junction capacitance. Use the MSTP program. 

5.45. Obtain an expression for p, for a taper which has d(\n Z)/dz = C sin THZ/L). 
Determine C so that In Z = In Z, at z = L and equals zero at z = 0. Plot p, 
versus pL. 

*5.46. Design a taper that has double zeros at 0L = ±2TT and ±3ir. Plot Fiu 
versus u for this taper. Determine In Z as a function of z. Achieve the design 
by moving the zeros at ±v and ±4TT into the points at ±2ir , ± 3~-

*5.47. Design a taper with single zeros at j8L = ±TT, ± 1.25tr, ± l.5ir, ± LW 
moving the zeros at ± 2 - , ± 3ir, ± 4TT into the specified points. Plot tt 
resultant Fiu). Determine the expansion for In Z as a function of z fo^ 
taper. Note that the close spacing of zeros keeps />, small m the .^ 
- <pi < 2TT, but that removal of the zeros at ±3ir and ±4rr lets p, 
large value in this region. „ | 6 r the 

*5.48. Show that, for the exponential taper, the exact solution ot IO.I 
input reflection coefficient is 

, A 3in( BL/2) __ 
l , = B cos( BL/2) + 2jp s in(BL/T) 

where A = (In ZL)/L, B = v
/4/32 - A2. ^ iinpedao<* 

*5.49. Show that the approximate differential equation for the inp 
along a slowly varying tapered line is (Z i n = Z at all pom -

^L=-2MZ-Zin) 
ential line « * * 

Integrate this to obtain the input impedance to an expon 
nated in a load impedance ZL. 
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CHAPTER 

6 
PASSIVE MICROWAVE 
DEVICES 

A large variety of passive microwave circuit components or devices have 
been developed for use in both the laboratory and in microwave communica
tion and radar systems. In this chapter we will describe the basic operating 
principles for a number of the most commonly used devices, such as 
attenuators, phase shifters, directional couplers, power dividers, hybr 
junctions, and ferrite devices such as isolators or gyrators and circulator 
The physical form that these devices take depends on whether waveguio 
coaxial transmission line, strip line, microstrip, etc., is used as the transn 
sion medium. The development of transistors and switching diodes 01 
applications in the microwave frequency band has resulted in the c 
ment of a number of electronically controlled devices such as atteriu 
and phase shifters. Some of these electronically controlled circuit e 
are also examined in this chapter. 

6 .1 T E R M I N A T I O N S 

Two types of waveguide and transmission-line terminations are ^ 
use. One is the matched load, and the other is a variable short c^ 
produces an adjustable reactive load. These terminations a -^g paf" 
used in the laboratory when measuring the impedance 

or SC
roVides a 

ameters of a microwave circuit element. The matched load P jvaJefll 

mination that absorbs all the incident power, and hence is ĵg sk° 
terminating the line in its characteristic impedance. The 
circuit is a termination that reflects all the incident power. 1 <> 
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la: 

FIGURE 6.1 
Matched loads for a waveguide, (a) Lossy wedge: 
(6) tapered resistive card. 

reflected wave is varied by changing the position of the short circuit, and 
this is equivalent to changing the reactance of the termination. 

The usual matched load for a waveguide is a tapered wedge or slab of 
lossy material inserted into the guide, as illustrated in Fig. 6.1. Since the 
material is lossy, the incident power is absorbed. Reflections are avoided by 
tapering the lossy material into a wedge. Thus the termination may be 
viewed as a lossy tapered transmission line. An overall length of one or more 
wavelengths is usually sufficient to provide a matched load with an input 
standing-wave ratio of 1.01 or smaller. 

Circuit 

The simplest form of adjustable short circuit for use in a waveguide is a 
sliding block of copper or some other good conductor that makes a snug fit 
in the guide, as illustrated in Fig. 6.2. The position of the block is varied by 
means of a micrometer drive. This simple form of adjustable short circuit. 
however, is not very satisfactory in its electrical performance. The erratic-
contact between the sliding block and the waveguide walls causes the 
equivalent electrical short-circuit position to deviate in a random fashion 
from the physical short-circuit position which is the front face of the sliding 
block. In addition, some power leakage past the block may occur, and this 
results in a reflection coefficient less than unity. These problems may be 
overcome by using a choke-type plunger, as discussed below. 

The choke-type plunger is an example of the use of impedance trans
formation properties of a quarter-wave transformer. Consider, for ex
ample, a load impedance Z, that is approximately zero. If this impedance is 

Sliding 
plunger 
Sliding 
plunger 1111111 

Wtweguide 
Sliding 
plunger 1111111 

Sliding 
plunger 1111111 

Sliding 
plunger 

MicromeTer dr 

FIGURE 6.2 
A simple short circuit for a wave
guide. 
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X » / l x,/« 
FIGURE 6.3 

Two-section quarter-wave transformer 

viewed through a two-section quarter-wave transformer, as in Pi 
impedance seen at the input is le-6-3,tr,e 

Z' = 
z2 '6.1, 

If Z2 is chosen much greater than Z,, the new impedance Z\ will anD 

mate a short circuit by a factor (Zi/Z2)
2 better than Z, does. Thi 

essentially the principle used in choke-type plungers. The improveme 

factor of course deteriorates when the frequency is changed, so that th 
transformer sections are no longer a quarter wave long. However, by proper 
design, a bandwidth of 10 percent or more can be achieved. In very critical 
applications more than two sections may be used. The foregoing theory is 
now applied to a choke-type plunger for use in a rectangular guide. 

For the TE,0 dominant mode in a rectangular guide, the surface 
currents on the interior wall flow up and down along the side walls and bath 
across and in the axial direction on the broad walls. In the simple type of 
short circuit illustrated in Fig. 6.2. the axial current must flow across the 
gap between the upper and lower waveguide walls and vertically across u 
front face of the sliding block. The currents that flow along the side wall 
flow in the vertical direction and do not need to cross the gap between tr 
waveguide walls and the front face of the plunger. Consequently, thee 
performance arises only from the axial currents flowing on the uppei 
lower walls. To avoid this erratic behavior, the plunger may be madeint ' 
form illustrated in Fig. 6.4. The width of the plunger is uniform and slig 
less than the interior guide width. However, the height of the P ' " " ^ ^ 
made nonuniform. The front section is a quarter guide wavelengt 
less than the guide height b by an amount 26,. The gap 6 t is ma d e^J t p0 t 

as possible consistent with the requirement that the front seen 
touch the upper and lower waveguide walls. The second sec ^ g. 

quarter guide wavelength long, but with the gap b% mao-e 

A 
V 4 , V 4 

ir b2 
ir i b2 

• 

ir i ir i 

/ / z, 

FIGURE 6.4 s h or t 
Choke-type adjust-" 

cuit (side view) 
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3 
FIGURE 6.5 
Alternative choke-type plunger design 

possible consistent with maintaining the mechanical strength of the plunger. 
The final back section makes a sliding fit in the guide. The quarter-wave 
sections have equivalent characteristic impedances proportional to 2 6 ( / 6 
and 26.2/6 relative to that of the input guide. Thus application of (6.11 gives 

for the normalized input impedance. By good mechanical design 62 can be 
made about 10 times greater than bx, and hence an improvement in 
performance by a factor of 100 over the non-choke-type short circuit may be 
achieved. 

A somewhat different design, as illustrated in Fig. 6.5, is also fre
quently used. In this plunger a two-section folded quarter-wave transformer 
is used. The inner line transforms the short-circuit impedance to an ideal 
open circuit at the plane aa. At this point, i.e., at an open-circuit or infinite 
impedance point, the axial current is zero. Hence there is no current present 
to flow across the gap between the waveguide wall and the plunger at the 
contact point aa. The next, or outer, quarter-wave transformer transforms 
the open-circuit impedance at aa into a short-circuit impedance at the front 
end of the plunger, i.e., at plane bb in Fig. 6.5. Short-circuit plungers of this 
type give very satisfactory performance. 

The above application of quarter-wave transformers is also used in the 
construction of choke joints for joining two waveguide sections together, in 
rotary joints, for plungers used to tune cavity resonators, etc.t 

A T T E N U A T O R S 

Attenuators may be of the fixed or the variable type, The first is used only if 
a fixed amount of attenuation is to be provided. For bridge setups used to 
measure transmission coefficients, the variable attenuator is used. There 
are many ways of constructing a variable attenuator; only one type, the 

£ »,/4 a 
t_. _ * - j 

K 

rSee, for example. G. L. Kagan (ed.). "Microwave Transmission Circuits." McGraw-Hill Book 
Company, New York. 1948. 
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rotary attenuator, is considered in detail. A simple form 0f 
consists of a thin tapered resistive card, of the type used for mat t 
whose depth of penetration into the waveguide is adjustable T h ^ '°at*s 
inserted into the guide through a longitudinal slot cut in the ce f* Ca rd •» 
broad wall of a rectangular guide. An attenuator of this form ha< 
complicated attenuation variation with depth of insertion and fr 

A better precision type of attenuator utilizes an adjustable I enCy ' 
waveguide operated below its cutoff frequency. The disadvantae ^^ °^ 
type of attenuator is that the output is attenuated by reducing the 
between the input and output guides, and not by absorption of the ' 
power. As a result, a high degree of attenuation corresponds to a refl ' 
coefficient near unity in the input guide, and this is often undesirable 

Perhaps the most satisfactory precision attenuator developed fo AI • 
the rotary attenuator, which we now examine in some detail. The h 
components of this instrument consist of two rectangular-to-circular wa\ 
guide tapered transitions, together with an intermediate section of circular 
waveguide that is free to rotate, as in Fig. 6.6. A thin tapered resistive card 
is placed at the output end of each transition section and oriented parallel to 
the broad walls of the rectangular guide. A similar resistive card is located 
in the intermediate circular-guide section. Tlie incoming TE;o mode in ike 
rectangular guide is transformed into the TEn mode in the circular guide with 
negligible reflection by means of the tapered transition. The polarization of the 
TEn mode is such that the electric field is perpendicular to the thin res 
card in the transition section. As such, this resistive card has a negligible 
effect on the TEn mode. Since the resistive card in the center section can 
be rotated, its orientation relative to the electric field of the incoming TEn 
mode can be varied so that the amount by which this mode is attenuated: 
adjustable. , 

With reference to Fig. 6.7. let the center resistive card be orienti'd at 
an angle 0 relative to the direction of the electric field polarization of_ 
T E n mode. The TE, , mode polarized in the x direction may be deconip-* 
into the sum of two TE, , modes polarized along the u and v direct 

Resistive cards-

•Rectangular to 
circular waveguide 
Transition 

Rotating section 
of circular guide 

FIGURE 6.6 
Basic construction of a rotary attenuator. 
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FICURK 6.7 
Decomposition of T E , , mode into 
two or thogonal ly polarized 
modes. 

illustrated in Fig. 6.7. That portion which is parallel to the resistive slab will 
be absorbed, whereas the portion which is polarized perpendicular to the 
slab will be transmitted. However, upon entering the transition section, the 
transmitted mode is again not perpendicular to the resistive card in this 
section; so some additional attenuation will occur. 

To derive the expression 1'or the dependence of the attenuation on the 
rotation angle 9, consider the analytic expression for the TE, ,-mode electric 
field. For polarization in the x direction the electric field is given by (Table 
3.6) 

_ Ji(p\ir/a) . P'u ., 
E = arcos<b J, 

r a 
Pur 

a,,, s in <!> (6.2) 

apart from the propagation factor esliz. Since 

sin <b = sin( 4> - 0 + 8) = cos 8 sin( <b - 0) + sin 0 cos( <t> - 0) 

and similarly 

cos <b = cos( 4> - 0 + 0) = cos 0 cos( 6 - 0) - sin 0 sin( d> - 0) 

the above expression may be written as 

, 7 , p'u 

E = cosfll — a , . c o s ( * - 0) J[n. s in(4 - 8) 
r a 

— sin 0 — ar sin(</> - 0) + — JJa,,, cos(</. - 0) 

which is equivalent to referring the angle variable <]> to a new origin at 8. 
The first term in brackets in (6.3) is a TE, , mode polarized with the electric 
field along the u axis as in Fig. 6.7, and the second term in brackets is a 
TE, , mode polarized along the v axis. Since the first part is completely 
absorbed, only the portion multiplied by sin 0 is transmitted into the output 
transition section. If we assume that the resistive card in this section is 
parallel to the y axis, only the component of the transmitted field which is 
polarized along the * axis is transmitted. We have, at the input to the 
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transition section, 

E = - s in f l 
J , p'xl 

— ar sin(<* - d) + —A** cos(0 - 0v 

A P: 
= sin2 0 — a r cos 6 - -^a, . , sin c6 

- sin cos «l — a r sin<j> + 1/,3^ cos 4> 

of which the first part is a T E U mode polarized along the x directio 
transmitted. Comparing (6.4) with (6.2) shows that the transmittea^tn' 
reduced by a factor sin2 H from the amplitude of the incident field H 
the attenuation produced is given in decibels by 

« = -2Olog(s in 2 0) = -401og(sinfl) / g 5 j 

A notable feature is that the attenuation depends only on the angle of 
rotation 0, a result that is verified in practice to a high degree of approxima
tion. 

Electronically Controlled Attenuators 

For applications in various microwave systems, it is desirable to have an 
attenuator whose attenuation can be controlled by the application of a 
suitable signal, such as a dc voltage or a bias current. Two devices thai are 
suitable for use in an electronically controlled attenuator are the PIN dioc 
and a field-effect transistor. These devices can be used as variable resi=toi 
whose resistance is controlled by the applied signal. 

The basic attenuator network is a symmetrical resistive T or̂  
network as shown in Figs. 6.8a and 6. The resistor values fl, and / 
chosen so that when the attenuator is terminated in a resistance equ ^ 
the transmission-line characteristic impedance Zc, the input is 
that is, Zm = Z,, and to provide an output voltage reduction by 

«—Wv-

Zc 

* 1 
• ^ M — 

(a) 

FIGURE 6.8 
The two basic attenuator networks. 
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factor K. For the T network we have 

R2{R1 + Zl.) 
Bm = fl. + R,+R2 + Z, 

For Rin = Zr we get the equation 

Rl(Rl + 2R2) = Z* 

When Rm = Zc the Thevenin impedance seen by the load equals Z, also. 
The Thevenin open-circuited voltage across R2 is 

- fi2 
V™ ~ 'Ri+Ri + Zc

V' 

The power delivered to the load is 

'TH n-= 
y 2 „ ,tnrl2 
v 

2Z, 
2 

Z 
fl2 \'iv,, 

P., + R.t + Z,. / 8Z, 

The available power is IV^C/SZ,., so that the power attenuation K2 is 
given by 

i 2 

« • - • * 2 = I "2 

R} + R2 + Z, J 

When K has been specified, and also requiring that Rm = Z,., we have two 
equations that are readily solved for the required values of ft, and R2. 
Thus we find that 

1 -K 
R, = — — Z r (6 .6a) 

i T A 

R*=-, ^ 2 Z , (6-66] 
2K 

\^K2 

For 10-dB attenuation in a 50-(2 system, we require K= /O.l which 
results in Rx = 25.97 fl and R2 = 35.14 ft. For a 3-dB attenuator, we 
require Rx = 8.58 ft and R2 = 141.4 ft. Thus, in order to produce a wide 
range of attenuation values, Rx and P2 must be capable of being varied 
over a substantial range of values. For the II network, P, and R2 arc 
given by 

1 + K 

1 - K 2 

R , - _ ^ - Z i (6.76) 

The P/iV diode differs from a conventional PN junction diode by 
having a thin layer of intrinsic semiconductor material between the usual 
Positive and Negative doped regions. The addition of the intrinsic region 
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reduces the junction capacitance, since the P and N regions 
apart. It also makes the forward conductivity of the diode a 
linear function of the diode bias current. In the forward bias "^ m0fe 
charge carriers are injected into the intrinsic layer and thus the c J 0 ^ 1 ' 0 " . 

is proportional to the injected charge, which in turn is proporti i 
bias current. The equivalent circuit of the PIN diode is shown in F 
The resistance R, and capacitance C, represent the intrinsic 1 'g 

resistance R,, the junction capacitance Cr and the diffusion capacit 
represent the PN diode characteristics. The resistance i? is th 
bulk semiconductor regions. The capacitance Cf is the stray can 
between the terminals of the chip and can usually be neglected F 
packaged diode the equivalent circuit also includes the lead inducta 
and the package capacitance Cp. 

Under the reverse bias conditions, the diffusion capacitance is neel" ' 
ble and the junction resistance i? ; is very large. Also the parallel impedanct 
of R, and C, is negligible relative to the impedance of C; and ]?„ in series 
so the equivalent circuit reduces to that shown in Fig. 6.96. A typical value 

Cn± 

ffs 

C„=k R, 4= C, 
± c, 

R,: =Ma 

: 

w 

cp4= 

(a) 

R.+ R, 

(c) 

FIGURE 6.9 . i r c u i t 
(a) Equivalent microwave circuit of a PIN diode; (6) equivalent. 
conditions; (c) equivalent circuit for forward bias conditions. 

for re 
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for the impedance of the diode in the off state is predominantly a capacitive 
reactance of - J 4 0 to -j '400 fl. For forward bias conditions, the diffusion 
capacitance Cd is large and provides a low-reactance shunt across the 
junction. Also C, is small, so that R, + Rs becomes the controlling element 
for the diode impedance. The equivalent circuit under forward bias condi
tions is shown in Fig. 6.9c. In the fully on state, the resistance R, of the 
intrinsic layer is less than 1 Q in a typical diode. The resistance /?, varies 
inversely with the bias current. 

PIN diodes in the forward biased state can be used for the resistors R, 
and R2 in the attenuator networks shown in Fig. 6.S. The presence of 
reactive elements in the equivalent PIN diode circuit will result in some 
inevitable input and output mismatch. The dynamic range of an attenuator 
using three PIN diodes as variable resistors is also limited to usually 10 dB 
or less. 

A more versatile attenuator can be built by using chip resistors to 
construct a cascade connection of Fl networks and using PIN diodes as 
switches to short-circuit the series arms for low attenuation or to be in the 
open state for one or more sections for various amounts of attenuation. An 
illustration of this type of attenuator is shown in Fig. 6.10. A basic section 
producing 2 dB of attenuation in a 50-fi system would have Rx = 436.2 iJ 
and #2 = 11.61 CI, In the fully forward biased on state, the PIN diode 
short-circuits R., and, since the parallel combination of /?, with a second 
/?, is a resistance of 218.1 $2, the loading effect on a 50-H line is relatively 
small, so that attenuation is also quite small. 

A field-effect transistor with zero voltage applied between the drain 
and source has a channel whose resistance can be controlled by the gate 
voltage. Thus FETs can be used as the variable resistors in one of the basic 
attenuator circuits shown in Fig. 6.8. In Fig. 6.11 we show a photograph of 
a commercial electronically controlled attenuator built as a MMIC circuit. 
This attenuator wil! operate over the frequency range from dc to 26 GHz 
and can produce a maximum attenuation greater than 30 dB. The return 
loss is greater than 10 dB and the insertion loss is 1.5 to 2.5 dB. This 
particular device is suitable for use in a microstrip circuit. The attenuator 
uses six MESFET devices as variable resistors in a basic T attenuation 
circuit. 

FIGURE 6.10 
A swilchable attenuator network. PIN 
diodes are used to switch R.t in and 
out of the circuit. 

—WV^-
R2 fl2 

fl, R, 

fl2 

fl, fl, 
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F I G U R E 6. J1 
A photograph of a MMIC electronically controlled attenuator. (Photograph courtesy of fo» 
Moskaluk. Hvwlett-Packard Company.) 

6.3 P H A S E S H I F T E R S 

A phase shifter is an instrument that produces an adjustable change in the 
phase angle of the wave transmitted through it. Ideally, it should 
perfectly matched to the input and output lines and should produce zero 
attenuation. These requirements can be met to within a reasonable deg 
of approximation. There are a variety of designs for phase shifters 
mechanically adjustable type. The rotary phase shifter is the best in 
class and is the only one we will discuss. 

Electronically controlled phase shifters using PIN diodes as swwj 
have become popular for use in phased-array antennas. In a pnas .^ 
antenna, there are many radiating elements, such as printed-circui ^ 
and the radiated beam can be scanned in direction by varying i e J ^ 
excitation of each element in the array. In a large array this requ , ^ b e 
phase shifters; so a design that is small electronically controlled, t echn0J-
economically produced in large quantities using integrated cir n t s . 
ogy is desirable. The PIN diode phase shifters meet these requir 

R o t a r y P h a s e S h i f t e r J in 
. -Molv use°. . idelv 

The rotary phase shifter is a precision instrument that is v - t oll 

microwave measurements. Its basic construction is similar 
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Rotating section 

*/» plote x /2 plate XM plote 

I J ; 

FIGURE 6.12 
(a) Rotary phase shifter; l/>) quarter-wave plate. 

rotary attenuator, except that the center resistive card is replaced by a 
half-wave plate and the two outer resistive cards are replaced by quarter-
wave plates. The quarter-wave plates convert a linearly polarized TE , , mode 
into a circularly polarized mode, and vice versa. The half-wave plate pro
duces a phase shift equal to twice the angle 0 through which it is rotated. 
The analysis of the principles of operation is given below. 

A circularly polarized field is a field with x and y components of 
electric field that are equal in magnitude but 90° apart in time phase.t A 
quarter-wave plate is a device that will produce a circularly polarized wave 
when a linearly polarized wave is incident upon it. Figure 6.12 illustrates 
the basic components of the rotary phase shifter. The quarter-wave plate 
may be constructed from a slab of dielectric material, as illustrated in Fig. 
6.126. When the T E n mode is polarized parallel to the slab, the propagation 
constant /3j is greater than for the case when the mode is polarized 
perpendicular to the slab; that is, /3, > fi.,, where /3.2 is the propagation 
constant for perpendicular polarization. The length / of a quarter-wave 
plate is chosen to obtain a differential phase change (0 , - (i.Jl equal to 90°. 
The ends of the dielectric slab are tapered to reduce reflections to a 
negligible value. The half-wave plate is similar in construction, except that 
its length is increased to produce a differential phase change of 180°. 

fCircularly polarized fields are discussed in greater detail in Sec. 6.7. 
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FIGURE 6.13 
la) Decomposition of incidi-nt 
TE, , mode; (6) oriental;' 
half-wave plate. 

In the rotary phase shifter, the quarter-wave plates are oriented at an 
angle of 45° relative to the broad wall of tiie rectangular guide. The 
incoming T E n mode may be decomposed into two modes polarized parallel 
and perpendicular to the quarter-wave plate, as illustrated in Fig. 6.13a. 
The incident mode is assumed given by (6.2) as 

J i p'u 
E = — a r cos <& «^ia* sm * 

If we replace cos $ by 

c o s | ( / . - - + - ) = — 
IT 

cos\4> - — I - sin|<£ -

and sin 6 by 

v2 

2 
in| <!> - -cos| <t> ~ — + sin 

the above expression for the incident field may be written as 

where 

E, 2? 
2 

E = E , + E« 

Jl I T \ P11 • ( . 5 
— ar cos^d. - - j - — J;a,ft s i n ^ - 4 

E 2 = 
2 

3\ 
— a r sin| <t> - ?)*^M*-% 

(6.8o> 

(6-8o) 
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The field E, is polarized parallel to the slab, and E2 is polarized perpendicu
lar to the slab. After propagation through the quarter-wave plate, these 
fields become 

E', = E i e -JJM 

E'2 = E 2 e - ' w = E2e -jis\te-juh-P\)t = JE e~J"'' 

(6 .9c) 

(6.96) 

since (fi2- (ix)l = -IT/I. The resultant field consists of two orthogonally 
polarized TE U modes of equal amplitude and 90° apart in time phase, and 
hence constitutes a circularly polarized field. 

Consider next the action of the half-wave plate on the above circularly 
polarized field. Let the half-wave plate be rotated by an angle 0 past the 
quarter-wave plate, as in Fig. 6.136. The field E', + E'2 may be expressed in 
terms of TE, , modes polarized parallel and perpendicular to the half-wave 
plate by changing the origin of the angle variable <!> to 77/4 + 0; that is, we 
use the relations 

cos) <f> — — = cos rf> = cos ft cosUfr - 0 - — j 

- sin 8 sinj d> — 9 

and 
77 

sin|<£ - -
4 

= sin 0 cos <{> - 0 — - + cos 0 sin </> - 0 — -

Thus we obtain 

Ei = — «-•"»•'< 
J , 1 77-
— af cos\4> - 0 - — 
r \ 4 

Pn / ~ 
-—--JJa, , , s i n U ~ 0 ~ ~ 

a \ 4 

— af sinlrf) - 0 -- sin 0 

Pn I ~ 
-</,'a,,, co sU -Q- — 

E' 
-j& ,-jih' COS 0 

a 

J , / 7T 

y a r s i n ^ - 0 - -

(6.10a) 

Pn „ / 77-
+ — - ^ a * cos <t> - 0 - — 

a \ 4 
+ sin 0 

• / , 

cos| <t> - 0 - — 

Pn / ^ 
j;a, f tsin|</) - 0 - - J (6.106) 

The field polarized parallel to the half-wave plate has an r component 
varying as cos(<?> - 0 - TT/4), whereas the perpendicularly polarized mode 
has an r component of electric field varying as sin(<fc - 0 - TT/4). Hence, 
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from (6.10), we obtain 

E', + E'2 = Ej' + Eg 

where 

- J s i n t f ) —a rcos/<£ - 6 - i) 
- 8- ?)] 

(6. l ie , 

/2 
->S| ' -7« 

B « -
- iV2 

(6.116) 

e-jPii-jo — a r sin I <fi - 0 
r \ 4 

P u / •"" 
+ j ; a c S c o s U - 6 - — 

a \ 4 (6.1k) 

After propagating through the half-wave plate of length 21, this field 
becomes 

E3 = E ' ; e - 2 ^ ' ' (6.12a) 

E„ = E £ e - W = Erge-****-**-***1 = - E J * - * * * (6.126] 

since 2 (^ 2 - pt)l = -TT. 
This new field may now be decomposed once again into two ' 

modes polarized parallel and perpendicular to the quarter-wave plate in » 
output guide. If we assume that this plate is parallel to the input quarte 
wave plate, we can obtain the required decomposition by referring the i 
variable <j> to i r / 4 as the origin. If we follow the procedure used earlier, 
obtain 

E3 * «, - E'a t K , 6 1 3 < " 

where 

E' = - e~3j0\i-r*< 
V2 
2 

j \ / 2 

Ji 

E'4 = : — i - W i ' - m 
2 

r 

J, 

a . cos 
,6-13*) 

" 4J a 

— a, s i n U - - + —V,'a,» c o s U - 4 / J 
r \ 4; a jate,the 

Finally, after propagating through the second quar ter -* 3 

output field becomes ,g 

E 0 = E% + ET4 
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where E"s = tfcr*** (6.146) 

E; = E'je--"**' =jE,
4e--"i'1 (6.14c) 

When the fields E^ and E'j are combined, we obtain 

En = e - 4 J W - W - l a f cos <b - — J,'a„, sin </>) (6.15) 

which is again a linearly polarized T E U mode having the same direction of 
polarization as the incident field given by (6.2) and (6.8). Note, however, 
that the phase has been changed by an amount 4)3,/ + 2ft. Thus rotation of 

I the half-wave plate through an angle 0 changes the phase of the transmit

ted wave by an amount 20. This simple dependence of the phase change on a 
mechanical rotation is the chief advantage of the rotary phase-shifter. 

Besides dielectric slabs, the circular guide may be loaded with metallic 
fins or rods to produce 90" and I80c differential phase-shift sections. These 
methods are discussed in a paper by Fox.t 

Electronically Controlled Phase Shifters 
There are several basic designs that are used to build digital-type electroni
cally controlled phase shifters. In all designs the PIN diodes are used to 
switch circuit elements in and out of the transmission path. Each switching 
operation adds or subtracts a finite phase-shift increment such as 
+ 11.25°, ± 22.5°, + 45°, ± 90°, etc. By using a cascade connection of several 
phase shifters, the full range 0° to 180" can be covered with a resolution 
equal to the smallest phase increment that is made available. 

The simplest phase-shifter design uses PIN diode switches to switch 
one of two alternate transmission-line lengths into the transmission path as 
shown in Fig. 6.14. The bias currents can be supplied by connections at the 
midpoint of a half-wave open-circuited stub. The first quarter-wave section 
is a low-impedance stub and transforms the open-circuit impedance to a 
short circuit or low impedance at the point where the bias line is connected. 
The next quarter-wave section uses a high-impedance line and transforms 
the low impedance of the midpoint into a high impedance which produces 
negligible loading of the main transmission line. The dc return for the bias 
current can be obtained by connecting the input and output lines to the 
ground plane through short-circuited high-impedance quarter-wave-line sec
tions as shown in Fig. 6.14. 

If the two transmission-line sections have lengths lx and l2, then the 
incremental phase change produced when line 2 is switched in to replace 
line 1 is A</> = /3(/2 - / , ) , where /3 is the propagation phase constant. This 

+A. G. Fox, An Adjustable Waveguide Phase Changer, Proc. IRE, vol. 35, pp. 1489-1498, 
December, 1947. 
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Bias 
circuit 

ground 

FIGURE 6.14 
fncremenlal-line-type phase 
shifter. 

type of phase shifter produces an incremental change in phase that depends 
on the frequency since p' is a function of frequency. If the dispersion of 
line is small, i.e., phase velocity is independent of frequency, then th 
increment in signal time delay is a constant and is given by A- =• 
lx)/vp = {li - / , ) # / « • When broadband signals are to be radiated 
phased array, the use of different phases for the excitation of the v s r l 0 ^ 
elements in the array will generally result in some signal distortion 
the phase shifters are true time-delay devices. fi ., oD 

Since the PIN diodes are not ideal switches and have a hn^ j f te r5 

resistance and some series lead inductance, the use of several phase 
in series will result in a significant overall insertion loss. 

A second type of phase shifter is shown in Fig. 6.15. In this ^ maln 
th? 

if 

n s e tynu type ui piiast- suttiei is suuwu ui z ig . W.J.^- ~~ rg 

susceptances of equal value jB are switched in shunt wi . obtain 
transmission line when the diodes are on. The stubs are used j 

the ' a i required susceptances and are usually short-circuited at i 
provide a dc return for the bias current. The stubs are sPa^ spaeing l 

apart; so the phase shift is jii = B when the diodes are off. T h * *p
 re5UlW 

chosen so that when the stubs are switched into the circuit ^ ^ t„ i 
network will still present an input and output impedance equa 
connecting transmission lines. 
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tf 
• / } / = e -
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'S Bias currenl input S3 

•>• 

oc 
F I G U R E 6.15 
A phase shifter using switched reactive elements. 

We can analyze this circuit in a straightforward way using wave-ampli
tude transmission matrices (Sec. 4.9). The wave amplitudes at various 
points in the circuit are designated by Vf, V, , V2*, V.J, etc., as shown in Fig. 
6.15. The plus superscript designates the amplitudes of waves propagating 
to the right, while the minus superscript is used for the amplitudes of the 
waves propagating to the left. The wave-amplitude transmission matrices 
for a normalized shunt susceptance jB and a section of transmission line of 
electrical length 8 are 

[A,] = 

We can now write 

B 

B 

B 

>-% 

B 
l~J2 

[A,] = J» (I 

= AA = [A,][A2] 

A u Av, v:' 
" 2 1 A2 2 v; 

= [A!][A2)[A3] vr 

If we choose V, = 0, then V~ = V{ /An; so the transmission coefficient from 
port 1 to port 4 is Tu = Au

x. By multiplying out the matrix product shown 
above, it is readily found that 

7\4 = 
B 2 B2 

T-l 

1+7-^-1 eJ" + - e--'" 
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After some algebra we find that |TM) = 1 provided we choose 

tan 9 = = 
B (6. 

Wlien we use this relationship to replace B / 2 in the expression f 
obtain 

16, 

Tu = ~e*> = e -j(T?-0> 

(6.17, 
Thus the change in phase _when the diodes are switched on i 
(jr - 0) - e = 77 - 2«. For B = 2, 0 = TT/4 and A0 - - / 2 or 9(, 
B = 1, (V = 1.107 rad and A</> = 53.14°. Thus, by choosing B appropriat, 
a wide range of phase shifts can be obtained. 

To a first approximation the diode impedance in the on state is a sm n 
series inductive reactance. This should be included as part of the susce 
tance that is switched into the line. In the off state the diode impedance 
due to the shunt capacitance. Thus the shunt capacitance must be small if 
the phase shifter is to work properly. Since the off-state impedance is not 
always that large, an alternative design that allows some compensation for 
both the on-state and off-state diode impedance can be used. This alternate 
design is shown in Fig. 6.16. In this design two PIN diodes are used to 
open-circuit or short-circuit the tap points P and P' of two stubs that are 
connected in shunt to the main transmission line. The stubs are open-cir
cuited at the remote end if shunt switches are used. 

Since the condition (6.16) for a matched circuit cannot be simultane
ously met for two different susceptances, this last design requires that the 
two susceptances jB, and jB., that load the main line_when the diodes ai 
on and off be small. It is preferable to choose jB., = -jBt so as to maximiz 
the phase difference in the transmission coefficient for the two states. 
spacing the stubs A/4 apart, the reflections from the two stubs almost 
cancel. The stub lengths <7 and tap point distance d, can be chosen s< 
B2 = - B , including the diode reactances in the on and off states. ^ 

When (I = TT/2 the use of wave transmission matrices shows ' 

/ B\2 B2 

r1 4 = 
B 2 

- - / ( 1 + / B ) " 

FIGURE 6.16 
' • > • ' - . . . , A phase shifter using >fe *«!<*«• &. 

spaced A /4 apart. P and P' » ff t 
the CTun when the diod*, ^v* 
respectively. The bias circuit 
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when B « 1. Hence IT,,,!2 = d_+ B2)""' which is close to one. The phase 
angle of Tu is -tr/2 - t a n ' ' B = -jr/2 - B. The changes in_phase be
tween the states when B = B, and - B , is thus 2B, . A value of B, as large 
as 0.2 would not produce a significant mismatch and would result in a 
change in phase \<!> = 0.4 = 22.92° between the two states. This type of 
phase shifter is limited to relatively small phase shifts between states in 
order to keep the input VSWR small. 

A variety of other phase shifter circuits are also possible. A good 
summary of various circuits that have been analyzed and the performance 
that can be obtained can be found in the literature.! 

6.4 DIRECTIONAL C O U P L E R S 

A directional coupler is a four-port microwave junction with the properties 
discussed below. With reference to Fig. 6.17, which is a schematic illustra
tion of a directional coupler, the ideal directional coupler has the property 
that a wave incident in port 1 couples power into ports 2 and 3 but not into 
port 4. Similarly, power incident in port 4 couples into ports 2 and 3 but not 
into port 1. Thus ports 1 and 4 are uncoupled. For waves incident in port 2 
or 3, the power is coupled into ports 1 and 4 only, 80 that ports 2 and 3 are 
also uncoupled. In addition, all four ports are matched. That is. if three 
ports are terminated in matched loads, the fourth port appears terminated 
in a matched load, and an incident wave in this port suffers no reflection. 

Directional couplers are widely used in impedance bridges for mi
crowave measurements and for power monitoring. For example, if" a radar 
transmitter is connected to port 1, the antenna to port 2. a microwave 
crystal detector to port 3. and a matched load to port 4. the power received 
in port 3 is proportional to the power flowing from the transmitter to the 
antenna in the forward direction only. Since the reflected wave from the 
antenna, if it exists, is not coupled into port 3, the detector monitors 
the power output of the transmitter. 

If the coupler is designed for 3-dB coupling, then it splits the input 
power in port 2 into equal powers in ports 2 and 3. Thus a 3-dB directional 
coupler serves as a power divider. Directional couplers with 3-dB coupling 
are also called hybrid junctions and are widely used in microwave mixers 
and as input, and output couplers in balanced microwave amplifier circuits. 
There are many available designs and configurations for directional cou
plers, hybrid junctions, and power dividers. Space limitations will allow us 
to only examine some of these.t 

t l . Bah) and P. Bhartia, "Microwave Solid Slate Circuit Design," -John Wiley & Sons. Inc.. New 
York, 1988. 

K. Chang (ed.), "Handbook of Microwave and Optical Components, Microwave Solid State 
Components,'" vol. 2. John Wiley & Sons, Inc., New York, 1990. 
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FIGURE 6.17 
A directional coupler. Arrows jndi 
rection of power flow. i « „ e t h , 

© 
© r ±=t± •n © 

p, 

FIGURE 6 1 8 

^ rectional coupler. 

Directional couplers using waveguides usually consist of two rectanmi 
lar waveguides with coupling apertures located in a common wall as illus 
trated in Fig. 6.18. Since these devices are required to operate over a band 
of frequencies, it is not possible to obtain ideal performance over the whole 
frequency band. The performance of a directional coupler is measured by 
two parameters, the coupling and the directivity. Let P, be the incident 
power in port 1, and let Pf be the coupled power in the forward direction in 
arm 3. The coupling in decibels is then given by 

Pt 

C = 1 0 l o g - (6.18) 

Ideally, the power Ph coupled in the backward direction in arm 4 should be 
zero. The extent to which this is achieved is measured by the directivity D, 
which is denned as 

D = 10 log - ^ (6.19) 

The directivity is a measure of how well the power can be coupled 
desired direction in the second waveguide. deduced 

A number of properties of the ideal directional coupler may w^ ^ 
from the symmetry and unitary properties of its scattering " i a * r * e d ln fig. 
The least stringent definition of a directional coupler as lllustr 
6.17 is that it is a four-port junction with 

514 - S->3 = 0 
= S 2 2 = 0, that is, ports 1 and 2 matched, and the coupling e^ ^ 

S u , S1 3 , S 2 4 , and S3A are not equal to zero. The scattering ™< 

_ ^ « art" 
tA very good overall survey of types of directional couplers, hybrid ju M i c r o Wave 
dividers can be found in K. Chang. "'Handbook of Microwave ComP0"e",%9o. 
Components and Antennas," vol. 1. John Wiley & Sons. Inc.. New York, 
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the form 

[S} = 

0 0 ( 2 O [3 

S I 2 0 0 

s,, o s,, 
s2, 
s,, 

0 6 . , j o o '24 '-'3-1 '-'4-1 

If we form the product of row 1 with the complex conjugate of row 3, and 
also the product of row 2 with the conjugate of row 4, we obtain 

because of the unitary nature of the scattering matrix. Since S1 3 and S.,4 

are assumed to be nonzero, these equations show that S 3 3 = S4 4 = 0; that 
is, all four ports are matched. Thus the scattering matrix becomes 

[ S ] = 

0 SV2 ^ 1 3 0 
O |2 0 0 S2A 

^ 1 3 0 0 "34 

0 S24 ^ 3 4 0 

(6.20) 

If we take the product of row 1 with the conjugate of row 4, and 
similarly row 2 with the conjugate of row 3, we now find that 

Sl2S2i + Si3S.*4 = 0 S12Sj*3 + S2.1S3., = 0 

If we note that l-S^S^I = |S 1 2 | IS24I, these equations are seen to give 

|S12I|S.24I = | S 1 3 | | S 3 4 | (6.21a) 

IS1 2I |S1 3 | = | S 2 4 | | S 3 4 | (6.216) 

When we divide the first equation by the second equation, we obtain 

' 2 4 1 IS 131 

is,. 
or 

I S I 3 | 10241 

|S13I = |S24I (6.22a) 

thus the coupling between ports 1 and 3 is the same as that between ports 2 
and 4. Use of (6.22a) in (6.21a) also gives 

ISy = IS^I (6.226) 

so that the coupling between ports 1 and 2 equals that between ports 3 and 
4 also. 

The product of the first row with its conjugate equals unity, so that 

| S , 2 | 2 + IS l 3 | 2 = 1 (6.23a) 

similarly, 

ISI2I2 + ISZ4I2 = 1 (6.236) 

By choosing the terminal plane in arm 1 properly, we can adjust the phase 
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angle of S 1 2 so that S , 2 is real [see (4.53)]. Thus let S l 2 be a a 
number C,. Similarly, by choosing the terminal plane in arm 3 n

 P°s'tiv% 
can make S 1 3 a positive imaginary quantity jC2, where C ^0 p e r 'y , we 

positive. We now have z ;>- real aiKj 

C« + C | = 1 
(6.24) 

We can choose the reference plane in arm 4 so as to make S re-1 
equal to C, by virtue of (6.226). It is now necessaiy for S2A\0 fe^ tl 

JC-z since Sl2SSA + SUiS^ = 0, as given earlier. Thus the simplest f o r " ^ 
the scattering matrix of an ideal directional coupler is 

[S] = 

0 c, JC2 0 

c, 0 0 JC2 

jc2 0 0 c, 
0 JC2 c, 0 

(6.25) 

where C2 = (1 - C f ) t / 2 from (6.24). 
It may also be shown from the unitary properties of the scattering 

matrix of a lossless reciprocal four-port junction that if all four ports are 
matched, the device must be a directional coupler.t 

Directional-Coupler Designs 

There are a great variety of ways of constructing directional couplers. Some 
of the more common aperture-coupled types are described below. Their 
design is based on the small-aperture-coupling theory presented in S 
4.13. This theory was originally developed by Bethe.l 

Bethe-Hole Coupler 

The Bethe-hole directional coupler consists of two rectangular wavegu)^ 
coupled by means of a small circular aperture located in the cen e ^ 
common broad wall. To achieve directional coupling, the axis o , t n j j 
guides must be at an angle 6, as illustrated in Fig. 6.19a. A v a " a t J ° " rture 
design consists of a similar arrangement, with 0 = 0, but an o 
as in Fig. 6.196. 4 13- An 

The theory for the coupler in Fig. 6.196 was given in »ec-^ ^ ^ . j 
incident TE1 0 mode in guide 1, with an amplitude A, P r o u C e^o p o I 

electric dipole in the aperture plus a tangential magnetic dipole p^ ^ ti,e 

and in the same direction as the magnetic field of the inciden 

tC. G. Montgomery. R. H. Dicke, and E. M. Pureed. "Principles of Micro*** 
9.JO. McGraw-Hill Book Company. New York, 1948. 

tH . A. Bethe, Theory of Diffraction by Small Holes, Phys. Rev., vol. 66- PP' 
163 - \9i* 
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FIGURE 6.19 
Bethe-hole directional cou
pler. 

upper guide the normal electric dipole and the axial component of the 
magnetic dipole radiate symmetrically in both directions. The transverse 
component of the magnetic dipole radiates antisymmetrically. By varying 
the angle d or the aperture position d, the amplitude of the fields coupled 
into ports 3 and 4 can be controlled. For the directional coupler shown in 
Fig. 6.19 a, the optimum value for the angle 0 is given by 

cosfl = 
2A*0 

(6.26) 

This choice for 8 will minimize the field coupled into port 4. Since the 
coupling is not zero, a perfect directional coupler is not obtained. A detailed 
analysis shows that the coupling and directivity that can be obtained are 
given by t 

C = 20 log -= 
1 

Xcos0 

D = C + 20 log 
2cos0 

1 + cos 0 

(6.27a) 

(6.276) 

where X = 16irr0
l/3afcA/{. 

The directional coupler shown in Fig. 6.19b was analyzed in Sec. 4.13. 
When the spacing d from the side wall is chosen to satisfy the following 

tR. E. Collin, "Field Theory of Guided Waves," 2nd ed., chap. 7, IEEE Press, Piscataway, N.J., 
1991. 
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relat ion: 

sin /6 a (6. 28) 
there will be zero power coupled into port 4. The coupling into port ^ • 

(6.30a) with 1 + X2 replaced by -J\ + Y? and Ax + 4, interchanged with 1 ^ ^ 

Directional-coupler character is t ics a re also obtained by choo • 
satisfy the e q u a t i o n t S l n 8 d u} 

vd 
sin 

9 y/2{K% - a2) (6.29) 

When A0 = / 2 a t h e a p e r t u r e will be located at t he center , t ha t is d = 

rt 3 is minimized and that 
coupling and directivity that can be 

For the above condition t h e field coupled into port 3 is minimized and t( 
coupled in to por t 4 is a maximum. T h e coupl ing and directivity thai . 
achieved a re given by [see (4.139) and (4.140) and let X <= - B] 

C = 20 log 

D = 20 log 

\C\ 

A2+A4, 

A.2 + A4 

1 +X2 

= 20 log —g-

A , +Aa 

= 20 log X - l 

(6.30a) 

(6.306) 

where X = ( 1 6 7 r r o / 3 a 6 A ^ ) s i n 2 ( i r t / / a ) . These formulas apply only at the 
design frequency. 

T h e above r e su l t s a re based on t h e a s sumpt ion t h a t the guide wall in 
which t h e a p e r t u r e is located is infinitely th in . For the normal thickne 
used in a waveguide wall, t he coupling will be 1 to 2 dB smaller. 

Example 6.1. Des ign of a Bethe-hole directional coupler. We 
design a directional coupler based on (6.28) and (6.30a). The wavegui 
dimensions are a = 0.9 in, b = 0.4 in. The center frequency is 9 < 
which 0 = [*§ - (7 r / a ) 2 l , / s = 1.29 rad/cm. From (6.28) we obtain si 
= 3.333/2.286/6 which gives d <= 0.464 cm. Thus the center of the J 
is located at 0.464 cm from the side of the waveguide. We ^ - ^ f f j j f . 
coupler for_30-dB coupling. From (6.30a) this requires that (1 + x 

31.623 or X = 0.03164. The required aperture radius is given by 

3obAgX 
•i 1/3 

= 0.392 cm 

obtoi" 
16TT s in 2 (7 rd /a ) 

This is already a large aperture; so clearly it would be difficu ^ funC,ion< 
coupling of 20 dB. The variation of the coupling and d i r e c t i w t y a s ^ 
frequency can be obtained by using the calculated values to 

tR. E. Collin, loc. cil. 
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I GHz 

FIGURE 6.20 
The coupling and directivity of the JSe! he-hole 
directional coupler as a function of frequency 
for the coupler in Example 6.1. 

H o l e C o u p l e r s 

expressions For A^ + A3 and A., + A4 given by (4.140) and using these in 
(6.30). In Fig. 6.20 we show a plot of coupling C and directivity D as a 
Function oF Frequency, The coupling remains almost constant. II increases 
From 28.46 dB at 8 GHz to 30.96 dB ai 10.5 GHz. The directivity, however, 
drops rapidly as the frequency changes From 9 GHz. From these results we can 
see that the Bethe-hole coupler is a narrowband device. By using a second 
aperture on the opposite side of the center line the amplitudes oF the coupled 
waves are doubled. This will increase the coupling by 6 dB without affecting 
the directivity. Note that increased coupling is measured by a decrease in the 
coupling C when expressed in decibels by (6.18). 

Two-hole couplers consis t of two rec tangula r waveguides coupled by two 
identical ape r tu r e s spaced a q u a r t e r guide wavelength A , / 4 apar t as in Fig. 
6 .21 . T h e a p e r t u r e may, in general , have directive proper t ies , i.e., rad ia te a 
field with different ampl i tudes in t h e forward and reverse direct ions. With a 
wave of u n i t ampl i tude incident at por t 1, let t he field coupled into t h e 
second guide have an ampl i tude B f in t h e forward direction and Bh in t h e 
backward direction. Since B ( and Bh are t h e ampl i tudes of the coupled 
f ields for an incident wave of un i t ampl i tude , they a re called t h e ape r tu re -
coupling coefficients. If only a small a m o u n t of t h e incident power is coupled 
by t h e f irs t ape r tu re , t h e ampl i tude of the incident wave is essential ly uni ty 

® 

© 1 

* * ^ ~B, V ^ " 

e-j0d 

f • 

® 
FIGURE 6.21 
Two-hole directional coupler. 
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at the second aperture also. Thus this aperture couples the san 
power into the second guide. Note, however, that because of th ^ O u , l l 0 f 
in path length, the phase of the field coupled by the second apeM-6 e r e n te 
relative to that coupled by the first aperture. The total forward ««. 
upper guide at the plane bb is 2Bfe 
the plane aa is Bb(l •+ e -2jpd) 

•"'" a n d t h e t o t a r b a c k w a ^ 1 " ^ " u wave i 
Hence, since the forward-path I * 
same, the forward waves Q i . , . „ v J e " ^ 

ys add 
n = 1,3,5 In particular, a value of d = A g /4 will result i 
of the backward wave. The coupling is given by 

C = - 2 0 1 o g 2 | B , | 

and the directivity is given by 

in the two guides are always the same, me iorwara waves 
phase. The backward waves will add out of phase whenever 2flrfUC 

in cancelation 

(6.31Q) 

D = 20 log 

= 20log 

21B (' 
B J I l + e - 2 ' * ' ! 

= 20 log 
\Bf 

Bh\ Icos /3d| 

B, 

Bb 

201og|sec/3d| (6.316) 

The directivity is the sum of the inherent directivity of the single aperture 
plus a directivity associated with the array (in this case a two-element array 
only). Since Bf and Bh are the aperture-coupling parameters and are 
generally slowly varying functions of frequency, the coupling C is not 
particularly frequency-sensitive. However, the directivity is a sensitive func
tion of frequency because of the sensitivity of the array factor sec fid. 

Sehwinger Reversed-Phase Coupler 

The Schwinger reversed-phase coupler is designed to interchange the fre
quency sensitivity of the coupling C and directivity D. This is accomp"^ 
by making one aperture radiate a field which is the negative of that racua 
by the other. With reference to Fig. 6.21, iet the first aperture r a d i a t e ^ d e 

Bf, B„ and the second aperture -Bn -Bh. At plane bb in the " P P ^ r noj 
the total field is now B, ~Bf = 0 under all conditions. Hence port a ^ 
coupled to port 1. At the plane aa the total field is, after accounting 
phase change due to propagation, 

Bb - Bbe-2"'d = e'jlidBb2j sin (id 

Thus the coupling between ports 1 and 4 is . %%) 

C = -20\og2\BhsmPd\ p \s 

and is a maximum for d = Ag /4. For this coupler the ^^ coUpling C 

theoretically infinite and independent of frequency, whereas t ^ fl5 t. 
is quite frequency-sensitive, although not as frequency-se°a

 u„d * 
directivity D given by (6.31*), since sin lid varies more s l o w V . ^ ^ e d* 
than does cos (3d. Actually, in practice, the directivity D is n0 
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FIGURE 6.22 
(a) Schwinger reversed-phase coupler; (6) Moreno crossed-guidc coupler: (c) Riblet T-slot 
coupler. 

in the foregoing discussion, it was assumed that the same incident field was 
present at each aperture, and each aperture radiated the same field into the 
upper guide. Because of interaction effects between the two apertures, the 
assumption of equal-amplitude fields coupled by both apertures is an ap
proximation valid for a small amount of coupling only. 

Figure 6.22a illustrates a typical reversed-phase coupler. The TE,„ 
mode has a zero normal electric field and transverse magnetic field at the 
narrow wall, and hence the coupling to this mode in the upper guide is 
through the induced axial magnetic dipole moment of the aperture only. In 
the lower guide the axial magnetic field of the TE1 0 mode is of opposite sign 
on the two sides of the center, so that induced dipoles M: and -Mz are 
produced. These dipoles radiate symmetrically in both directions, but are 
phase-reversed to obtain the desired reversed-phase directional coupler. 

The other double-aperture-coupled directional couplers in common use 
are the Moreno crossed-guide coupler and the Riblet T-slot coupler, illus
trated in Fig. 6.22 also. Design nomograms for these couplers, as well as for 
the Schwinger reversed-phase coupler, are given in a paper by Anderson.t 

tT. N. Anderson. Directional Coupler Design Nomograms, Microwave J., vol. 2, pp. 34-38, 
May 1959. 
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M u l t i e l e m e n t C o u p l e r s 

To achieve good directivity over a band of frequencies, cour>le 
apertures may be used. The theory and design of such counl 
those given for multisection quarter-wave transformers in Ch ^ '3ara"el 
6.2.3 illustrates an N + 1 element coupler with all aperture 
to d. If we assume that the total power coupled is relatively sm- l l " 1 ^ ^ " ^ 
with the incident power, the incident wave can be conside ,C°mi>ared. 
essentially the same amplitude A at each coupling aperture ana r 
additional phase change. Let the apertures having coupling coeffic"» 
n ~ 0,1,2,..., N, in the forward direction, and Dn, n = o, 1 2 1 
the reverse direction. At the position of the Nth aperture the total V ' 
wave in the upper guide is 

N 

Br = Ae-*NdZ C„ 
71=0 

(6.33) 

At the plane of the first aperture, the total backward wave has an amplitude 

Bb = AZ Dne-><*"« 
n =0 

The coupling and directivity are given by 

C = - 2 0 log 
iV 

L c„ 
71 = 0 

D = - 20 log 
i I ^ 0 D „ e - " J 2 « " | 

= - C - 20log 
N 

L Dn 
71 = 0 

,-jfiind 

(6.34) 

(6.35a) 

(6.356) 

In a multiaperture directional coupler the required coupling from ef 
aperture is small so the aperture radii are then also small. The correspoi 
ing aperture susceptance B and reactance X are then also small. T h u t _ . 
amplitudes of the waves coupled in the direction of ports 3 and 4 n 
6.23, which are given by (4.140), can be approximated by 

IB X\ 
Ax+A3=j - + - A 

A2 + A 4 =j 

2 / 

B X\ 
A 

2 2 

D0A C0A D,A C,A DUA CNA 

_V_ 

FIGURE 6.23 
A multielement directional coupler. 
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In terms of the notation being used in this section, we can thus write 

B +X 
C„ =j 

D„ =J 

2 

B - X 

(6.36a) 

(6.366) 

By using these expressions we obtain the advantage that for fixed aperture 
offsets both C„ and Dti are constants multiplied by the radius r„ cubed for 
the nth aperture. Hence we can express C„ and D„ in the form 

C„ = Tfr* = Tfd„ 

D„ = 7V.? = Thd b' n b"„ 

(6.37a) 

(6.376) 

where d„ = r,f. Both Tf and Th depend on the frequency. 
We can now express the directivity D in the form 

D = -C - 2 0 1 o g | T J - 20log 

and express C as 

C = - 2 0 1 o g l 7 > | - 20 log 

N 

L dne 
' i = 0 

- j2ffnd 

Z d„ 
r. II 

(6.38a) 

(6.386) 

In the expression for D the term 20 log \Tf/Tb\ gives the intrinsic directivity 
of a single aperture. This directivity is usually small except possibly at the 
design frequency. Thus, if we are to achieve a broadband design, we must 
design the array factor 

F = 
;Y 

E drie j'ltJTIlJ 

ra-0 

(6.39) 

to give a high directivity over the frequency band of interest. 
In order to obtain an equal-ripple characteristic in the passband, the 

array factor F is made proportional to a Chebyshev polynomial. If we 
choose a symmetrical arrav. with dv = d v, d, = d v _ , , etc., we obtain [Eq. 
(5.56)] 

F = 
M 

L 2d„ cos(7V - 2n)pd 
n n 

(6.40) 

where M = {N - l ) / 2 for N odd and N/2 for N even. Note that for N odd 
there are an even number of apertures, since the first aperture has been 
labeled the zeroth aperture. In (6.40) the Mth term is dM for N even and 
2d M cos(N - 2M)(id for N odd. To obtain a Chebyshev-type response, we 
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now choose 

F = 
M 

£ 2dncos{N - 2n)8 
7 1 - 0 

- K\TN(secdmcos8)\ 
(6.41) 

as in (5.68). In this equation 8 = (id and sec 8m is the value of ser OJ 
upper and lower edges of the passband. At the center of th at ^ 
8 = TT/2, corresponding to a spacing d = \/,/4. The constant K" l s

P ^ S b a a d -
give the desired value of coupling C in the center of the ha J °S e n u' 
8 = TT/2. Thus we obtain d' w h » e 

C = -201og |7y | 
N 

n = 0 

(6.42) = -201ogK\Tf\\TN(sec8m)\ 

since E *< «U = K\TN(sec 8„, )| from (6.41). J 
If we use (6.38a), (6.41), and (6.42), the expression for directivity mav 

be written as 

D = 20[log K\TfTN(sec 8m )\ - log \Tb\ - log tf|T„(sec 8m cos 8)\] 

= 20 log log 
TjV(sec0„ 

TN($ee8m cos 8) 
(6.43) 

Since Tf/Tb is a function of frequency, D will not have a Chebyshev-type 
behavior. However, the departure from a t rue Chebyshev behavior will 
usually be small since Tf/Th gives very little directivity, except perhaps near 
the center of the band. For a conservative design we choose the minimum 
value of D on the basis that Tf/Tb contributes negligible directivity. 
Certainly, for a broadband design, this will be the case at the edges of tl 
passband. The minimum value Dm of'directivity in the passband as a 
tributed by the array factor F occurs when 

Tv(secfl„,cos0) = 1 

Hence let D,„ be defined as 

D,„ = 2OlogirA r(sec0m)l 

This equation shows that if we specify Dm, then sec 8„, is 

(6.44) 

fixed, which in 
in is equation snows tnat 11 we specny um, tnen &e<- u„, .~ .\ sj) or 
turn fixes the bandwidth, and vice versa. Thus we must specify e i t o t * R 
sec 8m, and the other is fixed. We may then solve (6.42) for the con^ ^ 
in terms of the given value of the coupling C at the center 
From (6.41) the coefficients d„ are found. hole 

l \X3AU tne coemcients a„ are iounu. three-'1" 
We will outline the procedure by considering the design ot a^ ^ ^ 

Chebyshev directional coupler utilizing offset circular apertu ^ ^ pig. 
common broad wall between two rectangular waveguides as s .fln wit 
6.23. For the n th aperture the field coupled in the forwardI air « feverSt 
A = 1, is C„ where C„ is given by (6.36a). The field coupled m 

file:///X3AU
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direction is given by Dn in (6.36/)). By using (4.139) we get 

C„ = 

o„ = 

2/e2 
JTX 0 77 

sin2 + . / — 0sin^ + 77^ cos2 

3/3a6 a 3ao \ a /3a" 

~Xn 

'J 
2/e2 

3/3 a6 
s in -

~ * r 77' 

" • 'TZ I P s i"2 ~~~ ~ 7TI cos2 
3a6 1 a /3a~ 

1TX, 

(6.45a) 

(6.456) 

We have used x0 for the aperture position so as not to confuse this with the 
aperture spacing d. The factors multiplying r,f are Tf and Th, respectively, 
and x0 is the aperture offset measured from the waveguide side wall. 

For a three-hole coupler, 

TN(sec e,„ cos 6) - T2( sec 6„, cos 6) = 2 sec2 Q,„ cos2 0 - 1 

From a specification of D,„, we can solve for dm using 

D,„ = 20 log 17^ (sec 0m) | 

which for n = 2 gives 

sec H,„ = 
(10 < D,„ / 20 ) + 1) 

1/2 

/2 

In general we can let sec 0ra = cosh </> and use ^ . (cosh <j>) = cosh Afy>; thus 

cosh N<f> = 10(£,'"/20» = y (6.46a) 

</> = — cosh^1(10<"•" /20 ,) = T7ln(.V + \/y2 - ! ) (6.466) 

1 

N 

Q„, = cos 
cosh <!> 

(6.46c) 

There will be two solutions for 6>„,, one less than 77/2 and one greater than 
77/2. These two values determine the values of fid = 6m at the lower and 
upper edges of the passband. 

When 8m has been found, then if we specify the desired coupling 
C = C0 at the center of the band we must have, from (6.42) with 0 = 77/2, 
C0 = - 2 0 log K\Tf\ ITysec 0m)| or 

J Q I - C O / 2 0 ) 1 Q ( - C „ / 2 0 . 

K = 7 ^ 7 7 7 ^ 7—7 = n ~n. (6-47) 
\TA\TN(seC0m)\ \Tr\lO

,D-/20> 

where \Tf\ is found from (6.45a) at the center of the band where fid = TT/2. 
After we have found the constant K, we express TN(secOmcosO) as a 
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Four i e r series. Fo r N = 2 we have 

T,( sec em cos 6) = sec 2 0,„ cos 20 + sec 2 Bm - i 

F r o m (6.41) we can t h e n de t e rmine the d,.. Fo r our specific p 
c a s e w e 

2 d 0 cos 2fld = 2d0 cos 20 = K sec 2 Bm cos 20 

d , = K ( s e c 2 0 m - 1 ) 

T h u s dQ = d2 = ( X / 2 ) s e c 2 0 m . S ince d„ = r„3 we get 

K 
r0 = *v = | — secz fl 

1/3 

1/3 
r , = ( i ? s e c 2 0 m - i f ) 

This completes the design of t h e direct ional coupler. T h e coupling and 
directivity as a function of frequency can be evaluated us ing (6.42) a 
(6.43) and requires t h e evaluat ion of T(, Tb, and 7 \ - (sec0 m cos0) at each 
frequency of in teres t . T h e following numer ica l example il lustrates the per
formance t h a t can be achieved. 

E x a m p l e 6.2 Three -Hole Chebyshev d i rec t iona l -couple r design. A 
three-hole directional coupler with a coupling of 20 dB and a minimum array 
factor directivity of 30 dB will be designed. The waveguide dimensions are 
a = 0.9 in, b = 0.4 in. The design frequency is 9 GHz. At 9 GHz the waveguide 
TE„, propagation constant is 

0 = 0„ = •«-er 1/2 

= 1.29 rad/cm 

Thus the aperture spacing <i is ~/2(i = 1.218 cm. By using (6.46) we obta 

<b = ̂ assb~I(101 ') = 2.07338 

and om = 1.3206 and TT - 1.3206 = 1.821. 
The values of /3 at the lower and upper 

(2fl„,/7r)0o or 1.0845 and 1.4954. The corres 

. band edges are given 
ponding values of *o 

(1.08452 + T T V O 2 ) 1 ' 2 = 1.7506 and (1.49542 + T r ' / a 2 ) " 2 - 2.03097. Fron^o 
we obtain the frequencies at the band edges and these are 8.358 
GHz. The fractional bandwidth is \f'/fu = 0.149. 

The next step is the evaluation of" K using (6.47). The P a r a m 5 !
G . 

the magnitude of the coefficient of rf, in (6.45a) at the f r e ^ u e " ° | 3 p 7 a 

will choose an aperture offset given by (6.28), that is, x(l = • jjjy found 
then find that K = 6.0244 x 10 ~3. The aperture radii are now r 
and are r0 = r2 = 0.3663 cm and r, = 0.4518 cm. . 3 g , in f 

The coupling and directivity at any frequency is given by -^ j ^ h e 
6.24 we show the overall performance of the directional coupled ^ u 

tal 

curve shows the directivity contributed by the array 
directivity is greater because we chose the aperture offset sue ^^. u 

p The factor t. ^ = 
that 7*! 

9 GHz; thus the aperture directivity contributes in a sign 
ificant 
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/GHz 

FIGURE 6.24 
Performance of a three-hole Chebyshev direc
tional coupler with C = 20 dB and Dm = 30 
dI5. The dashed curve shows the directivity con
tributed by the array factor and is never less 
than 30 dB in the passband between 8.358 and 
9.697 GHz. 

overall directivity. If we used a second set of apertures spaced a distance x0 

from the opposite side wall, the coupling would be increased by 6 dB without 
changing the directivity. We could thus obtain a nominal coupling of 14 dB 
over the frequency band. 

Coupled-Line D i r e c t i o n a l C o u p l e r s 

Aperture-type directional couplers are not suitable for microstrip or strip-line 
construction. For planar-transmission-line structures, coupled transmission 
lines are frequently used for building directional couplers. In Fig. 6.25 we 
illustrate a microstrip directional coupler that involves two coupled mi
crostrip lines. In practice, the printed circuit board would be housed in a 
shielded box and coaxial-transmission-line connectors would be bonded to 
each microstrip line. The analysis of the coupled-line directional coupler is 
readily carried out by taking advantage of the fourfold symmetry of the 

FIGURE 6.25 
A microstrip coupled-line directional coupler. 
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structure. We can choose excitations so that the symmetry plan 
sponds to an electric wall (short circuit) or a magnetic wall (n QQ c 

and also so that the symmetry plane bb corresponds to an elect ° <"'rcu'U 
magnetic wall. When bb corresponds to an electric wall th W a " 0 r a 
propagation on the coupled line is the odd mode which has a ch ^^ of 
impedance Zu and propagation constant 0„. When 66 corresoo 
magnetic wall, the mode of propagation is the even mode wh' h ^ a 

characteristic impedance Z,. and propagation constant /3.. The DP : 

constants are different because the effective dielectric constants for t ^ ' 
modes are different. 

We will consider the following four different excitations: 

la) v+=v.;=v.;=v4>=v^ 

This case corresponds to both symmetry planes aa and 66 being magnet' 
walls. For this case we only need to analyze the equivalent circuit of 
one-quarter of the structure as shown in Fig. 6.26a. 

(b) v:= v:= v* v.t=v.:= -v4 

For this case the plane aa is an electric wall and the plane 66 is a magnetic 
wall. The equivalent circuit is shown in Fig. 6.266. 

(c) v- = -y+= v* v+= -v;=v+ 

--d -| 

" ^ ^ ^ 
r f lvO & zs 

oc 

(a) (b) 

(c) 

OC 

(rf) 

)lan** 
FIGURE 6.26 w h e n ,« • the P » 
Equivalent circuit for one-quarter of the coupled-line directional couple ^ ,,-r i. 
aa and 66 are magnetic walls, (61 aa is an electric wall and 66 is a magn 
magnetic wall and 66 is an electric wall, (d) aa and 66 are both electric 
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For this case the plane aa is a magnetic wail and the plane bb is an electric 
wall. The equivalent circuit for this case is shown in Fig. 6.26c. 

(d) v+~-Vf=V |£= ~ i £ - ~ y + 
For this case both symmetry planes correspond to electric walls and the 
equivalent circuit is that shown in Fig. 6.26d. 

For case (a.) it is readily seen from the equivalent circuit in Fig. 6.26c 
that 

Zm = -jZe cot j3ed 

=
 Z-n ~ Z. -jZcCOtlied~Zc 

a Zm+Z(.
 =" -JZecotM+Z, 

where Z,. is the characteristic impedance of the input microstrip line. Fron 
symmetry considerations we have 

Vf=r„v v2 = r 0 v v3 = r„v* v4-= r„v 
for this case. For case (6.) we have 

jZe tan Brf - Z,. 

* • - * - * - '•" = j Z . ^ A + z , 

and 

v,-= r,v+ v2-= -r^ v3-= -vty v, = vy 
For case (c) we have 

Z,n= -JZ0 COt fij 
-JZ„ cot fi„d-Zc 

~jZ„ cot p„d + Zc 

vr- = rev* v.; = rrv - y3- = - rr v+ v, = - J ; v -
For the last case, namely case (d), we have 

Zm-jZ0 tan ftnd I r f - J Z o t a n M + Z r 

*T = C»r y,- = - rrfv* v3- = r,v • K, = - r„v' 
We now superimpose these four solutions. The superposition of th 

four incident waves at each port gives Vj* = 4V", V," = V£ = Y?=* 0. Tht 
only port 1 is excited. The superposition of the reflected waves gives 

v r - (>; + h + rc + \;,)V+= i( ra + r„ + re + r,)v? (6.48a 
Va-fcr.-it + r.-r^vr (6.48* 
v r = 7 ( r 0 - r 6 - r , . + rd)Vf ( 6 4 8 ( 

^ - i O i + iv-r.-rjvz (6.48a 
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With some algebraic steps it is easy to show that 

2(ZX-ZeZ0to) 
r„ + r, jZ,.[Zt.~ZntJu)~Z2

cte-ZeZ0tn 

where t„ = tan 0 o d and *,, = tan /3fd. We also readily find that 

r + r = 2(zc^-zez„f,) 
" JZr(Zo-ZttJo)-ZX-Zj£ (6.496, 

For the ideal directional coupler, the two propagation constants sho irt 
equal, that is, (i„ = pr = 0, in which case te = /„. For a coupled-line cL 1 
using strip-line construction, we have 0,. = £„. For a microstrip coupler). 
coupler, we can approach this ideal situation by placing a dielectric h" 
made from the substrate material on top of the conducting strips f Th 
surrounds the conductors with dielectric and will make the propagate 
constants equal to thai for TEM waves in the solid dielectric. The use of a 
dielectric overlay will change the even- and odd-mode characteristic 
impedances but they will remain different. When r„ = tn we see from (6.49) 
that, provided we choose the line dimensions to make 

zz, = zl (6.50) 

1", + l'j =* 0 and [',, + l\. = 0. An examination of (6.48) now shows that 
V, = 0 and V3 = 0. Thus there is no reflection in port 1 and no power 
coupled into port 3 at any frequency. Thus the four-port junction is a 
directional coupler. When te = t„ = t and we make ZeZu = Z ; , then we also 
have ru + l'A - I',. - Yd = 2 ( | ; + Vh). The latter is given by 

2(ZC
2 - Zpt 

{Ta + Tb)~! jzcze(i-t*)-(z? + z?)t 
This expression can be reduced to the following form: 

- 2( Z(-Zn) sin 2fid 
l'„ + W = 

j2Zt cos2 fid ~{Zt + Z„)wx2 fid 

The transmission coefficient into port 4 is £(ra + TA) and is the scat 

matrix parameter S.u = S,.,; thus 

Z — Z St^isin2pd (6-si) 
S 4 l = 2Z„ 

z„ + z, 
cos 2 fid + j sin 2fid 

tM. Horno and F. Medina, Multilayer Planar Structures for High-D1"* 
Coupler Design, IEEE Trans., vol. MTT-34, pp. 1442-1449, 1986. 
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Coaxial-line 
connector 

FIGURE 6.27 
A strip-liiie coupled-line directional couplei 

The parameter (Ze - Z„)/(Ze + ZJ is the voltage-coupling parameter c 
For this coupler the coupling is given by (note that 2c? = I) 

C = 20 log 

= 20 log 

[(1 - c2)cos2/3/ + s in -p / ] 

C sin fil 

[ l - c 2 c o s 2 / J ? ] 1 / 2 

c sin jil 

i '•> 

(6.52 

The maximum coupling occurs when 2fid = pi = TT/2 which corresponds U 
a coupled-line one-quarter wavelength long. The maximum coupling i; 
201og(l/c). In a microstrip coupled line it is not practical to obtain a rati< 
of Ze/Za greater than 2; so the maximum coupling is limited to a value o 
9.5 dB or perhaps up to 8 dB with careful design. By using broadsidi 
coupled strips in a strip-line configuration as shown in Fig. 6.27, a couplinj 
of 3 dB is readily achieved. Figure 6.28 shows a plot of |S 4 1 | as a function o 
2fid = fil for a coupled-line directional coupler. 

The directivity of this type of coupler is given by V^/V-J and is infinit 
since V3~ is zero at all frequencies. 

FIGURE 6.28 
' The variation of |S4,I as a function of pi for 

coupled-line directional coupler. 
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The transmission coefficient into port 2 is given by 

S2i -
vT^T* 

V1 - c2 cos /3/ +j sin pi (6.5gj 

The symmetry of the structure requires Su = S2 2 = S3;i = S = n o 
" 2 1 = " 3 4 = "43> "14 = "41 = " 2 3 = " 3 2 ' a n c » ^ 1 3 = S24 = S3 , = g 
Thus all scattering-matrix parameters are known. If the propagatin' 
stants are not equal we can still use the coupled-line structm-
directional coupler, but it will not have infinite directivity. The ^i 3 

performance can be improved for the case (ie =t (i0 by adding a small -h 
capacitor between the two coupled lines at the input and output t TK 
bandwidth can be increased by using several sections in cascade. 

B r a n c h - L i n e D i r e c t i o n a l C o u p l e r 

The branch-line directional coupler shown in Fig. 6.29 is readily fabricated 
using microstrip construction and can be designed for 3-dB coupling with
out any difficulty. The analysis of this coupler is also readily carried out 
using the fourfold symmetry that is inherent in the structure. With proper 
excitation the symmetry planes aa and 66 can be made to correspond to 
either electric or magnetic walls. If excitations are chosen the same as for 
cases (a) to (d) in the coupled-line coupler, then the equivalent circuits for 
the four excitations are those shown in Figs. 6.30a to d. From these 
equivalent circuits we readily obtain 

m Yr ~jYltl -jY2t2 ( 6 5 4 Q | 

° Yr+jY,tl+jY2t2 

YA +JYi -JY2tih (6.546> 

YJi -JYi +JY2tit2 

Y,.t2-jY,tlt2+jY2 ( 6 5 4 c) 

Yrt2+jY1t1t2-jY2 

Yctlt2+jYlt2+jY2tl (6.54rfl 

Yct1t2-jY1t2-jY2tl 

A Y ]' where tx = tan 0, = t an^ j t / , and t2 = tan 82 = tant p2d2 and ^ J t b e 

are the characteristic admittance of the input line, the through lme. 

h = 

r..= 

r„ = 

f I. Bahl and P. Bhartia, "Microwave Solid State Circuit Design," John Wiley 
York, 1988. 
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©C 

©c= 

y. d ' 
H 

' ' — • — , 

. ' —7— 1 

! 
i i 

1 
FIGURE 6.29 
A branch-line directional coupler. 

OC 

V, 0 , OC 
FIGURE 6.30 
The equivalent circuit for one 
quarter section when (a) aa 
and bb are magnetic walls, 
(6) aa is an electric wall and 
66 is a magnetic wall, (c) aa 
is a magnetic wall and bb is 
an electric wall, id) aa and 
66 are both electric walls. 

branch line as shown in Fig.6.29. The relations (6.48) apply to the branch-
line coupler also; so we have 

s» = <i(ra + i; + rc + rj (6.55a) 

s12 = s2I = icr . - rft + rc - r4) (6.556) 
s1 3 = s31 = i ( r a - r 6 - rc + r(/) (6.550 

5, , = s.u = H ra + r„ - re - r„) (6.55*0 
If we choose «, = «2 = 1 so that the through lines and branch lines are 
one-quarter wavelength lines and also choose K,2 - Kf = Y*, then we find 
that S„ = S 2 2 = S33 = S44 = 0, Su = 0, S3 1 = i ( r o - i;.) and S z r = 
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i ( r a + T,.). These latter expressions give 

c 11 
°31 —

 v 

S-zt = -Jxf 

(6.56 a) 

Yi (8.566, 

for tx = 12 = 1. A 3-dB coupler is obtained if we choose Y - y 
7, = \/2 Yc, a condition that is easily satisfied. A 3-dB directional 
with the two outputs 90° out of phase is also called a 90° hybrid iu

C°U?ier 

The coupling and directivity at any frequency are given by 

C = 20 log—— = 20 log 
l«»l 
^ 3 1 

«« 
D = 20 log - — = 20 log 

i; + rrf - r6 - g 
r„ + rd - rb - r, 
r„ + n, - r 

( 6 . 5 7 Q , 

(6.576) 

The branch-line directional coupler is a relatively narrowband device 
However, by cascading several sections a broadband coupler can be obtained 
by appropriate choices for Yl and Y2 for each section. Design formulas are 
available in the literature.t 

Lange Direct ional Coupler^: 

The last directional coupler that we will discuss is the Lange coupler shown 
in Fig. 6.31 This coupler uses several coupled lines in order to obtain larger 
coupling than what is possible in the simpler coupled-line coupler discuss 
earlier. The design of the coupler is such that wire connections betwee 
some of the lines are needed as shown in Fig. 6.31. This is the ma 
shortcoming of the Lange coupler since such wire connections are 
readily made in an MMIC circuit. The outstanding features of the 
coupler are its compact size and very broadband characteristics. 
coupler is often used as an input coupler in balanced microwave 
circuits. For this application it is designed as a 3-dB coupler and the o ^ ^ 
signals are in phase quadrature, so that it is a 90° hybrid junction^ ^ 
design formulas for a Lange coupler have been developed by " r e -

, y 
tG. L. Matthaei, L. Young, and E. M. T. Jones. "Microwave Filters, I r o P ^ 
Networks and Coupling Structures," Artech House Books, Dedham, Mass., 

±.J. Lange, Interdigitated Stripline Quadrature Hybrid, IEEE Trans., 

1150-1151. December, 1969. r r r ' 6 PP 8 0 ,~ 
§A. Presser, Interdigitated Microstrip Coupler Design, IEEE Trans., vol. N 
October, 1978. 
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1 

(A)\ 1 !=J j 
FIGURE 6.31 
Tlit' Lange directional coupler. 

6.5 H Y B R I D JUNCTIONS 

Magic T 

A waveguide hybrid junction, known as a magic T, is illustrated in Fig. 6.32. 
When a TE10 mode is incident in port 1, the electric field within the junction 
is like that sketched in Fig. 6.326. This electric field has even symmetry 
about the midplane and hence cannot excite the TE1U mode in arm 4 since 
this mode must have an electric field with odd symmetry (shown dashed in 
Fig. 6.326). Thus there is no coupling between ports 1 and 4. The coupling 
between ports 1 and 2, and 1 and 3, is clearly the same, as may be seen from 
the symmetry involved. 

For a TE1 0 mode incident in arm 4. the electric field within the 
junction is sketched in Fig. 6.32c. Symmetry again shows that there is no 
coupling into port 1 (this is required by reciprocity as well). The coupling 
from port 4 into ports 2 and 3 is equal in magnitude but 180" out of phase. 
The scattering matrix of this hybrid T thus has the form 

[S] = 
s„ ^ 1 2 s12 

0 

^ 1 2 • ^ 2 2 s** •S'24 

•^ 12 £ 2 3 §33 - s 2 4 
0 ^ 2 4 - s 2 4 S44 

since S,3 = S13 , So,, = -S34, from symmetry. 
Matching elements that do not destroy the symmetry of the junction 

may be placed in the E-plane and //-plane arms so as to make S, , = S44 = 0. 
For a lossless structure we may then show that the unitary properties of the 
scattering matrix require that S.J2 = S, ; i = 0, so that all ports are matched. 
In addition, S 2 3 = 0; so ports 2 and 3 as well as ports 1 and 4 are uncoupled. 
The hybrid T now becomes a directional coupler with 3-dB coupling, and is 
often called a magic T, even though there is nothing magic about its 
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lb) 

^&n 
t -plane arm 

3 2 •3C 
U) 

FIGURE 6.32 
<a> Hybrid-T junction; ( M d f c 

trie field pattern for wave b 
5 d e n l in P°r' 1; <c) electric field 

pattern for wave incident g 
port 4. 

operation. The magic T is commonly used in waveguide balanced mixers and 
in bridge networks. 

With S'n = S4 4 = 0, the scattering matrix becomes 

[ S ] = 

0 s 1 2 ^ 1 2 0 

SVz S22 ^ 2 3 *^24 

Sl2 ^ 2 3 S33 — *^24 

0 s,A -s. 24 ' 2 4 

The product of the second row with its conjugate gives 

I S , / + I S , / + | S 2 / + \SMf = 1 

and the similar expression for row 3 is 

\Sis s , / + i s 3 / + is '2-11 
= 1 

If we subtract these two equations, we obtain 

i s 2 / - i s 3 / = 0 

so |S 2 2! = |S 3 3 | . From rows 1 and 4 we have 

21S 121 = 1 

2 1 S 2 / = 1 

or 

or 

IS1 2I= 2 

IS, J = 

2 

ft 

(6.58a) 

(6.586) 

(6.58c) 
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and thus 

ft 
|S12I - IS24I - -z~ (6.59) 

Use of this relation in (6.58a) gives 

1 + \S2.f + IS.J1 = I 

or ISwi + IS23I2 = 0. This sum can equal zero only if both STZ and S™ 
vanish. From the relation (6.58) it follows that .S*:(:t equals zero also. 

The reduced form of the scattering matrix becomes 

[ * ] -

0 S 12 s 12 

8U 0 0 
SIa 0 0 
0 s24 - * « 

0 

St 
11 

24 

By proper choice of terminal planes in arms 1 and 4, we can make both SVi 

and S2., real. Thus the scattering matrix of a magic T can be exhibited in 
the form 

ft 

upon using the relations (6.59). 

0 1 1 0 
I 0 0 1 
1 0 0 - 1 
0 I - 1 0 

16.60) 

The branch-line coupler designed for 3-dB coupling is a 90° hybrid junction. 
The magic T is a 0C or 180° hybrid junction since the two outputs are in 
phase if port 1 is the input port and are 180" out of phase if port 3 is the 
input port. A 180" hybrid junction that is readily made using microstrip 
construction is shown in Fig. 6.33. To understand its operation, consider a 
wave incident in port 1. This wave splits equally into two waves traveling 
around the ring circuit in opposite directions. The two waves will arrive in 
phase at ports 2 and 4 and out of phase at port 3. Thus ports 1 and 3 are 
uncoupled. Similarly, ports 2 and 4 are uncoupled since the two paths 
coupling these ports differ in length by A/2. 

A quantitative analysis of the hybrid ring is readily carried out. Each 
input line has a characteristic impedance Z, and the ring has a characteris
tic impedance Z,. We will let 0, be the electrical length of the ring between 
ports 1 and 2, 2 and 3 and 3 and 4, while 0., = 3ft, represents the electrical 
length of the ring between ports 1 and 4. We can choose excitations such 
that the symmetry plane aa is either an electric wall or a magnetic wall. 
This will allow us to characterize one-half of the structure in terms of 
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FIGURE 6.33 
The hybrid ring (•• rat-race"), 

scattering matrices for a two-port junction, ports 1 and 2. From the 
symmetry properties the complete four-port scattering matrix can be con
structed. 

Let ports 1 and 2 have incident waves Vu~ and V6
T. Also let ports 4 and 

3 have incident waves V* and VA
+, respectively. For this symmetrica) 

excitation the electric field must be a maximum on the symmetry plane aa 
and the magnetic field must be zero. Thus aa can be replaced by a magnetic 
wall, i.e., the ring is open circuited on the plane aa. The equivalent circuit 
of half of the structure is shown in Fig. 6.34a. It consists of two input lines 
with characteristic impedance Z,. and an interconnecting line of electric 
length (V, and characteristic impedance Zv The input port 1 is shunted bi 
susceptance jB, = jY, t a n 3 0 2 / 2 due to the open-circuited section of tl 

v; 
YC ye. 

©• 

JB2 Yc 
v: 

v; 
IB, )B2 

FIGURE 6.34 one-b 
( a> E q u i v a l e n t ^ J , * 
of hybrid ring for 0 P « n

| B n e 

d i t i o n s o n t h e s v m " ^ - ^ 
equivalent circuit J ^ ^ p ^ J J 

t p r s for one-half of i w o - c i " ' =-— , 
ters for one-hall 
structure. 
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hybrid ring having an electrical length 30l/2. The output port 2 is shunted 
by a susceptance jB2 =jYl tan 0 , / 2 due to the open-circuited section of the 
ring of electrical length 0 , /2 . We will let the two-port scattering-matrix 
parameters under open-circuit conditions on the plane aa be Sfj. Thus we 
can write 

(6.61a) 
vr sn c o c l 

v: 
^ 

Coc 
°2] 

QOC 
° 2 2 ys 

derations 

^ 4 
C I K ' 1 

°12 \v<; 
n C M 

°2I S-22 v? 
(6.616) 

since port 4 is similar to port 1 and port 3 is similar to port 2. 
Let us now change the incident waves at ports 4 and 3 to - V£ and 

— V^. We now have an antisymmetrical excitation and the symmetry plane 
is an electric wall or short circuit. For this case the equivalent circuit is the 
same as that in Fig. 6.34a, except that the shunting susceptances are due to 
short-circuited transmission-line sections, so jBl is replaced by jB.d = 
-jYl co t30! /2 and jB., is replaced by jB4 = - . /T, cot 0 , / 2 . For this case 
we will designate the two-port scattering-matrix parameters under short-
circuit conditions on the plane aa by &f$. For this odd excitation we can 
write 

v., 

and 
Ssc 

21 

Ssc 
12 

•3 22 

12 

s. 22 

-v; 
-vs 

[6.62a) 

(6.626) 

Let us now superimpose the two solutions which then gives Vf= 2V„', 
V£ = 2V£, VQ — V£= 0. The superposition of the scattered waves gives 

K] 1 

. V " 2 

[V4~1 1 

. V ~ 2 

SBC i O B? 8£ + S% '2:'. 22 

St>c O s c 
12 ~ ° 1 2 

C* UC Q Sc 

°22 °22 v; QOC _ esc 
°21 °21 

From these equations we can identify the following eight four-port scatter
ing-matrix elements: 

(6.63a) 

(6.636) 

&u - | ( S n + S,"J) 

$21 = s(S2] + Sfj) 
Q _ 1 / Q O C _ Q S C \ 

°ai — 2\ °2i °8iJ 

41 _ 2V ° 1 1 ^ I I ) 

From symmetry considerations SM = S u , S3 3 = S2 a , o3 

S;2 _ a( ^ i2 + S,s
2) 

S22 = a{Sa2 + S ^ ) 

S32 = s( ^22 ~ Sat) 
1 / O u t C s c \ 

42 - 2 V 0 12 ° 1 2 ) 

S « = S™. The re-
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maining five elements follow from reciprocity, namely, S, =5 T, 
four-port hybrid can be characterized in terms of two'"'sets "'of ' 
scattering-matrix parameters. °"Port 

In order to obtain the two-port scattering-matrix paramete 
the circuit shown in Fig. 6.346. We assume incident and scattered' COns"kr 
exist at ports 1 and 2. On the interconnecting line we assume the W 3 V e s **> 
of a forward and backward propagating voltage wave given by 

y+e-&* + y-em 

with associated current waves 

V+Yte~m - V~Yxe^z 

The continuity of the voltage at ports 1 and 2 gives 

VY + v r =v- + v- ( 6 6 4 Q ) 

v$+^=v+e-J*> + v-e* (6646) 

The continuity of the current at each port gives 

(V,- - V-)YC = ( V + - V )7 , + (V++ V{)jBl (6.64c) 

( V + e ~ ^ - W - J Y , = - ( V 2
+ - V2 )Yc + (V;+ V2)jB2 (6.64rf) 

We can solve the first two equations for V" and V". We then substitute 
these solutions into the last two equations and solve for Vf and V2~ in 
terms of Vf and V2. This will give us the two-port parameters S*. After 
carrying out the algebra, we obtain 

Su = j[Y* ~ Yi + B i f i 2 - Yi( Si + B2)cot Bx + jYc(B2 - BJ] (6.65a) 

« - * » « . » 2 - , T ' Y l C S C ^ (6-656) 

co, _ ™ . *JX(B,-B,) (6.650 

where A = 7C
2 - B , B 2 + Y,( Bj + B2)cot 0, + 7* 

+ yT r (B , + B 2 - 2 7 i c o t 0 ! ) 

30, 0i 
B, = 7, t a n — - B2 = 7, tan — 

„, obtained W 
The short-circuit two-port scattering-matrix parameters are 
replacing B, by B 3 = - 7 , cot(30,/2) and B 2 by B 4 = -Y i * l^ . * £ 

At the center of the frequency band of interest, we en°° h e s e con* 
for which B, = - Y „ B2 = Yu B3 = 7, , and B, = - 7 , . For^ ^ »* 
tions the expressions for the scattering-matrix parameters si 
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readily find that 

Y2 - 2Yj2 + 2jY,Yi 

» n - Y
2 + 2Y2 = S 22 

Soc _ 
22 _ 

y;2 - 2Yf - 2jYrYl 

SCK: _ osc 
I I - 3 | » -' « 

Y2 + 2Y2 

y£
2 + 2Fja 

= S? 

From these expressions we get 

" a ~ Sjn S3:, S44 -
yr

2 - 27,2 

YC
2 + 2Y;2 

S : i l = S4 2 = 0 

-2iy,T, 
S i 2 ~ -S34 - - S 4 1 = S 3 2 = y2 , 2 y 2 

(6.66a) 

(6.666) 

(6.66c) 

We see that port 3 is uncoupled to port 1 and ports 2 and 4 are uncoupled. 
Also ports 2 and 4 are coupled to port 2 but the port 2 output is 180° out of 
phase with the port 4 output since S2 1 = — S41. All ports will be matched if 
we choose Y2 = 2Y,2 or 

When this latter condition is imposed, then | S 2 l | = |S 4 , | = / 2 / 2 and we 
obtain a 3-dB directional coupler or 180° hybrid junction. The four-port 
scattering matrix reduces to 

1 J V2 

0 1 0 - 1 
1 0 1 0 
0 1 0 1 

- 1 0 1 0 

(6.67) 

which is the same as that for the magic-T hybrid junction, apart from a 
different numbering of the ports and the choice o[ input terminal reference 
planes. 

At frequencies away from the frequency at which 01 = i r /2 , the per
formance of the hybrid ring can be found by evaluating the various scatter
ing-matrix parameters of interest as a function of the normalized frequency 
variable 2Bs/ir. In Fig. 6.35 we show a plot of the couplings )Si2J, )SU), and 
IS23|, the isolation IS13|, and the input reflection coefficients \SU\ and |S22I 
as a function of 28x/v. 
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0.15 
IS?27lS,3l 

v\ / / 

0.1 - \ \ Afarf 

0.05 

1 ^ • J / 1 1 

0.8 0.9 "to 

(a) 

1.1 

F I G U R E 6.35 
Hybrid-ring performance 
of reflection coefficient 
coefficients. 

as a 
and 

fu 
ISO 

i 3 

0.8 L-

port coupling coefficient; (6) magnitude of 
coupling 

6.6 P O W E R D I V I D E R S 

Power dividers are used to divide the input power into a number of smaller 
amounts of power for exciting the radiating elements in an array antenna. 
They are also used in balanced power amplifiers both as power dividers and 
power combiners. 

A fundamental property of a lossless reciprocal three-port junction is 
that not all three ports can be simultaneously matched. If we assume that 
all three ports can be matched, then Sn = S22 = S 3 3 and the scattering 
matrix has the form 

[S] = 
0 

I ••'. 

512 S\3 

0 &28 

^ 2 3 0 

For a lossless junction the scattering matrix is a unitary matrix. ihM i 
that the sum of the products of the elements in any row with the i 
conjugate of the elements in another row is zero. For the Jun®~ 
discussion this would require S,2S|. , = Sl:lS%3 = S12Sf3 = 0- * 
tions will hold only if two of the transmission coefficients S l 2 , 2

(
3'junction 

equals zero, in which case we do not have a functioning three-po . ^ £ 

If we want to use a lossless three-port junction to split or divi^ ^ (l 

power P, into fractions aPl = P2 and (1 - a)P} = Pa at ports 
this 

6.36. we 
is readily accomplished. For the three-port junction shown W J| is readily accomplished, fo r the three-port junction sno«» ^ ^ i r e 
can choose Z2 and Z3 so that the input port 1 is matched an , ( 2 s i n c £ 

power split is obtained. If the input is matched, then Pi " f ' we b 
V{ = V3 = V:

T because of the parallel connection of all three 

Pt- iY2mf+inn 

~* 
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© 

^ 

FfGUKE 6.36 
A lossless three-port junction used us a power 
divider. 

For an impedance match we require Yx = Y., 
the desired power division, we require 

Y., 

Ys and, in order to obtain 

Y., 1 - « 

For example, if we want to split the input power so that P2 = Pt/3 and 
Pa = 2Pl/3, then Y2/Y-A = | or Y3= 2Y.,. Consequently, in order to make 
port 1 matched, V","= Y2 +YZ = 3Y2; so" Z2 = 3 2 , and Z3 = 1.5Z,. This 
type of lossless power divider will not have matched output ports and since 
Si3 will not be zero it also does not have isolation between the output ports. 
If there is a shunt susceptance at the junction, such as would occur from 
excitation of evanescent modes in a waveguide T or Y junction, the input 
port can still be matched by placing a suitable shunt-compensating suscep
tance at an appropriate position in the input line. It is desirable to have 
S 2 3 = 0, so that reflected power at port 2 does not couple into port 3, and 
vice versa. 

Wilkinson developed an N-way power divider that would split the 
input power into output power at N ports and that would also provide 
isolation between the output powers.t A unique feature of the Wilkinson 
power divider is the use of resistors connected between the various output 
Ports. When the output ports are terminated in the correct load impedance, 
there is no current in the resistors; so they do not absorb any power. If one 
port is matched, then the reflected power from that port is partly absorbed 
by the resistor network and partly returned to the input, but no power is 
coupled into the other output ports as long as they remain properly 
terminated. Many different versions, including broadband designs, of the 
Wilkinson power divider have been developed. The multisection broadband 

fE Wilkinson. An A'-Way Hybrid Power Divider. IEEE Trans., vol. MTT-8. pp. 116-118 
i960. 
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design for a two-way power divider was developed by Cohn a 
used for a number of practical designs.t ° hag be^,. 

The basic Wilkinson power divider is illustrated in pi 
consists of two quarter-wave sections with characteristic impeda 
Z3 connected in parallel with the input line, which has a ch 
impedance Z,.. A resistor R is connected between ports 2 and 3 r a- ' 
ZL:i be the matched terminating loads for ports 2 and 3, respect" i t a an<* 
want to split the input power P, into output powers P, and p 6 * ' " " * * 
P.j = K2P2 and also maintain zero current in R when ports 2 » T 
terminated, then the output voltage V.J at port 2 must equa] th* 
voltage V-j at port 3. In order to obtain the desired power ratio we U 

K2\V2 \2/ZL2 = |V3 \2/Zl3 for VJ= y3". Hence we need 

K ' Z ' - 3 = Z " (6.68) 
For matched output terminations the resistor R has no effect on th 
operation of the circuit. In order to obtain a matched input at port 1 we 
require Ym = Yr. By using the transforming properties of the quarter-wave 
sections, we have 

* f c - zl + 
^L3 

- K (6.69o| 

From the above two equations we obtain 

(K Z3 + Z2jZL3 — 
Z72 Z'$Z$ 

(6.69b) 

upon eliminating ZL2 using (6.68). 
At port 1 the load impedance ZL2 is transformed into an admittance 

ym 2 = zi 2 /2? and Z, 3 is transformed" into an admittance yw.3 = z 

The'power delivered to ZL2 and ZL:i is the same as that delivered to 
and y i n 3 , respectively. Thus, in order to get the desired power r 
require that 

we 

i |V^!%.3 = KH\V^Y.m,2 

which gives, upon using (6.68), 

Z2 - K Z3 

fS. B. Cohn, A Class of Broadband 3-Port TEM Hybrids, IEEE Trans 
110-118, 1968. 

vol- MTT .16.1* 
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G 
- V W 

Yx,*Y. 33 * '23 '22 * '23 Y„*YX IMI 

(o) 

SC * . ' • 

y3, B 

(CI 

H 
Vc ^ /a 

v3. 

Mf 

IC 

FIGURE 6.37 
(a) The Wilkinson power divider; 
(6) the equivalent circuit with port 
I terminated and porta 2 and 3 
excited, (c) equivalent circuit be
tween ports 2 and 3 with port 3 
short-circuited and R removed. 

At any frequency YL2 transforms into 

YL2 + jY2 tan 6 

*ta.2 Y2y2 +JYL2 tan e 

and yL 3 transforms into 

n.,8 = *3 
YL3+jY3Um0 m K.iy 

Y3+jYL:i tan 0 in, 2 

by virtue of (6.68) and (6.70). Thus the input current on line 3 will be K' 
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larger than the input current on line 2. Since the line 2 and li 
are identical, apart from the relative impedance levels the I ^ network> 

2 larger than the load curre: ' 
!be 

*L2 h,2^L2 IL2%L2 

Y,_:i will also be K2 larger than the load current in Y, , Henp3 uU r r e n l it 
the load voltages will be e t h e ratio 0f 

= 1 
Vi.8 h*Zm KHL2ZL.A 

o curre 
—«" " • ' — "' —w" •" 'heir n,ai.v,iicu ioaa i 

When there is no current in R, the input admittance at port 1 
V',,,.:! = (1 + K2)Ym.,. The input reflection coefficient is given bv 

Since the load voltages are equal, there is no current in R at anv f 
as Jong as ports 2 and 3 ai-e terminated in their matched load im r ^ U e n c 5 ' 

r,„ = 

given by 
T. - Y-„, 

In 

Y,2-(l +K2)2Yi 

' y/ + (1 + K'^Y2 + 2.7(1 + K*)YCY2 tan 0 

This result is obtained by substituting the expression given earlier for Y 
at any frequency. Equation (6.71) gives the interesting result that input 
port 1 will be matched at a]] frequencies if we choose 

y, - T T F (6-72' 
In order to analyze the coupling between ports 2 and 3, we will 

terminate port 1 in a load admittance Y.. We now have a two-port networi 
Apart from the resistor R, we can represent the network between pori 
and 3 by a 11 network as shown in Fig. 6.376. The resistor R is a si 
conductance G = 1/R in parallel with - Y.,3. From this network repres 
tation it is clear that ports 2 and 3 will be uncoupled if G = Y&, so «* ^ 
admittance between ports 2 and 3 vanishes. The circuit equations • 
removed are 

p z l T ^ Y&irvzi 
UJ ba rJW 

For V3 = 0, that is, port 3 short-circuited, we have 

Yn~v2 V3=° .1. 

Thus we can evaluate K>:) by finding the short-circuit c u r r f ? * ghoWn >r-F 

port 2 excited. The transmission-line circuit to be analyzed tf 
6.37c. 
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Let the voltage and current waves on line 2 be 

and those on line 3 be 

The terminal conditions at port 2 are 

v;+ v-= v2 

At port 1 the terminal conditions are 

v„v-"'+ va->"' = v;+v; 

(Vje-"' - Va-e»)Y2 - (V?+ V?)Yt + (V;- Vh)Y3 

At port 3 we have 

V^e-J" + Vh'e
je = 0 

{V?e -"' - Vh'e>")Y3 = - 7 a 

where 0 = f}2l2 = f}3!3 and h and 13 are the line lengths. From the last two 
equations we get I3 = -2V^e~JB. By adding arid subtracting (6.73c) multi
plied by Y2 to (6.73d), we can solve for V,* in terms of either Vj or V~. We 
can combine the two solutions to get V,J in terms of V* + Va = V2 and then 
solve for Y13 = ~(2V+e-'»)/V2. The results are 

y,.. = ~ (6.74) 
2'! 7,.( 1 - cos 26) - j( Y2 + y3)sin 20 

When 0 = 77-/2 we get Y23 - Y2Y3/Yf.. In order to uncouple ports 2 and 3, 
we thus require 

(6.73a) 

(6.736) 

(6.73c) 

(6.73d) 

(6.73e) 

(6.73/-) 

Y. 
G = 7 2 3 = - ^ (6.75a) 

Z Z 
or R = -^~ (6.756) 
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From (6.68), (6.696), (6.70), and (6.756), we can express all • 
in terms of R in the following form: irn 

Z,^K{RZC 

Z3 = ~W< 

"X2 

z,., = 

K*R 

K2 + 1 

R 

K2 + 1 

'Pedant 

< 6 . 7 6 Q ) 

'6.766, 

16. 76c, 

(6.7W) 

matched 
(6.72). 

The resistance R can be chosen arbitrarily. If we require port 1 
hed at all frequencies, then R is determined by the condition mw L by the condition given by 

We can also solve for 12 in terms of V., from (6.73). The ratio / /V 
for V3 = 0 gives the parameter Y,2. We find that 

Ym = Y, 
Y3 - Y2 + (Ya + Y2)cos 20 +jYe sin28 

Yt.(cos20 - I) + j(Y2 + Y3,sin2<? (6.77) 

The parameter Y33 is obtained by replacing Y2 by Y3 and Y3 by y2 in the 
above equation. The parameters Y22 and Y33 are needed in order to deter
mine the port 2 and port 3 reflection coefficients as a function of 8 or 
frequency. 

A 3-dB power divider is obtained by choosing K2 = 1. If we also 
specify that Z,,2 = Z / 3 = Z<:, we find from (6.76c) that R = 22,. From 
(6.76a) we get Z2 = Z3 = J2ZV for this case. A 3-dB power divider that has 
port 1 matched at all frequencies requires, from (6.72), Y2 = Ye/* ° 
Z., = 2ZC. From (6.76a) and (6.76c) we obtain R = 4Zf and Z w = A t 8 " 
2Z,.. For this case the output lines have a characteristic impedance t\ 
that of the input line. We could choose R = 2Z,„ Z,,2 = ZL3 = Zc and a* 
quarter-wave transformer with impedance ZJ v'2 to transform the p _ ^ 
input impedance, which now equals Z , / 2 , into an impedance A-
6.38a illustrates this type of 3-dB power divider. . j n 2 to 

For the unequal power division case if we choose Y-> a«- ^ ^ 
(6.72), the input port 1 is matched at all frequencies. From (6.7 
that J? = (1 + K2)%/K2. By using (6.76c) we get Zl2 = <*•" ^ ]ofld 
and hence there is no discontinuity at the .junction of line 2 * of 

Z ;,2. Also Zw = Z3, so that there is no discontinuity at t h e j u n l lv/0 outP' 
and its load. The only disadvantage with this design is that ^ difli 
impedances Z,,, = (1 + K2)Zt and Z,..( = ( 1 + K')Z'fK'Afl\fl^ 
ent from Z(.. Output quarter-wave transformers can be adde ^ 
ZLZ and Z L 3 into the impedance Z.. The required transforms V ^ , J 
l + f f * and (1 + K2)/K2 and are different. Thus the m -
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z-i 

*Z2ZC 

4 

Zc 

(b) 
•-z,zr 

FIGURE 6.38 
(a) A 3-dB power divider with an inpuL quar
ter-wave transformer.' Id) a broadband un
equal power divider. 

function of frequency will be different for the two output transformers. In 
order to equalize the transformation ratios and thereby obtain similar 
characteristics for ports 2 and 3, the output impedances should be chosen 
according to the relations 

ZL2 = KZt (6.78a) 

Z , j 3 = - ^ (6.786) 
K 

We now require 

R = 
1 +K2 

- K Z< 

z2-

V -

-Zc)JK{\ + K2) 

Kz 

(6.78c) 

(6.78d) 

(6.78c) 

The required output quarter-wave transformers that will transform ZL.> 
and ZL3 into Ze will have characteristic impedances given by 
i/ZL2Zc = \[KZC and yjZLZZc = Zc/ \[K. A power divider designed on this 
basis will have a bandwidth approaching one octave. 

A modified design that incorporates an input quarter-wave trans
former as shown in Fig. 6.386 will give a significant increase in perfor
mance.t The design equations are arrived at by noting that when ports 2 

tL. I. Parad and R. L. Moynihan. Split-Tee Power Divider, IEEE Trans., vol. MTT-13, pp. 
91-95, 1965. 
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and 3 are terminated in matched loads we can connect these 
location of the resistor R. The characteristic admittance of ]^ P ° l t s ^ th 
parallel is Y.> + Yz = (1 + K~)Y,. The terminating load admit ' ]? 2 ^ 3 fa 
7 i 3 = (1 + K2)YL2 = Y,. The structure shown in Fig. 6.386 c ^ t * YU 
as a two-section quarter-wave transformer. Thus, for a maxim l). vie*«d 
reflection coefficient characteristic (see Sec. 5.12), we should ch * ^ ^ " t 

z; = ztf*z*s* 
where Z; is the characteristic impedance of the input transformer 

1 7 
= Zf/<Z>/4 = (1 + K2)Y., 1 + K2 

With ZL2 = KZC and ZA;i = Z(./K, we have y, = Q + # 2 ) y c / # H 

must choose we 

z:.= 
K 

1 + K' 

1/4 

1/4, 22 = ff3/4(l +K2)1' Ze 

23 = 

tf = 

( H - J T ' ) ' " 

1 + K2 

K 

(6.79a, 

(6.796) 

(6.79c) 

(6.79a') 

6.7 MICROWAVE PROPAGATION IN FERRITES 

The development of ferrite materials suitable for use at microwave freqi 
cies has resulted in a large number of microwave devices. A number of tn 
have nonreciprocal electrical properties; i.e., the transmission coe 
through the device is not the same for different directions of propaga11 

An understanding of the operation of ferrite devices may be ^ ^ T ^ t e 
the basic nature of microwave propagation in an infinite unbound ^ 
medium is understood. In this section we consider plane-wave pr p<* ^ 
in an infinite ferrite medium with a static biasing magne ic ^ _^ ^ 
present. It will be found that the natural modes of P r o p a g y ° h a t the* 
direction of B„ are left and right circularly polarized waves an ^ ^ 
modes have different propagation constants. In addition, we » ' . 
the permeability of the ferrite is not a single scalar quantity. 
tensor, which can be represented as a matrix. . . • s ^a t fl 

Ferrites are ceramicljke materials with specific r e s j 5 l , l V ! t r j C coflsta> 

be as much as 10 H greater than that of metals and with dielet ^ ^^ 
around 10 to 15 or greater. Ferrites are made by sintering ^Q fe, 
metallic oxides and have the general chemical c o m P O S J t "? u , n , irof-
where M is a divalent metal such as manganese, magne 
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nickel, cadmium, etc., or a mixture of these. Relative permeabilities of 
several thousand are common. The magnetic properties of ferrites arise 
mainly from the magnetic dipole moment associated with the electron spin. 
By treating the spinning electron as a gyroscopic top, a classical picture of 
the magnetization process and, in particular, the anisotropic magnetic 
properties may be obtained. 

The electron has a number of intrinsic properties such as a charge of 
-e = - 1 .602 x 1 0 - 1 9 C, a mass w = 9.107 X 1 0 - 3 1 kg, an angular mo
mentum P equal in magnitude to hh, or 0.527 x iO -*1 J • s (ft is Planck's 
constant divided by 2—), and a magnetic dipole moment m equal to one 
Bohr magneton, that is, m = eh/2w = 9.27 X 10 'M A • m2. For the elec
tron, the angular momentum P and magnetic dipole moment m are antipar-
allel. The ratio of the magnetic moment to the angular momentum is called 
the gyromagnetic ratio y; that is, 

m 
* - - = (6-80) 

If an electron is located in a uniform static magnetic field B 0 , a torque 
T given by 

T = m X B n = - y P X B 0 (6.81) 

will be exerted on the dipole moment. This torque will cause the dipole axis 
to precess about an axis parallel to B 0 , as illustrated in Fig. 6.39. The 
equation of motion is obtained from the condition that the rate of change of 
angular momentum is equal to the torque and hence is 

c/P 
— - = T = - y P x B 0 = w t 

X P (6.82a) 

or y P B 0 sin <t> = w 0 P sin </> = mBu sin </> (6.826) 

where wn is the vector-precession angular velocity directed along B„, and $ 

FIGURE 6.39 
Free precession of spinning electron. 
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• " * o f fen calk* 

is the angle between m and B„. For free precession the a 
is given by 8 3r V e l o<% <„ 

totl = yB0 

and is independent of the angle </>. The angular velocity at 
the Larmor frequency. 

If a small ac magnetic Held is superimposed on the static fieU o 
magnetic dipole moment will undergo a forced precession. Of !" t n e 

interest is the case where the ac magnetic field is circularly polari\^r ' t U l a r 

plane perpendicular to B„. A circularly polarized field results wh 
and y components of the ac field are equal in magnitude and 90c 

time phase. Thus Jet the ac magnetic field be given by the phase 
sor 

(6.83a i Bl = Bx(ax+JBy) 

If we assume Bt to be real, the physical field is given by 

B, = £, Re(a , vjay)e
JU" = B,(a , cos ,ot - av sin wt) (6.836) 

The resultant field has a constant magnitude Bt, but the orientation of the 
field in space changes or rotates with time. At time t the resultant field 
vector makes an angle 

tan i = — tan tan tot = — tot 

with the axis and hence rotates at the rate -to, as in Fig. 6.40a. It is this 
rotation of the field vector in space that results in the field being called 
circularly polarized. If the above ac magnetic field is that of a wave pre 
gating in the z direction, it is said to be left circularly polarized. If I 
direction of rotation is clockwise, looking in the direction of propagation,! 
wave is called right circularly polarized. The latter type of wave would b 
an ac magnetic field given by 

(6-84) 
Br=Bi(a I->,) 

the 
With a left circularly polarized ac magnetic field s u p e r i m p o s e f l " ^ 

static field B0 = B „ a ; , the resultant total field B, is inclined at 

B, CQS Ult 

la) \r-\ 

FIGURE 6.4°,. ^ lar iyi 
Magnetic f i e l d for J J 
Jarized waves-««• 
„ v t , o c u l a r P ^ c u l t f P 

right, or pos't '^-
larization-
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FIGURE 6.41 
Forced precession of spinning electron. 

(*) 

6 = t an" 1 (B , /B , | ) with the z axis and rotates at a rate -co about the z 
axis, as illustrated in Fig. 6.41a. Under steady-state conditions the magnetic 
dipole axis will be forced to precess about the z axis at the same rate. Thus 
the precession angle </> will have to be less than 6, as in Fig. 6.41a, in order 
to obtain a torque to cause precession in a counterclockwise direction. The 
equation of motion (6.82) gives 

dP 
T = m X B , = - y P x B , = -— = - w a , X P 

dt 

or - yPB, sin( fl - <£) = - wP sin 6 

Expanding sin(0 -</>), replacing B, sin 0 by B, , B, cos 6 by B 0 , and solving 
for tan ifi gives 

? B , yB, 
tan <b = 

yB0 + w tof> + to 
(6.85) 

The component of m which rotates in synchronism with B[ in the xy plane 
for the left (also called negative) circularly polarized ac field is m~ = m sin tf> 
= m0 tan 4>, where m(l = m cos <b is the z-directed component of m. For B, 
very small compared with B 0 , the angle <b is small, so that mQ is approxi
mately equal to m. Using (6.85) gives 

ym()B1 
m = m u t a n <•/> = ( 6 . 8 6 ) 

Cl>„ + to 

If we have a right (or positive) circularly polarized ac field superim
posed on the static field B 0 , the forced precession is in a clockwise sense 
about the z axis. A torque giving precession in this direction is obtained 
only if the angle il> is greater than the angle 6, as in Fig. 6.416. In this case 
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the equation of motion (6.82) gives 

yB, sin( 4> 0) "= w sin <b 

from which we obtain 

yB, 
t a n f(j = 

w0 

The component of magnetization in the xy plane rotating in svn -h 
with the positive circularly polarized ac field is 

m'= m„ tan <i> = 
v / « 0 5 , 

(6.88) 

The foregoing discussion has pointed out the essential features of th 
motion of a single spinning e)ectron in a magnetic field consisting of a stat 
field along the z axis and a small circularly polarized ac field in the x 
plane. A ferrite material may be regarded as a collection of IV effective 
spinning electrons per unit volume. Since the spacing between electrons is 
of atomic dimensions, we may regard the density of magnetic dipoles per 
unit volume as a smeared-out continuous distribution from a macroscopic 
viewpoint. The total magnetic dipoie moment per unit volume is M = Nm. 
When the static field B0 is large enough to cause saturation of the magneti
zation in the ferrite, M = M s . In a saturated ferrite all the spins are very 
tightly coupled, so that the whole sample acts essentially as a large single 
magnetic dipoie. The magnetization M, produces a contribution to the total 
internal B field according to the relation B = M 0

( H 0 + M s) . The torque 
acting on M„. is due only to the field B„ = ,u0H0 , s i n c e t h e c r o s s P r o d u c t ' 
/j„Mv with Ms is zero and hence does not contribute to the torque. Thus, 
the equation of motion for the magnetization, the field producing the tore 
is M » H „ where H , is the total static plus ac magnetic field intensity U 
ferrite medium. That is, 

- = - y ( M x B ) = - 7 7 i „ M x (H + M) = - T M o M x H 
dt 

is* , tt'jgB 
If the magnetic field intensity in the ferrite is H0 + Hf, * ® ^ v g n by 

circularly polarized ac field, the 2-esuitant ac magnetization v" ' ' ^ 
expressions analogous to (6.S6) and (6.88), but with m0 replace j - p 

Nm0. The total ac magnetic field in the xy plane is the n e l d
) ^ fe\fcio* 

plus the contribution from the ac magnetization. Thus the tota ^ ^^ 
positive and negative circular polarization are [we are using 
B = Mo<H + Ml] 

u 0 y * M H ; (6.89"* 
B ' = M 0 M - + B r = M 0 ( ^ m ^ + H f ) = u0 1 + io0 

- to 

B = M 0 M ~ + B f = . ^ 0 1 + 
M Q V M 0 

te>n + t» 
H f 

{6#b) 
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where M0 = Mcosd>. B, = Mo#i> a n a H T = # i t a * ~.My) i n (6.89a), and 
Hj in (6.896) equals H,(aT +jay), as seen from (6.84) and (6.83a). The 
quantity M may be replaced by the saturation magnetization M, in the 
ferrite since the static field B„ is usually large enough to cause saturation. 

If we assume that Bt « B 0 , so that M„ = Ms, the effective permeabil
ities for positive and negative circularly polarized ac fields are seen to be 
given by 

At.= M J l + * (6.90a) 

M = M l l 1 + — (6.906) 
I w 0 + "> / 

Plane circularly polarized TEM waves propagating in the direction of the 
static field B„ will have propagation constants 

/3 .= W v ^ 7 (6.91a) 

p =<oyjipT (6.916) 

where e is the dielectric permittivity of the ferrite. The significance of the 
inequality of /3,. and (i_ is discussed later. The results expressed by (6.91) 
are also derived in an alternative way later. 

If small-signal conditions B, <£ B„ are not assumed, we cannot re
place M0 by Mg. In place of (6.85) and (6.87). which give solutions for tan <t>, 
we can solve for sin 4> to obtain, respectively, 

tan 4> yB, 
sin <j> = -j= = r (6.92a) 

V l + t a n 2 0 V ( r B , ) 2 + («« + » ) ' 

-yB, 
sin if> = , (6.926) 

V ( y B , ) 2 + ( W o - w ) 2 

The magnetizations M* and M~ are given by 

•va„Mv//, 
M + =Mssin<b = , 2 2 (6.93a) 

M " = . ° 6 ' (6.936) 
l/(yti0H1)

2+ (w0 + wf 

It is seen that the ac magnetization depends nonlinearly on the ac field 
strength / / , , and hence, under large-signal conditions, /x+ and /x_ will be 
functions of the applied ac field strength. The nonlinear behavior of ferrites 
under large-signal conditions results in the generation of harmonics of the 
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fundamental frequency w. For this reason ferrites may be used 
generators.! ^ narrr,0E 

For Af- it is clear that, if Bx <K B 0 , that is, yB. « VD 
(6.936) is well approximated by ° * wo- then 

M 
ylx.0MiHx 

ton + CO 

Similarly, i[ to is not too close to the resonant frequency w 

(6.93a) becomes •o. we see that 

AT = 
yMoM,//, 

0>n — (a 

These latter values of M ' and M~ lead directly to the expressions (6 901 
for n 4. and ^ _. In any practical ferrite medium, damping effects are alwavi 
present, so that M' will remain finite and small compared with M eve" 
when a) = w0. Thus, for small-signal conditions, we can assume that*M = 
Ms in an actual ferrite medium. Damping effects are discussed in more 
detail later. 

It will be instructive to study the propagation of a plane wave in an 
unbounded ferrite medium by solving Maxwell's equations directly, together 
with the equation of motion for the magnetization. This analysis will 
illustrate the general technique of linearization to be applied in the small-
signal analysis of propagation through a medium such as a ferrite. However, 
it will not give as clear an insight into the physical reason why /x.. and >i. 
are different, as the analysis above did. That is, basically, M + sn^ M - differ 
because the precession angle 6 must be greater than the angle 0 in one case 
and less than 0 in the other case, and hence the projection of the magneti 
dipole moment onto the xy plane is different in the two cases. 

Consider an infinite unbounded ferrite medium with an applied 
magnetic field B0 = ^ 0 H 0 = B0az. Let the magnetization in *® feJJJJJn8 

Ms per unit volume when no time-varying magnetic field is applied. gn t 

time-varying magnetic field /x.0H is also applied, a tinie-vaiying c o m p * ^ 
-*f of magnetization will be produced. The equation of motion lor ^ 

magnetization per unit volume is similar to that for a single e 
hence we have 

dt dt > fi$4i 
= -YMO(MS X H 0 + M , X ^ + / X H 0 + / 5 

Doubling i n F « * * J tW. P. Ayres, P. H. Vartanian, and J. L. Melchor. Frequency " » » " " " " 
Phys., vol. 27, p. 188, 1956; Microwave Frequency Doubling from 9 krne « 
Prize. IRE, vol. 45, pp. 643-646, May, 1957. 
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If small-signal conditions are assumed, i.e.. 

\jg\ <e |MJ and «Po l 

the nonlinear term je x & in (6.94) may be dropped. We then obtain for 
the equation of motion the linearized equation 

~dt 
= -y (M 0 M„ X^+Jt x B 0 ) (6.95) 

since Ms X B0 = 0, because the saturation magnetization is in the same 
direction as the applied static field. 

Let the time dependence be e1"1', and let J! and & be represented by 
the phasors M and H. From (6.95) we obtain 

jcoM + yM X B0 =./wM + w0M x a2 = - y ^ M , , x H 

where w0 = yfi0H0 ~ yBa. In component form we have 

,iioMx + w0Mv = yMsix0Hy 

ju>My - u)„Mx = -yMsfj.uHx 

j ioM, = 0 

The solution of these equations for Mt, Mv, and M, gives 

Wo Yd o Ma Hx + joj yfi 0 Ms R 
M = (6.96a) 

My = 
<D0yu0MxHy -jwyiJ.QMsHx. 

M, = 0 

[6.96b) 

(6.96c) 

In the solution of Maxwell's equations it is convenient not to have to 
deal explicitly with the magnetization. The magnetization may be elimi
nated by introducing the magnetic susceptibility and permeability. In 
the scalar case this is done by means of the relations M = * „ , # , B = 
HQ(M + H) = n0{l + x,„)H = fiH. For a ferrite similar relations may be 
used, but \m and n will not be scalar quantities. In matrix form (6.96) gives 

Mx 

My 

M, 

Xxx Xxy 0" \K 
* v x Xyy 0 HY 

0 0 0 H: 

(6.97) 
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where = X vv 

w{lyy.0Ms 

•%XV A V J 

ji»yn0Ms 

<#?, - at2 

The matrix with the parameters Xxx, xxy, * „ . and *y v in (6.97, ,.p 

the susceDtibilitv tensor of the. ferritp Thp rplafirm Koi„™. .. the susceptibility tensor of the ferrite. The relation between the 
fields is 

or 

B = M„(H + M) 

= Mo 

[ l + Xxx Xxy 

XyX 1 + Xyy 

. 0 0 

0 
0 
1 

Hy 

!ftts 
a c B and H 

(6.98) 

The matrix relating the components of H to B in (6.98) is the permeability 
tensor for the ferrite. It will be denoted by a boldface p. with an overbar i e 

1 + Xxx Xxy 

Xyx 1 + Xyy 

0 

Xyx 1 + Xyy 0 

0 0 1. 

In shorthand notation the matrix equation (6.98) will be written as 

B = H H (6.99) 

In the literature the minus sign in the equation of motion is often deleted, 
and this amounts to replacing y by -y in the equations used in thi-

Losses present in a ferrite may be accounted for in a phenomenologica 
way by introducing into the equation of motion a damping term that 1 
produce a torque tending to reduce the precession angle 4>. The follow 
modified form of the equation has often been used in practice: 

djt 

dt 
= -yMo(M, +*) X ( H 0 + ^ ) 

a dJf 
M_X - j - (6.1001 

where a is a dimensionless damping constant. With a small-sign 
the elements of the susceptibility matrix are now found to beT 

Xxx = Xyy = X -JX -X ,6 101*' 

Xxy--Xyx-J(K--jK")-jK 

tR. F. Soohoo, "Theory and Application of Ferrites." chap. 5. Prentice-H 
Cliffs, N.J., 1960. 

G o * " " * 
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where 
2 „,2 «j0a>m(o>o - to'2) + ^.wpfeTfl 

* " [ ^ - w 2 ( l + « 2 ) ] 2 + 4 ^ > V 

a)w„,ft[a)'f, + w2( l + a ' ) ] 

r = 
K' = 

K" = 

" M B [ M J - f 2 ( l + » 2 ) j 

[w2-a>2(l +«*)]* +4w5»V 

2w"W|,W„ |« 

[tt§ ~a>2(l + o 2 ) ] +- 4fi>gwV 

and w,„ = n0yMs 

As we derived the permeability tensor to use in the constitutive 
equation relating B and H, the only remaining task is to find solutions for 
Maxwell's equations in the form 

V X E = -y'wB = -y'wjl • H (6.102a) 

V x H = j « E (6.1026) 

\ " B = V - E = 0 (6.102c) 

For a TEM wave propagating in the 2 direction, i.e., along the direction of 
B 0 , solutions are readily found. Let the electric field be given by 

E = E 0 e ""** 

where E„ is a constant vector in the xy plane. Equation <6.102o ) gives 

V X E = - E 0 X Ve "u = ./'0E,, X a ,e "i; = -jcop. • H 

Let the solution for H be Hfle
-J*te

> where H0 is also a constant vector in the 
xy plane. From (6.1026) we obtain 

jpn„ X a2 = yWE ( ) 

If this equation is substituted into the equation 

jpE, , X a, = -jojJL • H„ 

so as to eliminate Efl, we obtain 

M 
Jp-r—(Hn X a , ) X a, = -jwp. • H0 

Jioe. 

Expanding the left-hand side gives (note that a. • H„ = 0) 

p2His = co2eJL • H0 (6.103a) 
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This equation may be written in the following matrix form-

p2-u>2en0(l+x) 

j(o2e^0K 

-jo>2efi0K 

P* - u>2en0(l +X) 
Ox 

" • . 
(6. 1036) 

For a nontrivial solution for H,„ the determinant must 
condition yields the following eigenvalue equation for tho „ ' "^is 
constant 0 : p r o ^ 

> 2 - « V „ ( l X )f - <uVV0tf
2 = 0 

or fiz = w2en0(l +X)±<»2en0K 
(6.104) 

If we substitute for x and K and assume a lossless ferrite so 
X" --= K" = 0, we readily find that the two solutions for /32 are 

li2 = p{ = w2eM + (6.105Q) 

(6.1056) fi2 = fit = u>2efi _ 

where /x, and n_ are given by (6.90). 
For each eigenvalue or solution for fi2, the ratio of H0t to U„ fa 

determined. For the solution /32, the first equation in the pair of equations 
(6.1036) gives 

[fit - « V o ( l +X)]H0t -jo>hn0KHQy = 0 

' = j or 
' f i , 

Ha 

But this condition means that H„ = H 0 ( a , - . / a v ) , or is a positive circula 
polarized wave. Similarly, the solution fi'i gives 

= -J 
(6.1066) 

Hi 0Y 

which specifies a negative circularly polarized wave. Therefore it is s 
the natural modes of propagation along the direction of the static 
ferrite are circularly polarized TEM waves. If directions of Pr°^ vt% 

other than along B0 were considered, i t would be found that ^^ 
again, two modes of propagation, but these are no longer c i r c U "go_ the 
ized TEM waves. For a linearly polarized wave propagating a o ^ p h e . 
plane of polarization rotates, since 0. and ji are not e q U

o t a l i o n . It « 
nomenon is a nonreciprocal one, and is called Faraday row 
discussed in the following section. 

F A R A D A Y R O T A T I O N apPlied 

Consider an infinite lossless ferrite medium with a static jarjzed °* 
along the z direction. Let a plane TEM wave that is linearly P 
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FIGURE 6.42 
Faraday rotation. 

the x axis at z ~ 0 be propagating in the z direction, as in Fig. 6.42. We 
shall show that the plane of polarization of this wave rotates as it propa
gates (Faraday rotation). The linearly polarized wave may be decomposed 
into the sum of a left and right circularly polarized wave as follows: 

E = axE0 - ( a , + . / a , ) y + (a., - j ' a j y 2 = 0 (6.107) 

The component waves propagate with different phase constants fi . and [1 , 
and hence the wave at z = I becomes 

E = (a.v +ja,)~
eJ,il + ( a* -J&y^Te ~"" 

E„ 
= a, 

Bn 

,-JP i + e -jit .i \ + ./av-
B„ 

i f ' - , . " < • ' 

J1H ' " " - f a ( e " " H*** ' /* + « J W i'->i*\ 

+JB.{e -'"' l<-)' 2 - <»•"" ^ • " • / ' a ) l 

/ 
= E„e " " '**•" 2 axcoS((i.- P ) - - a v s i n ( p , - 0 (6.108) 

This resultant wave is a linearly polarized wave that has undergone a phase 
delay of {ft _ + p, ) / / 2 . The new plane of polarization makes an angle 

0 = t an~ ' - f = tan ' 
/ 

- t a n ( / J . - / 3 ) -
/ 

- -(H^-fi )^ ( 6 1 0 9 > 

with respect to the ^ axis. When oi < m0, that is. below the ferrite resonant 
frequency, 0 + is greater than (i and the plane of polarization rotates 
counterclockwise, looking in the direction of propagation (Fig. 6.42). The 
rate of rotation is (p., - / 3 _ ) / 2 r ad /m. Rotation of 100° or more per 
centimeter is typical in ferrites at a frequency of 10,000 MHz/s . 

If the direction of propagation is reversed, the plane of polarization 
continues to rotate in the same direction. Thus, if we consider the propaga
tion of the wave described by (6.108) back to the plane z = 0, the original 
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polarization direction is not restored; instead the wave will ar 
z = 0 polarized at an angle 26 relative to the x axis. This r e s " ^ ^aclc at 
derived by noting that if the component circularly polarized w 'S e a s ' lv 

up the linearly polarized wave in (6.108) are propagated from z I 
2 = 0, they undergo additional phase delays of amount p / a n H

 ack to 
become, at z = 0, ^ -' and 

E-( . . • ; . , )£ . -» - ' • ( . , - ; . , , !« -« . , (6ii0) 

By analog}' with (6.108) it is now clear that the new direction of nnls. i 
at 2 = 0 makes an angle carnation 

26 = - ( 0 . - / 3 )l 

with respect to the x axis. Thus Faraday rotation is a nonreciprocal effect 
A practical ferrite medium has finite losses, and this will have 

significant influence on the propagation. The propagation constants y = 
JP + + «+ and y = j/i_ + u_ for circularly polarized waves will have un
equal attenuation constants as well as unequal phase constants. When 
Josses are present, the propagation constants are given by (6.104) if p- is 
replaced by -y2; thus 

y + = > v f c o 7 ( l + X" -JX" + K' -jK")in (6.111a) 

•y_ = > v ^ 0 7 ( l + X' ~JX" ~ K' +jK")l/2 (6.1116) 

where x',X", K',K" are given after (6.101). The solutions of (6.111) are 

V6 

1/2 

a + = a>Vo* 

1 + *' ± K' + \ / ( l + x' ± K'f + (X" ± K"? <6 ' 

V" ± g" = « » V ± (6.1126) 

2/3 f 2/3, 

The permeabilities for circularly polarized waves are 

M , = M W M W o ( 1 + * ' - • / * " ± K'+•/'*' '> 
The values of u\ , u"_ as given by (6.101) and (6.113) and the prtjWBJ 

tion factors / 3 . and «+ are plotted in Figs. 6.43 and 6.44 t0
 0( „<, 

ferrite with parameters w,„ = 2TT X 5.6 x 109. « = 0.05, as f/"" H z ' 
at a frequency of 10,000 MHz. Note that u>0 equals 2- X 2.8 ^ T n e 

applied field r /0 and that 4- x 10 :! Oe is a field strength oi Q(. 2 0 0 0 G. 
value of w,„ chosen corresponds to a saturation magnetization ^ (1 

or n0Ms equal to 0.2 Wb/m 2 . The curves in Fig. 6.44 sho ^ resoojj 
always very small but that «, is large in the vicinity ° J o n 

frequency «„ = co. For ion considerably above to, the a t t e n
t l y i g0 tha l l 

comes small, but in this region ( i . and j i _ do not differ grea j^ j s sma 
rate of Faraday rotation would be small. At low values of <•>,,. 
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n 
FIGURE S.43 
Real and imaginary components of 
permeability for circularly polarized 
waves in a ferrite as a function of 
ui/m0 for w / 2 * «= 10 GHz, ">„,/2fr = 
5.6 GHz. « = 0.05. 

20 c 

uo/u 
2.0 

FIGURE 6.44 
Propagation and attenuation con
s tan t s for circularly polarized 
waves in a ferrite. with parameters 
given in Fig. 6.43 U = 10e„). Note 
that 10a _ is plotted since a is 
very small. 
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6.9 MICROWAVE D E V I C E S E M P L O Y I N G F A R A D A Y 
R O T A T I O N 

G y r a t o r 

ce in 
A gyrator is defined as a two-port device that has a relative diffe 
phase shift of 180° for transmission from port 1 to port 2 as compared 
the phase shift for transmission from port 2 to Dort 1 A pvrat„. 

. , : , . . . , . . r , K syrator may he 
obtained by employing the nonreciprocal property of Faraday rotatii 
Figure 6.45 illustrates a typical microwave gyrator. It consists of a rectaneu 
lar guide with a 90° twist connected to a circular guide, which in turn 
connected to another rectangular guide at the other end. The two rectangu
lar guides have the same orientation at the input ports. The circular guide 
contains a thin cylindrical rod of ferrite with the ends tapered to reduce 
reflections. A static axial magnetic field is applied so as to produce 90' 
Faraday rotation of the TE, , dominant mode in the circular guide. Consider 
a wave propagating from left to right. In passing through the twist the 
plane of polarization is rotated by 90° in a counterclockwise direction. If the 
ferrite produces an additional 90° of rotation, the total angle of rotation will 
be 180°, as indicated in Fig. 6.45. For a wave propagating from right to left. 
the Faraday rotation is still 90° in the same sense. However, in passing 
through the twist, the next 90° of rotation is in a direction to cancel 
Faraday rotation. Thus, for transmission from port 2 to port 1, there 

90° twist 
So 

Ferrite rod 

^ f 
^ ^ 

FIGURE 6.45 
A microwave gyrator. 
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ki 
^ 

^ 
^ 

FIGURE 6.46 
A gyrator without a twist section. 

net rotation of the plane of polarization. The 180° rotation for transmission 
from port 1 to port 2 is equivalent to an additional 180° of phase shift since 
it reverses the polarization of the field. It is apparent, then, that the device 
just described satisfies the definition of a gyrator. 

If the inconvenience of having the input and output rectangular guides 
oriented at 90° can be tolerated, a gyrator without a 90" twist section can be 
built. With reference to Fig. 6.46, it is seen that if the ferrite produces 90° of 
rotation and the output guide is rotated by 90" relative to the input guide, 
the emerging wave will have the right polarization to propagate in the 
output guide. When propagation is from port 2 to port 1, the wave arriving 
in guide 1 will have its polarization changed by 180°, as shown in Fig. 6.46. 
Hence a differential phase shift of 180° is again produced. 

The solution for wave propagation in a circular guide with a longitudi
nal magnetized cylinder placed in the center can be carried out exactly.t 
However, the solution requires a great deal of algebraic manipulation, and it 
is very laborious to compute numerical values from the resultant transcen
dental equations for the propagation constants. The solution does verify 
that Faraday rotation takes place as would be expected, by analogy with 
propagation in an infinite ferrite medium. 

tA. A. Th. M. van Trier. Guided Electromagnetic Waves in Anisotropic Media, Appl. S&. Ren.. 
vol. B3, p. 305, 1953. 

M. L. Kales, Modes in Waveguides That Contain Ferrites, J- Appl. Phys., vol. 24. p. 604, 
1953. 
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The isolator, or uniline, is a device that permits unattenuated trans • 
from port 1 to port 2 but provides very high attenuation for transmi* 
the reverse direction. The isolator is often used to couple a microwav S ' ° n *" 
generator to a load network. It has the great advantage that all th 

e a 
Bignal 

vaUable 
not 

power can be delivered to the load and yet reflections from the load i 
get transmitted back to the generator output terminals. Consequently 
generator sees a matched load, and effects such as power output variat 
and frequency pulling (change in frequency), with variations in the 1 
impedance, are avoided. 

The isolator is similar to the gyrator in construction except that it 
employs a 45° twist section and 45° of Faraday rotation. In addition, thin 
resistive cards are inserted in the input and output guides to absorb the 
field that is polarized, with the electric vector parallel to the wide side of the 
guide, as shown in Fig. 6.47. The operation is as follows: A wave propagat
ing from port 1 to port 2 has its polarization rotated 45° counterclockwise by 
the twist section and 45° clockwise by the Faraday rotator. It will emerge at 
port 2 with the correct polarization to propagate in the output guide. A 
wave propagating from port 2 to port 1 will have its plane of polarization 
rotated by 90c and will enter the guide at port 1 with the electric field 
parallel to the resistance card, and hence be absorbed. Without the resis
tance card, the wave would be reflected from port 1 because of the incorrect 

FIGURE 6.47 |UIor. 
A Faraday-rota""" 
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polarization, which cannot propagate in the guide constituting port 1. 
However, multiple reflections within the isolator will lead to transmission in 
both directions, and this makes it necessary to use resistance cards in both 
the input and output guides for satisfactory performance. Typical perfor
mance figures for an isolator are forward transmission loss of less than l 
dB, reverse attenuation of 20 to 30 dB, and bandwidth of operation ap
proaching 10 percent-

Isolator 

If the curves in Fig. 6.44 for the propagation constants of circularly polar
ized waves in an infinite ferrite medium are examined, it will be seen that 
the attenuation constant for negative circular polarization is always very 
small whereas that for positive circular polarization is very large in the 
vicinity of the resonance point w0 = <u. This property may be used as the 
basis for a resonance isolator by using a negative circularly polarized wave 
for transmission in the low-loss direction and a positive circularly polarized 
wave for transmission in the reverse direction. In the latter case the wave is 
rapidly absorbed or attenuated. 

The condition for circular polarization is an inherent property of the 
dominant TE1 0 mode in a rectangular guide at two positions within the 
guide. The TEu l-mode fields are 

K. = sin — e ' *• 
a 

> M | ) H V = ±70 s i n — e ' * • 
a 

> M 0 # - = - - c o s — e±Jt* 
a a 

Since Hx and H; differ in phase by 90", circular polarization occurs when 
\HX\ = \HJ, or when * = * j , where 

t a n — L = ± — = ± - ^ (6.114) 
a Pa 2a 

For the solution in the range 0 < .*, < a / 2 , the ratio of Hx to H2 is 

^=+j (6.115a) 

and the solution occurring for a / 2 < .v, < a gives 

— = +/' (6.115o) 

With respect to the y axis, the solution given by (6.115a) corresponds to a 
negative circularly polarized field for propagation in the +z direction and to 
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-*7» Dielectric 
S I loading 

£H— 
rwi 

'Fernre 

FIGURE 6.48 
Rectangular-waveguide resonance isolators. 

positive circular polarization for propagation in the -z direction If .v, 
solution given by (6.3 ISA) is considered, the direction of polarization 
reversed. 

The above property of the TE,0 mode is utilized in the resonance 
isolator by locating a thin ferrite slab (or two slabs, as in Fig. 6.486) in a 
rectangular guide at a position where the RF magnetic field is circularly 
polarized. The ferrite is magnetized by a static field applied in the y 
direction, as in Fig. 6.48. Since the sense of the circular polarization 
depends on the direction of propagation, as (6.115) shows, it follows that. 
for propagation in one direction, the magnetic field is negative circularly 
polarized and suffers little attenuation, whereas in the reverse direction the 
field is positive circularly polarized and rapidly attenuated. By proper design 
the forward loss can be kept to under 0.5 dB/ in at A„ = 3 cm, and the 
reverse loss can be as high as 6 to 10 dB/ in or even more. Dielectric loading, 
as illustrated in Fig. 6.48c, gives an improved reverse-to-forward attenua
tion ratio. 

6.10 CIRCULATORS 

A circulator is a multiport device that has the property (Fig- 6.4 ^ 
wave incident in port 1 is coupled into port 2 only, a wave incident i 
is coupled into port 3 only, and so on. The ideal circulator is also a_ 
device; i.e., with all ports except one terminated in matched loads, t Q{ 

impedance of the remaining port is equal to the characteristic impe« 
its input line, and hence presents a matched load. . q"S o 

A four-port circulator may be constructed from two product 
hybrid junctions and a gyrator as shown in Fig. 6.50. The gyr ^^ g u 
an additional phase shift of 180° for propagation in the directio^ ^ 
b in Fig. 6.50. For propagation from 6 to a, and also from c to 
the electrical path lengths are equal t*o 

Consider a wave incident in port 1. This wave is ^ h y b ' 
equal-amplitude in-phase waves propagating in the side arm 
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FIGURE 6.49 
Schematic diagram lor a four-port circulator. 

junction. The waves will arrive at points a and c in phase, and hence will 
emerge from port 2. A wave incident in port 2 will be split into two waves, 
one arriving at d with a phase d> and the other arriving at 6 with a phase 
<f> + TT because of the presence of the gyrator. These partial waves have the 
right phase relationship to combine and emerge from port 3 in the hybrid 
junction. A wave incident in port 3 is split into two equal-amplitude waves. 
differing in phase by 180°, and hence will arrive at the other hybrid junction 
with the correct phase to combine and emerge from port 4. In a similar 
manner a wave incident in port 4 will split into two equal waves 180° apart 
in phase. But now the gyrator will restore phase equality, so that the waves 
will combine and emerge from port 1. Consequently, the microwave device 
illustrated in Fig. 6.50 has the required circulating transmission property. 

A more compact form of four-port circulator may be constructed by 
employing 3-dB side-hole directional couplers and rectangular-waveguide 
nonreciprocai phase shifters. The nonreciprocal phase shifter will be de
scribed first. It consists of a thin slab of ferriie placed in a rectangular guide 
at a point where the ac magnetic field of the TE, 0 mode is circularly 
polarized, as in Fig. 6.51. A biasing field S„ is applied in the y direction. 

Gyrator 

FIGURE 6.50 
A four-port circulator. 
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-Ferriie slob 

-/ FIGURE 6.51 
A nonreciprocal p h a s , 

Since the ac magnetic field is right circularly polarized at x f 
direction of propagation and left circularly polarized for the opposite" H0"6 

tion of propagation, the perturbing effect of the ferrite slab is different*! 
the two directions of propagation. Consequently, the propagation h 
constant /3_ for forward propagation is different from the propagati* 
constant p_ for reverse propagation. By choosing the length of slab so that 
( £ . - # _ ) / = i r /2 , a differential phase shift of 90c for the two directions o| 
propagation can be achieved. 

A four-port circulator utilizing two 90c nonreciprocal phase shifters is 
illustrated in Fig. 6.52. The phase shifters are biased, with oppositely 
directed static fields—an arrangement easily achieved in practice with 
permanent magnets, as shown in Fig. 6.52. One guide is loaded with a 
dielectric insert to provide an additional 90c of reciprocal phase shift. The 
coupling holes are arranged to provide 3 dB of coupling. The wave coupled 

Permonent 
magnets 

90° 90° 

FIGURE 6.52 
A compact form of four-port circulator. 
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through the apertures suffers a 90° change in phase, and this phase change 
is important in the operation of the circulator. 

Consider a wave in port 1. This wave is split into two waves by the first 
3-dB coupler, the wave in the upper guide undergoing a 90° phase change 
because of the transmission properties of an aperture. The wave in the 
upper guide will arrive at the second coupler with a relative phase of 180*"'. 
and the wave in the lower guide with a relative phase of 90c. The second 
coupler splits these waves in the manner illustrated in Fig. 6.52. It is seen 
that the resultant waves are out of phase in port 4 but in phase at port 2. 
Thus transmission is from port 1 to port 2. A similar analysis will verify 
that a wave incident in port 2 emerges at port 3, or, in general, that the 
sequence 1 -* 2 —> 3 -> 4 —»lis followed. 

-Port C i r c u l a t o r 

[S] = (6.116) 

Carlin has shown that any lossless, matched, nonreciprocai three-port 
microwave junction is a perfect three-port circulator.t This theorem is 
readily proved from the properties of the scattering matrix. A perfectly 
matched three-port junction has a scattering matrix of the form 

" o sv, s v 
S2I 0 S2:t 

S* S,2 0 

For a nonreciprocai junction the scattering matrix is no longer symmetrical; 
that is, Su =f= Sj,. However, if the junction is lossless, conservation of power 
still requires that the [S] matrix be unitary. Thus (4.63a) will hold for any 
lossless microwave junction independently of whether or not the junction is 
reciprocal. Applying the unitary condition to (6.116) gives 

So2<S 8̂ + 5l3®13 = * 

02]02] + O23O23 = 1 

**81®ffl + §32**32 = 1 

S j 3 « 2 3 = S12S32 = S21S31 = u 

Let us assume that S21 * 0. The fourth of the above equations then gives 
S31 = 0. The third equation now requires |S 3 2 | = 1, and thus S, 2 = 0 from 
the fourth equation, IS13\ = 1 from the first equation, and S',23 = 0 from the 
fourth equation again. Thus we see that |S21I = 1 also from the second 
equation, so that 

\9m\ - \8J = \SJ = 1 
S12 *" S 2 3 = S 3 1 = 0 

*H. J. Carlin, Principles of Gyrator Networks, Polylech. Inst. Brooklyn. Microwave Res. Inst. 
Symp. Ser., vol. 4, p. 175, 1955. 
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Consequently, there is perfect transmission from port 1 into por ( . 
port 2 into port 3, and from port 3 into port 1. There is zero transm • *Tlitti 

any other direction. The resultant scattering matrix of any match '* 
less, nonreciprocal three-port junction must then have the form 

°n in 

[ S ] -
0 s« 
0 0 

S.32 0 (6-U7) 

If the locations of the terminal planes in the three input lines are n 
chosen, the phase angles of S1 3 , S21 , and S3 2 can be made zero anrl fif 
e — Q _ c — i 
' 13 - S 2 I - S 3 2 -

Practical realizations for three-port circulators usually involve the 
symmetrical junction (Y junction) of three identical waveguides or "gtn 
line" type of transmission lines, together with an axially magnetized ferrite 
rod or disks placed at the center. Figure 6.53 illustrates both a waveguide 
version and a balanced strip-line version of the three-port circulator. The 
ferrite rod or disks are magnetized by a static B0 field applied along the axis 
and give the junction the required nonreciprocal property. By placing 

.:' FIGURE 6.53 
Three-port « £ * , , . » 
Waveguide vertf* 
line circulator-
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suitable tuning elements in each arm (these can be identical in each arm 
because of the threefold symmetry involved) the junction can be matched; 
that is, Su, Sn, and S 3 3 can be made zero. The analysis given above then 
shows that the junction must, of necessity, be a perfect circulator if all 
losses are negligible. Losses are, of course, always present, and this limits 
the performance that can be achieved. Typical characteristics that can be 
obtained are insertion loss of less than 1 dB. that is, |S1 3 | , IS21I, |S32I greater 
than 0.89, isolation from 30 to 50 dB, and input reflection coefficients less 
than 0.2. The isolation that can be obtained corresponds to values of IS,,!, 
|S1 2 | , and |S23I in the range 0.01 to 0.03. 

The junction circulator is an essential component used to separate the 
input and output ports in negative resistance amplifiers (see Sec. 11.5). 
Circulators are also used to couple a transmitter and receiver to a common 
antenna. Circulators ranging from miniature units that can handle a few 
watts of power up to units that can handle 100 or more kilowatts of average 
power are commercially available. Bandwidths of more than one octave have 
been obtained. 

of Three-Port Circulator 

The field analysis of a three-port circulator is based on the assumption that 
the electric field in the ferrite disk has only a single component £_. in the 
axial direction. The applied dc magnetic field is also in the z direction. The 
permeability tensor then has the same form as in rectangular coordinates; 
so we can write 

B., Mo [6.118) 

where \i.r = 1 + A'*.* a n d JK ~ Xxy 'n o r ^ e r lo obtain a good circulator, the 
losses in the ferrite must be very small. If we neglect losses 

Mr = 

K = 

W'Q ~ U? + (OnU) 0 " - " . 

(On ~ (•> 

W W , 

2 
wn — w 

Equation (6.118) is easily derived from (6.98) by expressing Hx, Hy, Bx, and 
6V in terms of the r and <l> components of the fields. 

From Maxwell's equations we obtain 

1 AE. 
V x E = - a , X V£, = a - — -

r H& 
- a , 

SE, 

•H7 

= -jcon • H = -j(on0ar(tLrHr +JKH.,,) 

-J«M»««J -jKHr + n.rH+) (6.119) 
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We can solve this equation for Hr and H^ and use t b e m 
equation e s u l t s in 

V X H = y w e £ , a , 
the 

to obtain 

<V2 

1 r V ^ 

r <>r 

1 <52E 
+ r2 M> + * *£, - 0 

(6. 120) 

where A2 = aVo<^r ~ K2)e/fir. This equation has the same form as H o 
for the axial electric field for TM modes in a circular waveguide bat 
replacing kc. The general solution for Ez is, by analogy, of the'torm*1**1 *' 

*," I (<*«« '"* + 6.«'"V.(V) 
M=o (6.121, 

where o „ and b„ are amplitude constants and J„ is the Bessel function of 
order «. The corresponding solution for the <t> component of trip ma.™.-
field is 

component of the magnetic 

Ke ;i = 0 
J'n(k*r)-

+ 6, ^;(V) + 
nk 

Jn{k*r) ,-jn4> 

,Mrr 
:«/-(*,r) J"* (6.122) 

where J'„{kt,r) ~ dJ „(kl,r)/d(ker). We can interpret this solution as waves 
that circulate around the ferrite disk in the ±<f> directions. The terms 
multiplied by a„e~'"'* are waves circulating in the +4> direction and the 
terms multiplied by b„ejn* are waves circulating in the ~4> direction. Since 
H„, is different for the two sets of waves, the ferrite disk clearly will exhibit 
nonreciprocal properties, an essential requirement for a circulator. 

Consider now the circulator configuration shown in Fig. 6.54. Each o 
the three microstrip input ports are 120° apart and extend over a coup 
angle i//. In the field analysis of the circulator, it is assumed that Ha « 
constant over each coupling region and is zero along the remainder 
boundary of the ferrite disk. Thus at r = a we let 

(6.123) 

ff, 
4> «/' 

2 ~V 2 

" , = i H2 

2v ill 2ir ip 

T-?^T + 2 

H3 

4 s - i4 4-rr <l> 

The assumption of a constant magnetic field H,,, over ^ " J ^ mod* * 
is a first-order approximation to the magnetic field of the ig.122) '" ' 
exists in each port. At r = a the solution for H,,, given Y 
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Tapered transmission-line section 

FIGURE 6.54 
Three-port circulator showing coupling angle <li and tapered transmission lines for matching;. 

Fourier series; so the amplitude coefficients a „ and b„ are readily found by 
equating (6.122) to (6.123). When the coefficients a„ and 6„ have been 
found by Fourier analysis, the electric field given by (6.121) can be evaluated 
at r = a. 

In order to obtain a circulator, the condition Ez - 0 at d> = 4 i r /3 is 
imposed so that there will be no coupling into port 3. This condition 
establishes a constraint on the ferrite disk radius a, the magnetization Ms 

in the ferrite, and the coupling angle ip. In practice, these parameters are 
optimized so as to obtain the best circulator performance possible, over as 
broad a band of frequencies as possible. It is found that the optimum 
coupling angle tp is given approximately byt 

>!> = 
2-rr 

1.84V3 

K 

M r « o Mr 
(6.124) 

tH . Bosma, On Stripline Y-Circulators at UHK, IRE Trans., vol. MTT-12. pp. 61-72, 1964. 
V. S. Wu and F. J. Rosenbaum, Wide-Band Operation of Microstrip Circulators, IEEE 

Trans., vol MTT-22, pp. 849-856. 1974. 
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Thi s angle is typically a round 30° to 50" and resu l t s in a strin-l ' 
t h a t cor responds t o a low-impedance t ransmiss ion line. Conse "^ ^ ^ h 
pered transmission-line sections are often used to t r a n s f o n n v , 1 ^ ' **" 
impedance into the 50-i i impedance of the input lines. T h e taper H ' ° * 
a re i l lus t ra ted in Fig. 6.54. Satisfactory c i rculator designs have beei 
hy t ak ing as few as 3 to 6 modes into account, t h a t is, n up to 6 ' e v e d 

In t h e above account we have outl ined the principal featur 
field analysis of c i rculators . T h e references at t he end of the chaDt.fr J 
many of the details t h a t we have omi t ted . 

c h a p t e r provfc 

6 . 1 1 O T H E R F E R R I T E D E V I C E S 

T h e devices ut i l izing ferrites for their operat ion described in the preced" 
sect ions represen t only a small n u m b e r of t h e large variety of devices th-! 
have been developed. In addit ion to the above, t h e r e are other forms of 
isolators, both reciprocal and nonreciprocal phase shifters, electronically 
controlled (by varying the cur ren t in t h e e lec t romagnet tha t supplies the 
s tat ic b ias ing field) phase shifters and modula tors , electronic switches and 
power l imiters , etc. T h e nonl inear proper ty of ferrites for high signal levels 
has also been used in h a r m o n i c genera to r s , frequency mixers, and paramet
ric amplifiers. A discussion of these devices, toge ther wi th design considera
t ions, performance da ta , and references to the original literature, 
contained in t h e book by Lax and But ton , listed in the references at the end 
of this chapter . T h e recent ar t icle by Rodr ique gives a good survey of the 
present s t a t u s of ferrite devices. t 

P R O B L E M S 

6.1 . Determine the values of /?[ and R., in the T and II attenuator ne twl 
shown in Fig. 6.8 in order to obtain 6 dB of attenuation. 

6.2. Derive the equations (6.7) for the II attenuator network. 
6.3. For the electronically controlled attenuator shown in the photograpi in 

6.10, the return loss is 10 dB. Calculate the input VSWR (see Sec.. 
6.4. In the rotary phase .shifter, show that if the output quarter-wav^P^^ 

transition, and rectangular guide are rotated by an angle Bv
 a 

phase change of 0, is produced in the transmitted wave. 
6.5. For the phase shifter shown in Fig. 6.15. determine the length in

incremen-
wavelength) for the two short-circuited stubs in order to obtain 
tal phase change of 4 5 \ , e s aCi l*e 

6.6. For the phase shifter shown in Fig. 6.16. assume that the PW. g h u „ ( on t« 
idea) switches. When the diodes are on, the susceptance placed i 

tG. P. Rodrique. A Generation of Microwave Ferrite Devices, Proc IEEE, vc 
1988. 

chaDt.fr
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main line is jBx = -j cot pdv When the diodes are off, the susceptance 
loading the main line is jB-2=j tan (3d. Show that by choosing dt = A„/4 I S 
and d = A„/2 - 8, If, = -B2. 

6.7. For the phase shifter shown in_Fig. 6.15. the transmission coefficient 7'M = 
~/'[l + jB - B2/2] ', where jB is the susceptance of the stub. By using 
1 - / j - = \TjJr, find the magnitude p of the reflection coefficient and the input 
VSWR when B = 0.2 and when B = 0.4. 

Answer: VSWR = 2.04. 2.2 73 

6.8. For a Bethe-hole directional coupler with the two guides aligned (0 = 0) and a 
centered aperture, why does not (6.28) give a useful solution for A0 as a 
function of a whereas (6.29) does? 

6.9. Design a Bethe-hole directional coupler with a centered circular aperture. The 
waveguide size is a = 0.9 in. 6 = 0.4 in. The center frequency is 9.8 GHz. The 
required coupling is 30 dB. Find the aperture radius and the frequency band 
over which the directivity remains greater than 20 dB. 

6.10. Design a Bethe-hole coupler based on (6.29) and (6.30). Assume a = 0.9 in, 
6 = 0.4 in, f = 9 GHz. and C = 30 dB. Find the aperture position d and 
radius r. Evaluate C and D as a function of frequency over the band 8.5 to 
10.5 GHz and compare the performance with that shown in Fig. 6.20. 

B. l l . Figure P6 . l l illustrates two rectangular guides coupled by circular apertures 
in a common side wall. A TE„, mode of unit amplitude radiates a field of 
amplitude j^r^-rr/a)Habli) ' in both directions in the other guide. Design 
a five-hole directional coupler of the binomial type. The coupling required is 
30 dB at a frequency of 10 GHz. The guide width a is 2.5 cm. and the height 
b = 2.2 cm. Find the required aperture radii and the frequency band over 
which the directivity D remains greater than 40 dB. 

6.12. For the coupler described in Prob. 6.11, find the aperture radii to give a 
Chebyshev coupler. The minimum value of directivity required is Dm = 50 
dB. Find the corresponding frequency band. How much greater bandwidth is 
obtained as compared with that of the binomial coupler of Prob. 6.11? 

6.13. Design a three-hole Chebyshev directional coupler using rectangular wave
guides with a = 0.9 in, * = 0.4 in. The center frequency is 9 GHz. The 
coupling and minimum directivity Dm contributed by the array factor is 20 dB 
and 30 dB at 9 GHz. The apertures are located at x„ = a / 4 . Plot C and D as 
a function of frequency and compare the performance with that shown in Fig. 
6.24. 

6.14. Repeat the design problem given in Prob. 6.13 but instead of using Dm = 30 
dB, the requirement is that the fractional bandwidth A0/0 ( ) = 0.1, where 
B0 = 1.29 at 9 GHz and A# = # 8 - pl with /S2 = (S„ + 0.05/?u and /?, = /?„ -
0.050,,. What is the resultant value of D,„ for this design? 

file:///TjJr
P6.ll
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6.15. Design a three-hole Chebyshev directional coupler using cent 
the common broad wall between two rectangular waveguides (f a p e r l u r e s in 

center frequency is 9.5 GHz. The waveguide width equals Otf'-6 '23 ' ' '"be 
height equals 0.4 in. The required coupling is 30 clB and th 'n ^"d l he 
directivity is 30 dB. Find the aperture radii, spacing, and the band6 ? ' n i n i u ni 
coupler. Why is this not a good design? awWth of the. 

6.16. Design a broadside-coupled strip-line directional coupler with 3 HR 
See Figs, 6.27 and P6.16 for details. The ground-plane spacing "S2 C Q U p h n g 

input and output lines have a characteristic impedance of 5n n p.1"' ^e 

required strip width W and spacing S. Find W so as to obtain Z = -^ th* 
the input and output lines. For this calculation assume that th K "? 
centered between the ground planes. In the actual coupler the 1 C 

upper lines are not centered, but since the spacing S is small the chamT'' ^ 
will also be small. The computer program CSTPL should be used to obt '" i 
needed line parameters. Find the length of the coupled section when" 
frequency is 4 GHz. Assume that the strips have a negligible thickness 

2 cm t« 
-IV- FIGURE P6.16 

6.17. A branch-line coupler of the type shown in Fig. 6.29 and having 6-dB coupling 
at a frequency of 5 GHz is needed. The input and output transmission lines 
have Zc = 50 LI. Determine the characteristic impedances of the through lines 
and branch lines and their lengths in terms of wavelength. The coupler is tc 
be built using microstrip lines on a substrate with a dielectric constant of I 
and 1 mm thick. Determine the widths of all transmission lines and ike 
lengths of the through lines and branch lines. Use the computer prograi 
MSTP to determine the microstrip line parameters. Use the computer pro
gram MSTPD to determine the effective dielectric constants at 5 GHz a 
modify the transmission-line lengths so as to take into account the disper 

in the effective dielectric constant at 5 GHz. 
6.18. The hybrid ring shown in Fig. 6.33 is constructed using microstrip lines on 

1-mm-thick substrate with a dielectric constant of 2.3. The input a n d ^ ^ 
transmission lines have a characteristic impedance of 50 Si. ue ^ ,f,e 

width of the transmission lines and of the ring as well as the " " "^"^s lT 
ring. The frequency of operation is 2 GHz. Use the computer prog 

6.19. Determine the impedances and the value of the resistor R °\e^%,eTei»" 
divider shown in Fig. 6.38. The power in port 2 is one-half of tna 

port 3. eration in 8 

6.20. Use the equation of motion (6.94) to study second-harmonic ge . a l i o n at* 
ferrite. Assume that M = M ,*•""' + M , ? 2 " " for the ac « J ^ h B t is. the * 
that H has only an .r component with time dependence e • oCClix^' 
magnetic field is Hse

J"''ax. Neglect the third-harmonic term 
show that 

2j<oM2 = y»nHxa, X M, + yp0ti0*, * *** 
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Thus 2JMM2C = W u H , M l v . For M l v , take the small-signal solution * „ / / , 
and use the value of Xvx a* resonance for a lossy ferrite to show that 

M a s = — 

Note that, for good efficiency, a must be small (small damping), so that the 
precession angle will be large at resonance. 

6.21. From the unitary properties of the scattering matrix for a lossless nonrecipro-
cal two-port microwave junction, show that it is not possible to have S 2 1 zero 
while 5 1 2 is finite. Thus a lossless one-way transmission device cannot be 
built. 

6.22. Continue the argument in the text to verify that the transmission sequence 
1 > 2 -» 3 -> 4 — 1 is followed in the circulator illustrated in Fig. 6.52. 

6.23. Show that the scattering matrix for an ideal lossless JV-port circulator can be 
put into the form 

[S] = 

by choosing proper terminal-plane locations in each port. 
6.24. Show that, for TEM-wave propagation in a direction perpendicular to B„ in an 

infinite ferrite medium, the two solutions are linearly polarized waves with 
propagation constants 

,11/2 

0 0 0 • • 0 1 
1 0 0 • • 0 0 
0 1 0 • • 0 0 

0 0 0 • • 1 0 

>•+=/«•» 

Y-! 

1 + .V 

Hint: Consider propagation along x, and in one case assume E to have 
only a y component, and for the other case assume E to have a z component 
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CHAPTER 

7 
ELECTROMAGNETIC 

RESONATORS 

R E S O N A N T C I R C U I T S 

Resonant circuits are of great importance for oscillator circuits, tuned 
amplifiers, frequency filter networks, wavemeters for measuring frequency, 
etc., at all frequencies from a few hertz up to and including light frequen
cies. Electric resonant circuits have many features in common, and it will be 
worthwhile to review some of these by using a conventional lumped-parame
ter RLC parallel network as an example. Figure 7.1 illustrates a typical 
low-frequency resonant circuit. The resistance R is usually only an equiva
lent resistance that accounts for the power loss in the inductor L and 
capacitor C and possibly the power extracted from the resonant system by 
some external load coupled to the resonant circuit. 

At resonance the input impedance is pure real and equal to R. This 
implies that the average energies stored in the electric and magnetic fields 
are equal, since from (2.60) 

Z;„ = 
P, + 2ja,(Wm - We) 

211 

(7.1) 

This equation is valid for any one-port circuit provided a suitably defined 
equivalent terminal current / is used. Thus resonance always occurs when 
W^ = Wg, if we define resonance to be that condition which corresponds to a 
pure resistive input impedance. In the present case the time-average energy 
stored in the electric field in the capacitor is 

Wc = \VV*C 

481 
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I-

L a ^ FIGURE 7.1 
Lumped-parameter resonant circuit. 

and that stored in the magnetic field around the inductor i s 

1 1 
Wm = -LI J? = —£ 

'" A 4 

V 

4w2L 
W* 

The resonant frequency w0 is now found by equating W and 

o,o = ( L 0 ) - v a 

(7.2) 
An important parameter specifying the frequency selectivity, and per 

formance in general, of a resonant circuit is the quality factor, or Q. A verv 
general definition of Q that is applicable to all resonant systems is 

Q = 
w( time-average energy stored in system) 

energy loss per second in system (7.3) 

At resonance Wm = W. and since the peak value of electric energy stored in 
the capacitor is 2W(, and occurs when the energy stored in the inductor is 
zero, and vice versa, the average energy W stored in the circuit is 

W = W,„ + W= 2W„ = 2W = kCW* (7.4) 

The power loss is ^GW* and is the energy loss per second. Hence, for the 
circuit of Fig. 7.1, 

tiiC R 

G coL 
(7.5) 

since u>2LC = 1 at resonance and G = R . ~wiance 
In the vicinity of resonance, say w = o>0 + Aw, the input tmpec 

can be expressed in a relatively simple form. We have 
1 - AW/G>O 

R jwL J ~ I \R 

where the approximation l/ '(w0 + Aw) = (1 - Aw/w 0 ) /^o fc 

Since ju0C + l/jco0L = 0, we obtain 

(o'JRL 
Z i D = a>2

0L+j2RAa> 

R 

1 + j2Q{ba>/<*o) 

and is n 8 iyp; [ic«l 

A plot of Zin as a function of Aw/w0 is given in Fig. 7.2, a n ^ v ajUe ; 

c curve. When \Zm\ has fallen to 0.707 of its m a f " ^ e s p o ^ ' 1 ' 
phase is 45° if w < w0 and - 4 5 ° if w > w„. From (7.6) the 
resonance 
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& 

-ft 

- \ 0.707-9 

• 90° / l 

A \f~VLA 

\ 

BW XT' -9°" FIGURE 7.2 
Z,„ for a parallel resonant circuit. 

value of Aw is found to be given by 

or 

A to 
2Q = 1 

A W = 2 Q 

The fractional bandwidth BW between the 0.707ft points is twice this; 
hence 

Q = 
2Au> 

1 

BW 
[7.7) 

This relation provides an alternative definition of the Q; that is, the Q is 
equal to the fractional bandwidth between the points where |Z,„I is equal to 
0.707 of its maximum value (for a series resonant circuit this definition 
applies to \Y:n\). 

If the resistor R in Fig. 7.1 represents the losses in the resonant 
circuit only, the Q given by (7.5) is called the unloaded Q. If the resonant 
circuit is coupled to an external load that absorbs a certain amount of 
power, this loading effect can be represented by an additional resistor R, in 
parallel with R. The total resistance is now less, and consequently the new 
Q is also smaller. The Q, called the loaded Q and denoted Q, , is 

QL-

RRL/{R + RL) 

(oL 

The external Q, denoted Qe, is defined to be the Q that would result if the 
resonant circuit were loss-free and only the loading by the external load 
were present. Thus 

file:///f~VLA
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Use of these definitions shows that 

1 J_ 1. 

Another parameter of importance in connection with a resonant circuit 
is the damping factor 6. This parameter measures the rate at which the 
oscillations would decay if the driving source were removed. For a high-Q 
circuit, 8 may be evaluated in terms ol the Q, using a perturbation 
technique. With losses present, the energy stored in the resonant circuit will 
decay at a rate proportional to the average energy present at any time (since 
P a W* and W a VV*, we have P,aW), so that 

dW 

— = -2SW (7.9) 
at 

or w=Wne^' (7.10) 

where Wu is the average energy present at / = 0. But the rate of decrease of 
W must equal the power loss, so that 

dW 
= 2 S W = P , 

dt 

Consequently, 

P, ^£i_ _ JL (7.11) 
S = 2W ~~ 2 u>W 2Q 

upon using (7.3). The damping factor is seen to be inversely proportional to 

the Q. In place of (7.10) we now have 

W = W0e'",,/Q 

I n (7.12) Q must b e replaced b y Q , i f a n ^ . d l ^ ^ ^ t S e ° 
circuit. The damping factor 8 i s also a measure of h o w f a s ^ r f g ^g 
oscillations in the resonant circuit can budd up upon apphc 

S ° ™ n microwave systems sections of transmission fines^J*^ 
sures called cavities are used as resonators m p l a c e o t h e £ g * 
circuit. The reason for this i s that l u m p e ^ ^ J s ^ b e « * * J * 
losses from both conductor loss and radiation loss aVe ca ^ 
m " w a v e frequencies. In calculating the i m p e d a n * * a * s e n , T h e * J 
i t i s sometimes convenient t o assume there a e ^ P i m p e d * £ f a 

be evaluated separately, and in terms of ih^*™™fonant fire**** 
be modified to account for losses by replacing the ^ = *„ W» 
an equivalent complex resonant frequency w„U +. / / 
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that (7.6) can be written as 

w0R/2Q 

j[w-u>0(l+j/2Q)} 
(7.13) 

which shows that when losses are present this is equivalent to having a 
complex resonant frequency w0(l +j/2Q). Equation (7.13) neglects the 
small change in resonant frequency that occurs when small losses are 
present. 

7.2 T R A N S M I S S I O N - L I N E R E S O N A N T C I R C U I T S 

Series R e s o n a n c e ; S h o r t - C i r c u i t e d L i n e 

At high frequencies, usually in the range 100 to 1,000 MHz, short-circuited 
or open-circuited sections of transmission lines are commonly used to 
replace the usual lumped LC resonant circuit. It is therefore of interest to 
consider the order of magnitude of Q and impedance that can be obtained. 
It will be assumed that air-filled lines are xised, so that the only losses are 
those due to the series resistance R of the line. This is usually the case in 
practice since a dielectric-filled (ine has some shunt conductance loss and 
hence would result in a lower Q. 

Consider a short-circuited line of length /, parameters R,L,C per 
unit length, as in Fig. 7.3. Let / •= A0 /2 at f = f0s that is, at to = <o„. For f 
near f0, say f = f0 + A f, fil = lirfl/c = TT(U/W0 = TT + 77 iw/01,,, since at 
w0, fil = v. The input impedance is given by 

Zin = Zv tanh( jliI + al)=Zc 

tanh al +,/' tan fit 

1 + j tan j5l tanh «/ 

But tanh al = al since we are assuming small losses, so that al <s 1. Also 
tan fi! = tan(— + — Aa)/(o0) = tan IT iw/w, , = ~ Au>/<o(l since \u>/io0 is 

, I «* if 1 £3 / 

< f 

/i* Zcfl.K -"p ^o 

FIGURE 7.3 F IGURE 7.4 
Short-circuiled transmission-line A series resonant circuit 
resonator. 
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small. Hence 

al +JTT\W/O,Q I . Aw 

in = Z<" 1 , • / A ', = Zc \ a l +JTT 

since the second term in the denominator is very small Now 

(7. 14, 

a = \RYr = (R/2)JC/L, and 0/ = co0jLCl = TT; SO TT/W O = / ^ c 
expression for Zm becomes and the 

f C 2 f L + J ' i W = 2 f i ' + i l l A a ( 
Z,= \ - \-R\\-

It is of interest to compare (7.15) with a series R0L0C circuit 
illustrated in Fig. 7.4. For this circuit 

Zlr, = S 0 +J*>LQ[l -
tD~L0C0 

If we let oig = 1/L0C„, then 

2in = ffo +7wZ.0-

Now w2 - oij = (at - w0)(u + w0) = AOJ 2w if a) - co0 = Aw is small. 

Zin = fio +7'wL 
2(oAw 

' 0 2~ 
to 

= ft0+j'2L0Ac (7.161 

By comparison with (7.15), we see that in the vicinity of the frequency I 
which / = A0 /2, the short-circuited line behaves as a series resonant arc 
with resistance RQ = ^Rl and inductance L0 = \Ll. We note that ««-
are the total resistance and inductance of the line; so we might wonde -
the factors \ arise. These enter because the current on the sbort-c ^ 
line is a half sinusoid, and hence the effective circuit parameters no- ' 
only one-half of the total line quantities. vcuit °^ 

The Q of the short-circuited line may be denned as for the a 
Fig. 7.4: 

a>0L0 <oQL p (7. 
Q Rf R 

2_ 
2a W e ^ 

As an alternative, the general definition (7.3) may be used, ^ ^ s "* 
evaluate the Q of the short-circuited line from this definition j 
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an approximate method valid for high-Q (i.e., low-loss) systems in order to 
illustrate a method of great utility in connection with many microwave 
devices (see Sec. 3.8, where this perturbation method is discussed). For 
small losses the energy stored in the system is, to first order, the same as if 
no losses were present. For a loss-free short-circuited line, the current on 
the line is a pure standing wave 

/ = / 0 c o s / ^ <?-"•" 

where z measures distance along the line from the short toward the input 
end. In a length dz, the energy stored in the magnetic field is 

dWm = \H*Ldz = \l$L sin2 iizdz 

The total time-average stored energy in the magnetic field is 

W„ -XLfA"/2cos^zdz=^L 
4 •'o 16 

The energy stored in the electric field, i.e., in the line capacitance, is equal to 
Wm at resonance; so the time-average energy stored in the system is 

W= W,„ f f = -^LI 
8 o 

To a first approximation the losses do not modify the current distribu
tion along the line. Hence the power loss is given by 

p- ~rRn*dz = ~isr\os^zdz = ^m^ 
Thus, at <o = «„, 

M<IW u>aAuLI*/8 a>0L 
Q = - p - = K/»A0 /8 =~R~ ( 7 ' 1 8 ) 

which checks with the earlier result. Typical values of Q range from several 
hundred up to about 10,000. As contrasted with low-frequency lumped-
parameter circuits, the practical values of Q are very much higher for 
microwave resonators. It should be noted that in the above analysis the 
losses in the short circuit have been neglected. This does not introduce 
appreciable error if the length / is considerably greater than the conductor 
spacing. 

L i n e 

By means of an analysis similar to that used earlier, it is readily verified 
that an open-circuited transmission line is equivalent to a series resonant 
circuit in the vicinity of the frequency for which it is an odd multiple of a 
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?t 

]L° FIGURE 7.5 

CQ ? ^ ! n - d r C u i t e d "ansa,; ST ° resonator. missi, °<H.* 

quarter wavelength long. The equivalent relations are (Fig. 7.5) 

/ - A° * 
4" at(0« 

7 ( , Aw w\„ 1 

Ro = 2Rl 

LQ = -LI 

<-(L0Co) 

(7.19a) 

(7.196) 

(7.19c, 

(7.19rf) 

(7.190 

Antiresonance 

Short-circuited transmission lines behave as parallel resonant circuits in the 
frequency range where they are close to an odd multiple of a quarte 
wavelength long. The same property is true of open-circuited lines that are 1 
multiple of a half wavelength long. When they behave as parallel resonant 
circuits, they are said to be antiresonant. ^ ^ ^ * 

The case of parallel resonance is best analyzed on an admittance 
With reference to Fig. 7.6, let / equal A0 /4 at w = w0. Then 

111 = w)fLCl = w0\fl~Cl + Ato/LCl 

n. r<. oc.B C° FIGURE 7.6 
Short-circui 
mission line. 

& — — " • " ' 
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at co, and the input admittance is given by 

Yin ~Yccoth(a+jfi)l 

1 +7 tan pi tanh al 
Yc 

since 

tanh al + j tan /3/ 

1 -jal/(±wljLC) 

al -j/(Acoly/LC) 

77 

tan(w0\/LCZ + A W L C / ) = tan I— + Ao>\/LC/ 

- l 
= -(Awv/LC/) 

and tanh al ~ al. A further approximation yields 

j liojLCl + al 
Ym = Yc I + j boo al2/LC 

= Yc(jAa>yfLCl + al) 

RC 
= — 1+jAcoCl 

after replacing Yc by ^ C 7 ? and a by i ; .R /2 . 

For the parallel resonant circuit of Fig. 7.6, we have 

1 

K0 +JcoL0 

jcoC0(R0 + jcoL0) + 1 

Rn + jcoLn 

JCOCQRQ — co LQCQ + 1 

since we assume Ra « wL0 . If we define w0 by <O'QL0C0 = 1, then 

C0 i?0 conL0C0 - co L0C0 

(7.20) 

fio7 JLoCi 
(a>0 - OJ)(<U0 + co) 

* ^ o T 1 + . / C 0 2 A W (7.21) 
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Comparison with (7.20) shows that the short-circuited line in th 
a quarter wavelength long is equivalent to a parallel resonanr-o •VlclnUy 0r 

CnRQ RC 
~ l CI = 2C0 

R, R 

The Q of the circuit is given by 

a>Q2i0 

• " • i r - - ^ - -~R 2o (7.22) 

Although sections of transmission lines behave as simple Ii 
parameter resonant circuits in the vicinity of a particular resonim r 
quency, they are in reality a much more complicated network havin 
infinite number of resonance and anliresonance frequencies. The resona 
frequencies occur approximately when the short-circuited line is a multi 
of a half wavelength long, that is, /'„ = rac/2/, and the anliresonance 
frequencies (parallel resonance) when the line is an odd multiple of i 
quarter wavelength long, that is, f„ = (2n + l ) c / 4 / , where n is an integer. 
Thus the exact equivalent circuit would consist of an infinite number of 
resonant circuits coupled together. However, in practice, the frequency 
range of interest is normally such that a simple single-resonant-frequency 
circuit represents the transmission-line resonator with adequate accuracy. 

7.3 M I C R O S T R I P R E S O N A T O R S 

In microwave circuits that use microstrip transmission lines, an open-cii 
cuited section of microstrip line may be used as a simple resonator. In Fig. 
7.7a we show a microstrip resonator that is capacitively coupled to the mpul 
microstrip line. In Fig. 7.76 we show a similar resonator that is capacitivel: 
coupled to the side of the microstrip line. An alternative resonator configu-

\w C 

(a) W 

\ZZ 

(c) 

FIGURE 7.7 

consisting of , ineapProv 

imately one-half *» 
IonK and c - p a ^ J & 

- * > « • t o a 55?*! 
,6) the same re=o 
<a) bul coupled to <c)0*-
the microstnp ^ {) 

cular disk or 
tch- r e s o n - t o r w ^ p , 

c o u p l e d t o a m . * * 
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\—fih 

T 
M 

FIGURE 7.8 
The equivalent circuit of the resonators shown in Figs. 7.7o iind b. 

ration is the circular disk that is capacitively coupled to a microstrip line as 
shown in Fig. 7.7c. The equivalent circuit for the resonators shown in Figs. 
7.7a and 6 is a transmission line of length / with a capacitor C„ at the 
open-circuit end and a capacitive II network that represents the coupling 
region as shown in Fig. 7.8. The fringing electric field at the open-circuit 
end results in additional charge on the microstrip line near the open-circuit 
end and this is modeled by the capacitor C„. The capacitor C„ makes the 
electrical length of the resonator appear to be longer than the physical 
length /, because the line length has to be increased beyond A/2 to provide 
the additional inductance that will compensate for the additional capaci
tance. Resonators of the type shown in Figs. 7.7a and b are commonly used 
in microstrip filters (see Chap. 8). 

In order to design a resonator of the type shown in Fig. 7.7a. the 
open-circuit capacitance C,, and the values of C„ C2, and C';, in the coupling 
network must be known. These parameters have been evaluated by Sil
vester and Benedek using the assumption of static potential fields.t The 
results are accurate for frequencies up to several gigahertz for microstrip 
lines with substrates 1 mm thick and even at higher frequencies for thinner 
substrates. In Fig. 7.9 we show typical values of the open-circuit capacitance 
Co/W, where W is the width of the microstrip line. In Fig. 7.10 we show 
typical results for C,, C2, and C:i for various microstrip parameters includ
ing the gap spacing s. 

tP . Silvester and P. Benedek, Equivalent Capacitances of Microstrip Open Circuit*:. IEEE 
Trans., vol. MTT-2G, pp. 511-516. 1972. 

P. Benedek and P. Silvester. Equivalent Capacitances for Microstrip Gaps and Steps, IEEE 
Trans., vol. MTT-20, pp. 729-733, 1972. 
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2 - L -

JTjty i 
-

\S i 
1 N i 

— 9.6 

0.2 -— 4.2 

"*-• 2.5 

0.1 
1 < 1 1 I fH i i i i i 

«,= 1 

1.0 
W/H 

10 
FIGURE 7.9 
Microstrip-line open-circuited capacitance. 
( Based on Fig. o of Silvester and Benedek.) 

The resonator and coupling circuit shown in Fig. 7.8a can be repre
sented by the equivalent lumped-parameter circuit shown in Fig. 7.11a, in 
the vicinity of the resonant frequency. In these circuits the capacitance C, 
and inductance 
given by 

L, are those contributed by the transmission line and are 

c, = \ci (7.230) 

(7.236) 

where C and L are the distributed capacitance and inductance per r 
for the microstrip line and I is the length of the resonator. The.factor ^ 
arises because the voltage and current standing waves on t n e ^ by 

sinusoidal, so that the stored electric and magnetic energies are r ^ 
one-half from what one would have for constant voltage and cu ^ ^ 
amplitudes, and this makes the effective capacitance and i n d u e t a r ^ ^ 
equivalent lumped-parameter model one-half of those tor 
resistance R represents the total losses in the resonator. , t j o n of ft 

For the circuit in Fig. 7.11a, the input admittance at the 
is given by 

j*>C0+jYetaxipl + G 

yiM - j « c 8 + YC ^ _ wCo tan pf 
wiH denote »C^ 

as reference to Fig. 7.8a clearly shows. For convenience we i t t a n ce '-
WCV OJC.,, and wC3 by B 0 , B „ B2, and S 3 . The input a 
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u. 
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o 

0.01 

0.1 _ 

S/W 

u. 
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0.01 

S/W 
(a) (fe) 

LL 

a 

o 

1 • -— _̂_ 8 6 

\ 
1 

1 
1 12. 

96 

~C2 
0.1 **~ 3^ Ce - " 

2.5 

6 r=1 

W/H = 2 

0.01 i i i i i _1 L 
0.05 0.1 

S/W 

(O 

0.5 

F IGURE 7.10 
The Il-network capacitances for a microstrip-line gap. 1 Based on Fig. 7 of Benedek and 
Silvester.) 

across C, is given by 

Y^-jB, 
JBJU 

JB2 + Y;n 

j ( B , +B2)Y-;n-BlB2 

JB.2 + Y.;n 
(7.24) 

In a gap coupled microstrip resonator Bt «*: S2 so it is operated as a series 
resonant circuit. Series resonance occurs when the imaginary part of the 
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FIGURE 7.11 

(b) 

(a) Equivalent lumped-parameter circuit for the resonator and coupling network 
7.8a; (6) a simplified equivalent circuit incorporating an ideal transformer ?* 

denominator vanishes. The condition for resonance is thus 

^in _ & = JB'm ™ ~JB2 (7.25) 

When we substitute for Y-n, we obtain an equation for tan pi which is 

YC(B2 + B0 + B.3) 
tan pi = 

B0(B2 + Ba)~Yc
2 (7.261 

Since B2 , B:j, and B0 are all very small, pi will be somewhat smaller than 
77 since the expression for tan pi is small and negative. The resonant length 
is shorter than one-half wavelength because of the capacitive loading at the 
input and output ends. When we use (7.25) in the numerator in (7.24) and 
assume that we can approximate G + jB'm by -jB.2 for all values of <* h 
the vicinity of the resonant frequency, we are able to express (7.24) in t 
form 

Y, -
B? 

G+JiB'n + Bz) 
C f Hi' 

When we compare this expression with that for the input admittance 
circuit in Fig. 7.116, we see that 

z>»=Mju)L'-^k + R. - j S l G + • / ( * . 1 Bt)\ 

so the ideal transformer turns ratio is 

n = B 2 

where Rc can be chosen arbitrarily. 
Thus we have 

G 

F in = fif[/W(C2 + C3 + C„) +jY„ tan pi + G\ 
-\ 
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In (7.28) we have used the approximation Y-n =jcoC:i + jwC0 + jYt. tan pi 
+ G which is obtained by replacing the denominator factor Ye - wC0 tan pi 
by Yc since wt?0 tan pi is a second-order small term near resonance because 
both ioC0 and tan ft I are small. The term jYc tan ft I can be represented by 
a parallel connection of Ct and L, in the vicinity of resonance as discussed 
earlier for transmission-line resonators. Thus, in the equivalent series 
resonant circuit shown in Fig. 7.11b, the total inductance is the sum of C(, 
C0 , C3, and C2, that is, 

n2 

^ = ^ l C 2 + C 3 + C 0 + t?,] (7.29) 

When the dispersion of the microstrip line can be neglected, the Q is 
given by (7.17) as 

P R 
Q = — = — - * «,6C,fl (7.30) 

where R is the equivalent parallel resistance that will account for conductor 
and dielectric losses in the microstrip line. From the examples considered in 
Chap. 3, we found that typical values of attenuation for a microstrip line 
was in the range 0.5 X 10 ~2 to 1.5 X 1 0 _ 2 Np/wavelength. Hence typical 
values of Q obtained from (7.30) would be 200 to 600. There is some 
additional loss caused by radiation of power from the open-circuited end. 
Measured values of Q for microstrip-line resonators are usually in the 
range 100 up to several hundred. 

When Kin = Yt. at resonance, all of the incident power will be coupled 
into the resonator. Since Ym = n2/Rr at resonance, the required value of n2 

for critical coupling is 

n2 = YCR,. 

The parameter 

0tYe = ^-^Yc = nYc = ^ { U C ^ l = 2io0C, 

so R = 2Q/vYc, as may be seen by using (7.30) for Q. Thus 

for critical coupling. If Q = 157, then B.2 = y c /10 . For a high-Q resonator, 
only a small coupling capacitance is required to obtain critical coupling. 

The loading of the resonator by the external transmission line is 
equivalent to a resistance n2Zt. connected in series with Rc. Thus the 
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external Qe is given by 

_ a>0Le OQCX QYCG 

n*Z,. Bf B-l 
The coupling parameter K is given by the ratio Q/Qe and 18 

K = 
Bl 2QBI 

Y,G 

using R = 2Q/TTY C given 

(7.326) 

(7.31). as found by using R = 2Q/TTYC given above W.31). Sin 
YJTT/2Q » irYe/2Q = G our earlier assumption that the numerator^ 
7 i n in (7.24) could be approximated by Bf is justified. Prom Fig. 7 i0 

be found that for the typical values of C2 that are required C and C -
negligible. A parallel resonant circuit coupled by a small series connect" 
capacitor functions as a series resonant circuit. 

For a transmission line without dispersion, that is, p is a linPa 
function of w, the Q of the transmission line is given by p/2a. U the 
propagation constant p is not a linear function of a>, the transmission line 
is said to be dispersive. For a microstrip line the effective dielectric constant 
et, is a function of oj; so ji = \Jee(oj) kn is not a linear function of w. In the 
frequency range where ec is changing quite rapidly with frequency, a 
different expression from that given above must be used for the Q. The 
power flow along the transmission line is given by Wvg, where W Is the 
average stored energy per unit length and vg is the group velocity which is 
given by (dp/dv)~\ Thus W = P/ug -= P(dp/d<o) and the Q is given by 

IOW coP(dp/dw) w(dp/d<o) 

2aP 2a 

When there is no dispersion, /3 = w/vp, where vp is a frequency-indeper 
dent phase velocity. For this case the general expression for Q re°u C e s 

P/2a. When there is significant dispersion, the capacitance C, in 
equivalent circuit of the resonator is also a function of o> because e, is. 

C i r c u l a r D i s k R e s o n a t o r 
Fig- 7.12. An 

The circular disk or planar radial resonator is shown in r * e a £ j n g t he 
approximate analysis of this resonator is readily carried out by ^ ^ 
outer boundary at r = a as a perfect open-circuit boundary {ma^0n , gpi 
on which n x*H = 0. The field in the resonator will not Aepen ^ ^ ^ 
will have an axial electric field Er. Thus the modes in the reS°ut vv-ith d] 
like those of TM of E modes in a circular waveguide at cutott ^ sUju»bl* 
guide boundary being a magnetic wall instead of an electric 

expression for the axial electric field is 

Ez = CJ„(kr)cos n<i> 
-
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H . = 0 
(a) (ft) 

FIGURE 7.12 
The circular disk resonator. 

where C is an amplitude constant, J„ is the Bessel function of order re, and 
k = JTrkfj with er being the dielectric constant of the substrate material. 
Since this is the only electric field component present, the magnetic field is 
given by 

V x azE, = - a , X VE, = - j « ^ 0 H = -jk^YL 

or 

H = 
-J a ,x VE,= 

«0Z0 
- + a, x a(k—• r <ir r <ty> 

-^-^-a^ArJcos/J^ - fc y _a rJ„(Ar)sinn</> 
kuZnr 

(7.34) 

where J'n(kr) = dJn(kr)/d(kr). In order for 72^ to vanish at the boundary 
r = a, we require J'n(ka) = 0. The roots of this equation are given in Table 
3.7. The smallest root is 1.841 corresponding to the use of the junction 
Jx(kr). The resonant frequency is obtained by equating ka = ^erk0a to 
1.841; thus 

1.841c 
W l l n = 7= '110 

V ^ r O 
(7.35a) 

where c = 3 X 1010 c m / s is the speed of light.t Since n = 1, 1.841 is the 
first root, and there is no dependence on z, this dominant mode is desig
nated as the T M U 0 mode. As an alternative we can solve for the radius o 
which is given by 

a = 
1.841 

\ / e > o 
(7.356] 

For a resonator at a frequency of 4 GHz and using alumina with er = 9.7 as 

tMore accurate expressions for the resonant frequencies are given in I. Wolff and N. Knoppik. 
Rectangular and Circular Microstrip Disk Capacitors and Resonators, IEEE Trans., vol. 
MTT-22, pp. 857-864, 191 A. 
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the substrate materia], we require a = 0.7056 cm which resi 
t ivo lv c n m n f t r t r ecAna t f i r tively compact resonator. rela. 

The Q of the resonator is readily evaluated. The stored oU 
is given by e t e c t r»c ener, 

We-\Cf- -JlJJjJtWcos^rdrdAdz 

1 „7re'e(,6 
= | C ! 2 — ^ - a 2 J , (ka) + 11 -

1 

k2ai )JAka) 

(7.36) 

since J{(ka) = 0. In this expression f'r is the real part of the dielect i 
constant and b is the substrate thickness. The stored magnetic energy W 
equals V̂ , at resonance. 

The power loss in the dielectric is given by 

Pn<=^T / \Efrdrd4dz = ~^Wt 

2we: 

7, (7.37) 

The power loss in the conducting disk and ground plane is given by 

2 -"o •'o 

'0 JQ 
= Rj2*fa(\H/ + \H/)rdrd<l> 

Jn •'n * 

since the current density is given by a, X H on the ground plane and j 
- a , X H on the disk. After substituting from (7.34) for the magnetic fi 
we obtain 

P„ - icrjgr k2jf(kr) + ~^Jf(kr)\rdr 

after integrating over 4> which gave a factor of IT. We can integra 
term by parts to obtain 

,adJx(kr) dJv(kr) . , , dJ^kr) 

'o 

the first 

j-a d-J 

• i , dr dr 
-rdr = rJx{kr) 

dr 

-fj^kr) 
dr 

dJ^kr) 

dr 
dr 

Since J't(ka) = 0 the integrated term is zero. We now 
differential equation 

take note oft** 

d dJx I 1 
— r — ~ + \kzr 
dr dr \ r 

J , = 0 

file:///Efrdrd4dz
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satisfied by Jx(kr). By using this equation to express the second derivative 
of Ji in terms of J , , the expression for Plr reduces to 

,R„ir 

The Q is given by 

-**-sm*v-w™*f 

2a>Wf k0b 
Q ' pld + ph "" 2i?„,y0 + 6';fe06/c; ( 7 3 8 ) 

which is a surprisingly simple result in that there is no dependence on the 
Bessei function or the radius of the resonator. In (7.38) the substrate 
thickness is given by the parameter 6. 

As an example we will consider a disk resonator operating at 4 GHz. 
The substrate will be chosen as alumina with e'r = 9.7 and e". = 0.0002 and 
having a thickness 6 = 1 mm. For this resonator k0b = ( 2 - / 7 5 ) = 0.08377: 

Q 
8.377 X 10~ 

2 X 16.44 x 1 0 - ; , / 1 2 0 ~ + 2 x 8.377 X 10 */$.! 

8.377 

8.72 x 10~3 + 1,72 x 10 * 
= 942 

The dominant loss mechanism is conductor loss. The Q of this resonator is 
higher than that of a transmission-fine type since the conductor losses are 
smaller. In practice, the Q can be expected to be less because of radiation 
loss and extra loss from surface roughness on the disk. There will also be a 
much larger azimuthal current density J,,, at the edge than is obtained 
using the approximate theory given above. For an infinitely thin disk, the 
current eL should exhibit the usual edge singularity and be proportional to 
(a 2 - r 2 ) ~ 1 / 2 as the edge is approached. There will also be some current 
flowing on the top surface of the disk and this will also increase the 
conductor losses. 

The actual resonant frequency of the disk resonator is lower than that 
predicted by the simple approximate theory used above. More accurate 
formulas have been obtained that will give the resonant frequency to within 
about 1 percent. The reader is referred to the literature for a more compre
hensive treatment.! 

f£ Woiff and N. Knoppik, Rectangular and Circular Microstrip Disk Capacitors and Res
onators, IEEE Trans., vol. MTT-22. pp. 857-864, 1974. 
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C^L 
Coo»>o 

line 

r̂  
Coaiioi 

line 
(a) 

Waveguide 
Aperture FIGURE 7.13 

tc) 

Cavity-coupling methods, (a) Loop coupling. , . , 
probe coupling; (c) aperture coupling. 

In addition to the circular disk, other shapes such as ellipses, rines 
triangles, and squares, have been considered for use as resonators, as well 
as coupled sections of microstrip lines.t 

7.4 MICROWAVE C A V I T I E S 

At frequencies above 1,000 MHz, transmission-line resonators haw rela
tively low values of Q, and so it becomes preferable to use metallic enclo
sures, or cavities, instead. A cavity can be considered as a volume enclosed 
by a conducting surface and within which an electromagnetic field can b 
excited. The electric and magnetic energies are stored in the volume o 
cavity. The finite conducting walls give rise to power loss and thus 
equivalent to some effective resistance. The fields in the cavity may 
excited, or coupled to an external circuit, by means of small coaxial- n 
probes or loops. Alternatively, the cavity may be coupled to a wave 
means of a small aperture in a common wall. These coupling met! 
illustrated in Fig. 7.13. Before considering the effects of coupling on_^ ^ 
performance, the field solutions in rectangular and cylindrical ca 
presented. 

R e c t a n g u l a r C a v i t y 

Figure 7.14 illustrates a rectangular cavity of height b, width a,^minsU* 
d. It may be considered to be a section of rectangular wavegui w a v e l e ngth 
in a short circuit at z = d. If d equals a multiple of a half gui 

tj. lielszajn and D. S. James, Planar Triangular Resonators with * 
Trans., vol. MTT-26. pp. 95-100. 1978. ,. w i | e y & 

I. Bahl and P. Bhartia. "Microwave Solid State Circuit Design,' J ° n 

New York. 1988. 

\V.-~ 
1E& 

So"*-

file:///V.-~
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FIGURE 7.14 
A rectangular cavity. 

F IGURE 7.15 
Standing-wave pattern in a short-circuited 
waveguide. 

at the frequency f, the resultant standing-wave pattern is such that the x 
and y components of1 electric field are zero at z = 0. Consequently, a short 
circuit can be placed at z = 0 as well, as in Fig. 7.15. The resultant 
structure is a rectangular cavity. This description of a cavity also shows that 
the field solution may be obtained directly from the corresponding wave
guide solutions. For the nm th TE or TM mode, the propagation constant is 
given by 

* • - * « - ( T ) - I T ) < 7 - 3 9 a > 

where k() = 2-f0/c. We require p„,„d = lir, where I is an integer in order 
for the cavity to be a multiple of a half guide wavelength long. Thus, when 
d is specified, 0nm is given by 

fc„--? / = 1 ,2 , . . . (7.396) 

However, this relation is consistent with the earlier one only for certain 
discrete values of ktl. Only if k„ = k„m/, where k„ml is given by 

i/a 

k n ml 
rmr 

~b~ 
(7.40) 

will (7.39a) and (7.39b) be satisfied. These particular values of k0 give the 
resonant frequencies of the cavity; i.e., 

ck, 
I nm/ 

' n ml 

2TT 
= c 

I 

2d 
m 

2b 2a) 
(7.41) 

where c is the velocity of light. Note that there is a triply infinite number of 
resonant frequencies corresponding to different field distributions. Also note 
that there is more than one field solution for a given resonant, frequency 
since (7.41) holds for both TE and TM modes. In addition, because of a lack 
of a preferential coordinate, in the case of a rectangular cavity, field 
solutions corresponding to TE and TM modes with respect to the x and y 
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axes could also be constructed, and these would have the sam 
frequency. However, these latter modes are just a linear comh' t?S°nant 
TE and a TM mode with respect to the z axis and therefore do not***011 0f a 

a new solution. 0l r eP resen t 

To illustrate the method of solution far the fields in a r 
cavity and the evaluation of the unloaded Q, the TE10J mode is ^^ 
detail. If b < a < d, this will be the mode with the lowest r e s o ^ ^ 'n 

quency and corresponds to the TEI(I mode in a rectangular wavem.^11 fre" 
mode subscripts nml pertain to the number of half-sinusoid variat* 
the standing-wave pattern along the x, y, and z axes, respectively 1 
(3.206), the field solution for a TE ] 0 mode is 

B. = (A+e~Mu* + A V ^ - ' J c o s — 
a 

Hx = "—^- ( A ' e-JP* - A-e-*»z)sin — 
77- a 

k(,Z,,a ,„ 77 x 
E = -j (A*e--"*">* + A - e r f »*)s in — 

7T a 

where A+ and A" are amphtude constants for the modes propagating in 
the +z and -z directions, respectively. To make Ev vanish at z = 0, d. we 
must choose A~= —A' so that 

A+e-rt™* + A-eJP">* = - 2 j A H sin pl0z 

and also choose liJ0 = ir/d. The corresponding value of k0 is thus 

K 0 ^ 101 
f \2 

1/2 
TT f 17 \2 

+ — 1 = 
a 1 \d 1 

p L0 

t/a 
(7.42) 

and this determines the resonant frequency. The solution for the fiel 8 
now be expressed as follows: 

43a I 

- 43*) 

(7.43c) 

£ , = 
~2A^kmZtia TTX _ TT2 

— sin — sin —-
a a 

TT 

2jA *~a TTX TTZ 
Hx = — sin — cos —r 

d a d 
TTX TTZ 

H; = ~2jA ' cos — sin — 
to the electa1 

Note that the magnetic field is ±90° out of phase relative t^ ^ ^fgge 
field. This is always the case in a lossless cavity and correspo j^ jggs 
and current being ±90° out of phase with each other w 
circuit. 
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At resonance the time-average electric and magnetic energy stored in 
the cavity are equal. The average stored electric energy is given by 

En t" to tcl 
We = -±f / E,E*dxdydz 

4 JQ -'O A) 
6f 

a3MA?0 1Z (?|AT (7.44) 
4 - 2 

The reader may readily verify that 

Wm = ^ f f jd(HxH; + ff.Hf) dxdydz = Wt (7.45) 
4 -"o •'o Jo 

In order to determine the cavity Q, the losses caused by the finite 
conductivity of the cavity walls must be evaluated. For small losses the 
surface currents are essentially those associated with the loss-free field 
solutions (7.43). Thus the surface current is given by 

J , = n X H 

where n is a unit normal to the surface and directed into the cavity. Hence 
the power loss in the walls is given by 

pi=F¥f J •J*dS = ^f! IH-» |2 dS < 7 - 4 6 > 
^ •'walls -^ "walls 

where Rm = 1/&SS is the resistive part of the surface impedance exhibited 
by the conducting wall having a conductivity a and for which the skin depth 
is 8S = (2/wju.o-)1'2. In (7.46) H l a n is the tangential magnetic field at the 
surface of the cavity walls. Substituting from (7.43) into (7.46), a straight
forward calculation gives 

2a3b + 2d3b + ad:i + da3 

Pl = \A-TRm -2 (7.47) 

With the use of (7.3), we find that the Q is given by 

Q = 
wW 2a>We <aJfef0,Z|o3d36e0 

P, P, 2TT2R,„(2a3b + 2d*b + a3d + d3a) 

(7.48) 
(ft l01acOJ6Zn 

2i72R„,(2a3b + 2d3b + a3d + d3a) 

upon replacing wZD€0 = w/^o^o by km. 
As a typical example, consider a copper cavity (a = 5.8 x 10' S /m) 

with c = 6 = rf = 3 c m . The resonant frequency is found to be 7,070 MHz. 
The surface resistance R,„ = 0.022 fi, and the Q comes out equal to 
12,700. The damping factor 8 = &/2Q equals 1.74 x 106 N p / s , or about 
2.5 x 10 "4 Np/cycle of oscillation. Because of the high value of Q, 4,000 
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cycles of free oscillation can occur before the amplitude has rW 
factor e->. a e c r ea*Jd by a 

If the cavity is filled with a lossy dielectric material with oe 
e = e' -je", the time-average electric energy stored in the cavitv n^ l t t 'v i t>' 
given by y Volume js 

We=
€-fm\2dV 
4 Jv ( ' .49cj 

The lossy dielectric has an effective conductivity we", and hence th 
loss in the dielectric is e P0*6*-

P - = U J - E ^ y = ^ / V ' E ' 2 ^ (7.496) 
If Qd is the Q when a lossy dielectric is present but the walls 
conducting, then 

Qd = 
2WW, 

Id e" 

are perfectly 

(7.50) 

When wall losses are also present, the net Q is Q' and given by 

where Q is the quality factor when lossy walls are present and e" = 0. Q is 
given by (7.48), with e0 replaced by e'. Also note that, for a cavity filled with 
dielectric, the resonant frequency is given by 

fnml \l i o nmt 
e ITT 

(7.52) 

Cylindrical Cavity 

The cylindrical cavity is a section of circular waveguide of l e n g t j ! , . ^ 
radius a , with short circuiting plates at each end, as in Fig. 7.16. ^^ 
of cavity is very commonly used in practice for wavemeters to ^ ^ 
frequency, because of the high Q and wide frequency range of ope 

F I G U R E 7.16 
Cylindrical cavity. 
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provides. A high Q is necessary in a frequency meter in order to obtain a 
high degree of resolution or accuracy in the measurement of an unknown 
frequency. When the cavity is tuned to the frequency of the unknown 
source, it absorbs a maximum of power from the input line. A crystal 
detector coupled to the input line can be used to indicate this dip in power at 
resonance. 

The fields in the cylindrical cavity may be determined from the corre
sponding waveguide solutions. The lowest resonant mode is the T E U 1 mode 
corresponding to the dominant TE l ] mode in the circular guide. This mode 
is examined in detail below. Using the field solutions tabulated in Table 3.6 
and combining a forward and backward propagating T E U mode, we have 

H, = J , 

H. 

Pnr 

a 
cos<b(A+e-Jli»* + A~ eJ,i"z 

iP\ir 

J', 

H , = 

E = 

P'u 

JPna2 

(Pn) r 

a 

P'nr 

a 

cos^{A*e-JP'" -A'eJ""z) 

sinct>(A*e -"*"* - A"e-" ,"z) 

A .ZoO 
- J , ( — )sin d>{ A • e"•"'"* + A V***) 

(P'u) 

Pn v a I 

£ = 0 

E* = 

(7.53a) 

(7.536) 

(7.53c) 

(7.53d) 

(7.53e) 

(7.53/-) 

where p'u = 1.841. To make Er and E^ vanish at z = 0, d, we must choose 
A~= -A*. The factor A^e'-"1"' + A'e,is,': becomes -2jA' smfinz. /?,, 
must be chosen equal to -rr/d to make sin f$ud vanish. The resonant 
frequency is determined from the relation 

* o = *< l? 
l l / 2 

V a 

1/2 
2 ^ / - l u 

(7.54) 

To find the Q of the T E U , mode, the time-average energy W stored in 
the cavity and the power loss in the wails must be calculated. The general 
expressions are 

I T - MIT. - $ f rf(\Ef + lEf)rd4> drdz 

2 J walls 

These integrals may be evaluated by substituting the expressions given 

P< = mlan\2ds 
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earlier for the fields. The final result obtained for the Q is 

where I = n = m = 1 for the T E J H mode. For the TE„ m / m o c j e ,. 
also given by (7.55), with the appropriate values of n, m, / 'and • 
inserted. Note that all terms on the right are independent of frequen P"'n 

hence the Q varies as \0/S, for any given cavity and thus decreases*0 

An analysis similar to the above may be carried out for the oth 
T E„,„ , and TM,,,,,, modes to obtain expressions for the fields. For the 
TE„ m , modes it is necessary only to replace cos <!> and sin tf> by cos mj, and 
sin n<b, J, by J „ , p'n by p'nm, and / 3 n by Irr/d in (7.53). Of particular 
interest is the TE 0 I I mode for wavemeters because its Q is two to three 
times that of the T E n , mode. Another advantage of the T E 0 U mode is that 
Hit = 0, and hence there are no axial currents. This means that the end 
plate of the cavity can be free to move to adjust the cavity length d for 
tuning purposes without introducing any significant loss since no currents 
flow across the gap; i.e., the gap between the circular end plate and the 
cylinder wall is parallel too the current flow lines. However, the TE0 U mode 
is not the dominant mode; so care must be exercised to choose a coupling 
scheme that does not excite the other possible modes that could resonate 
within the frequency tuning range of the cavity. 

To determine what modes can resonate for a given value of 2a/d an< 
frequency, it is convenient to construct a mode chart. For any given mcx 
we have 

' nml 

k n m I 
C = + 

IT 

~d 

21' /2 

2l7 

or (2a/,,,,,,)2 = cx„ 
+ — 

! / 2 c (7.56) 

_,. 7 i7 gives" 
„ for TE modes and p for TM modes. Figure i. ^ ^ 

1 against (2a/d)2 for several modes and const l t u
u ^ n c V and 

tion of this chart shows over what range of lTeq
 e'^ t*o 

where xllm = p„, 
plot of (2a/; ,„,)2 

chart. Examination _ 
2a/d only a single mode can resonate (in the case of degenera, b e t w e e o 2 
modes resonate at the same frequency). For example, f o r ( 2 a /

 uenO' r8°t 
and 3, only the TE0 1 , and TM,, , modes can resonate in the; tree.i - ^ 
corresponding to (2af)2 between 16.3 x 10 s and 20.4 x 10 J^^d, t 
dashed rectangle in Fig. 7.17). If the T M U 1 mode is n° l 
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0 2 , 4 6 

FIGURE 7.17 
Mode chart for a circular cylindrical cavity. 

frequency range at least can be tuned without spurious resonances from 
other modes occurring. 

For the TM modes the Q can be evaluated to give 

2 - ( l + 2 a / d ) (7.57) 

2TT(1 + a/d) 

Figure 7.18 gives a plot of Q8s/\0 against 2a/d for several modes. Note 
the considerably higher value oC Q obtained for the TE 0 U mode relative to 
that for the T E i n mode. Optimum Q occurs for d = 2a. At A0 = 3 cm, 
Ss/A0 = 2.2 X 10 "5 , and hence, from Fig. 7.18, it is apparent that typical 
values of Q range from 10,000 to 40,000 or more. At A0 = 10 cm, the 
corresponding values of Q would be \ /10/3 greater. 

«£-
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FIGURE 7.18 
Q for circular-cylindrical-cavil v modes. 

7.5 D I E L E C T R I C R E S O N A T O R S 

A dielectric resonator consists of a high dielectric constant cylinder, sphere. 
or parallelopiped as shown in Fig. 7.19. These structures will support 
resonant modes similar to those in metallic cavities but with the field 
extending beyond the boundaries into the surrounding air region. The 
linear dimension of the resonator is of order A0 / )fer, where A„ is the 
free-space wavelength and er is the dielectric constant. For er = 100 the 
resonator is approximately one-tenth the size of a metallic cavity, and fc 
this reason it is a very attractive alternative to other types of resonators; 
use in microstrip circuits such as filters and oscillator circuits. Since 
required size of a dielectric resonator in order to resonate is very s 
relative to the free-space wavelength, the electromagnetic field outside t « 
resonator is quasistatic and very little radiation takes place. Thus d: 
resonators will exhibit a relatively high Q if a low-loss high d 
constant material is used. Typical values for the unloaded W o ^ 
electric resonator range from around 100 to several hundred-
onator is enclosed in a shielding box so that there is no energy ot>s ^ ^ 
radiation, an unloaded Q approaching the intrinsic Q of the ma 
obtained. 

W (c) 

FIGURE 7.19 , dieU 
Basic geometrical shapes usea ^ ^ n 
onators. (a) Cylinder, ib) spher* 

ipecf. 
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FIGURE 7.20 
A cylindrical dielectric resonator coupled to a mierostrip line. 

The resonant frequency of a dielectric resonator depends on the di
mensions of the resonator and its dielectric constant. Since these parame
ters change with the temperature, it is necessary to use materials that have 
low coefficients of expansion and relatively temperature-independent dielec
tric constants. In recent years a number of ceramic compounds have been 
developed that are suitable for use in dielectric resonators and can provide a 
stability of a few parts per million per degree change in temperature. One 
such material is barium tetratitanate which has a dielectric constant of 
around 40 and a loss tangent of about 0.0005. The intrinsic Q of the 
material is the reciprocal of the loss tangent and equals 2.000 for barium 
tetratitanate. 

The dielectric cylinder with a height H approximately equal to the 
radius R and mounted on the substrate as shown in Fig, 7.20 is a popular 
choice for a dielectric resonator. The coupling between the resonator and a 
mierostrip line is adjusted by adjusting the spacing S. The dominant 
resonant mode is a TE mode having an azimuthal electric field E,,, that is 
independent of the angle <!>. The field has a dependence on the axial 
coordinate z but does not change with z rapidly enough to exhibit a 
standing-wave pattern along z. For this reason the mode is designated as 
the T E 0 U mode with the subscript 8 signifying less than one-half cyclic 
variation with z. 

Dielectric resonators in the shape of a cylinder or a parallelopiped do 
not have simple analytic solutions for the various modes of oscillation. On 
the other hand, there are simple solutions for the fields in a spherical 
resonator and also for a hemisphere mounted on a ground plane. The 
hemisphere on a ground plane shown in Fig. 7.21 is quite similar to the 
dielectric cylinder, so that an understanding of the field solution for the 
hemispherical resonator will provide good insight into the properties of a 

FIGURE 7.21 
r- „H -i The hemispherical dielectric resonator on a ground 

• Oround plane . r 

plane. 
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cylindrical resonator as well. For this reason we will examin 
for TE modes in a hemispherical resonator. 

Solutions to Maxwell's equations in spherical coordinates 
rated into TE and TM modes with respect to the radial coordi ^ Sepa-
electric field for TE modes is given by 

E = V X arknl> = M 
< ' . 0 H Q ) 

and the electric field for TM modes is given by 

E = - V x V X M r * = N ( ? 5 g 6 ) 

where (//(r, 9, <j>) is a solution of the scalar Helmholtz equation in soh " 
coordinates, i.e., 

(V 2 + fe2).// = 0 

The M and N functions have the useful property that 

V X M = kN 

V x N = kM 

(7.58c) 

(7.59a) 

(7.596) 

Thus, if the electric field is described by an M function, the magnetic field 
given by —jiofj.0H = ? X E will be described by an N function. For circu
larly symmetric fields, the solutions for ilt(r,6) are 

*„(r,0) =z„(kr)Pn(co$e) 

where z„(kr) is a spherical Bessel function and P„(cos0) is the t 
Legendre polynomial. The spherical Bessel functions are related to tl 
cylinder Bessel functions Zn + l/2{kr) as follows: 

IT 
*nikr) = ^ — Zn + l/2{kr) 

When the origin is included, the function 

7T 

2kr 
' • • i / a W 

is used. In order to represent outward propagating waves, 
Hankel function 

iherica1 

h*„(kr)~ 
TT 

2kr 
HUU2(kr) 

a l * * 5 

is used. The Bessel functions of order n + \ and hence the s p
f o^ c t i 0r 

functions can be expressed in terms of simple sine and cosin 
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example, 

sin x 
Jo(x) = 

M*) -
sin x cos x 

/ * - • * * - J J C 

(7.61a) 

(7.616) 

(7.61c) 

(7.61c/) 

(7.61*) 

(7.62a) 

(7.626) 

(7.62c) 

2n + 1 

The first few Legendre polynomials are 

P(,(cos8) = 1 

P,(cos0) = cosfl 

P2(cos 6) = | cos2 0 - \ = f cos 20 + j 

For circularly symmetric modes, we can use (7.60) in (7.58) to obtain 

M„ = -k-^zn(kr)*<, (7.63a) 

s ( s - f l ) 1 a7>„ d(krz') 

N „ - — — P..„(*r).,+ 7 ^ - 5 ^ . . (MM 
We will use the above solutions to construct the solution for the 

dominant TE0 1 2 mode for the hemispherical resonator. The electric field has 
an E,,, component only. The ground plane is located at 0 *= w/2, so that E,,, 
must vanish at 6 ~ TT/2. The Mj mode does not vanish at 6 = TT/2 but the 
M2 mode does; so the first mode that can exist for the hemispherical 
resonator on a ground plane is the TE 0 ) 2 mode. A suitable solution for the 
electric field is 

dPo 
E = - A , / e — j 2 ( f e r ) a r f , r<a (7.64a) 

dp2 » 
E = -A0kn-—h\(knr)n,„ r> a (7.646) 

dO 
where k = ^ ( l inside the sphere and Ax and A2 are amplitude con
stants. The solution for the magnetic field is given by 

"oA> «o^-o " Q ^ O 
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and hence is given by 

JBk 
H = A , - — - P 2 j 2 ( k r ) a r k0Z0r 

A, 
jk dP2d(krj,,(kr)) 

k0Zor de d(kr) 
le r <a 

K = A2~P2h\(kar)ar 
Z^r 

j dP2 d(k0rh\(kQr)) 
+ 2Z0r dO ' d(k0r) *« r>a 

(7.65a) 

(7.656) 

At r = a the tangential fields £,,, and He must be continuous across the 
boundary. Thus we must have 

Axkj2(ka) =A2koh
2
2(k0a) 

d{krj,,(kr)) 
Alk' d(kr) 

= A2k0 

d(karh*(k0r)) 

d(k0r) 

(7.66a) 

(7.666) 

All the other factors in the expressions for the fields are the same and 
cancel. By using (7.61e) we find that 

j2(kr) = 
k3r3 kr 

- — sin kr - - J - J cos kr (7.67a) 
k2r 

h\(kQr) = 
37 

— \e-i*tf (7.676) 
klr3 k2

Dr2 ft„r, 

With the aid of these relations, the boundary conditions can be expressed as 

Axk ¥?-Ja)Sinka-kVC°Ska 

A2k„ _ A-8 j 

k%a3 k%a2 k0a 
= 0 (7- 6 8 0 ) 

Axk 
3 

ka 

6 

-^ra+l^"Tos i f l 

- A2ku 

6j 6 Sj 

+ k*a3 Ka2 k0a 
-We , - J*o a = 0 (7 .68b) 

ad 

In order for this homogeneous set of equations to have a solution^ ^ lgt0 

A2,the determinant must vanish. By equating the determin ^ kg c» 
we obtain the eigenvalue equation for the resonant wave nu 
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k = fco-v^- Th ' s equation is 

{r\2 +jr)x - l ) s i n x - [(i j2 - I ) * +jvx2 - £x3]cosx = 0 (7.69) 

where we have let er = 172 and k0a = ka/-r\ = x/77. Since the roots of (7.69) 
are complex, the solution for x is not straightforward to carry out. An 
iterative method can be used to advantage. Since the dielectric constant is 
normally quite large, the approximate solution of (7.69) is obtained by 
keeping only the terms multiplied by r)z. Thus we have 

sin x - x cos x = 0 
which has the solution x = 4.4934 ~ x0. If we denote the eigenvalue equa
tion (7.69) as f(x), then a Taylor series expansion about the point x0 gives 

df 
( * - * o ) 

We can equate fix) to zero and then get the following improved solution 

A-t0) 

= *o + 

df/dx, 

(jvx'o - l*o ~ *o)cos x0 - (jyx0 - l)sin xn 

(tjXo +JVXZ +j-q - | * | - jc0)sinx0 - (717*0 _ *o)cosa:0 

(7.70) 

This second approximation can be called x0 and used in (7.70) to obtain a 
third-order approximation. However, the second-order solution is usually 
quite accurate as the following example illustrates. 

If the dielectric constant er = 49, then the second-order solution ob
tained using (7.70) is ka = x = x0 - 0.02619 4 J0.019497 « 4.4672 + 
jO.019497. The complex resonant wave number is given by kt) = x/r\a. 
Since we have chosen n as real, the l'esonant frequency is complex only 
because the oscillating resonator loses energy by radiation. The radiation Qr 

is given by 

Re ka 

* - iteS <7'71) 

and for our example equals 114.56. If the dielectric loss tangent were no 
greater than 0.001, the dielectric losses would reduce the Q by about 10 
percent only; so the radiation loss is the major loss. By enclosing the 
resonator in a shielding box, a much higher unloaded Q can be obtained. 
However, when a shielding box is used, care must be exercised to avoid 
exciting cavity modes in the box. 

For a dielectric constant of 49 and a resonant frequency of 10 GHz, the 
radius of t h e hemispher ical resonator is a = 4.4Q72/-qk0 = 
(4 .4672 /2T7T7)A 0 = 0.1016A0 or 0.3047 cm. Thus the resonator is very 
compact. The parameter k0a = 0.638 is quite small, so that the electromag-
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netic field outside the resonator is approximately quasistatic Th 
A2 can be expressed in terms of A, using (7.66a ) and approxiny t* °°nstaiU 
by 4.4672, that is, neglecting the imaginary part. Outside the re "^ *° * * 
electric and magnetic fields are given by ^nator the 

E.k = - r A 2 £ o s i n 2 0 
*2r3 2 „ 2 k^r 

>~jkgr 

-a) 

Hr =j-A2kl)Yl,(3cos20 + 1) 
k*0r< ,3 „3 /,2 2 • -JK 

Hll=j-A.,k0Yl)sm26 
, 3 -3 <,2„2 + . ~-/*qr 

(7.726, 

(7.72c) 

The terms in £,,, and HH that vary like l/knr represent the radiation field 
and account for the power loss due to radiation. 

If a cover plate at a height c above the ground plane is installed, the 
radiation field will be suppressed provided c < A0 /2. Since E. must now 
vanish at z = 0 and z = c, the field outside the resonator can be expressed 
in terms of cylindrical waves. The lowest-order wave will have the form 

irz 

c 
-H$\P 17 

where p is the radial coordinate T/X2 + y2 and H% is the cylinder Hankel 
function. When p is large 

m (7 
-,1/2 

77P]/kf- (TT/CY 

, jp\fH-i-/c)2 

This is a nonpropagating wave when k0 < v/c or c < A0 /2. The cover 
will not have much influence on the field close to the resonator s i n c e , 
terms that vary like \/k\rl and higher inverse powers of knr will be sir 
at the location of the cover plate when c is several times larger 
Thus when a cover plate is used, we can approximate the fields by • .g 

dropping the radiation terms. When the radiation from the res > ^ 
suppressed, the unloaded Q will be much larger since the l o s s e s

 on fa 
those arising from the loss in the dielectric and from the curr nat„r. 

ground plane that are associated with the resonating mode of t e r ( )Strip 
The magnetic f ie ld from the resonator will link the nearbj ^^ ^n 

line as illustrated in Fig. 7.22. As a result, an ostillating^reso^ 
excite propagating waves on the microstrip line. These wave- . o r The 
flow of power and produce the external loading on the V . c0Upled'* 
resonator can be represented by a parallel resonant circuit t a ^Q n. 
the microstrip line by means of an ideal transformer with a jjP ^ „,ak 
as shown in Fig. 7.23. The resistor R must have a value 
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R 
I M r 
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I nppr- 1 
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| II 
1 \JtM, 

^nnp 
n:i zc z, 

~. 

FIGURE 7.22 FIGURE 7.23 
Magnetic coupling between a dielectric Equivalent circuit for a dielectric res-
resonator and a microstrip line. onator coupled !(• a microstrip line. 

10CR equal to the unloaded Q, and L must have a value such that 
w2LC = 1, at the resonant frequency. These two conditions do not establish 
the impedance level or absolute value of R. We can choose R arbitrarily as 
long as the turns ratio n:l is adjusted to give the correct coupling between 
the resonator and the microstrip line. At resonance a series resistance n2R 
is coupled into the transmission line, and this makes the input reflection 
coefficient equal to 

( r c 2 i ? + Z t ) - Z , n2R 
= (n2R + Ze) + Ze

 = n2R + 2ZC 

when the output line is terminated in a matched load. By measuring T the 
parameter 

n2R 2T 

~z7 = i - r 
is readily determined and this provides the additional information that is 
needed to specify the equivalent circuit. In some cases the turns ratio can 
also be evaluated analytically but in general it is preferable to measure it.t 

A number of papers have provided analysis of the cylindrical dielectric 
resonator. In Fig. 7.24 we show the dominant TE012-mode eigenvalue kR as 
a function of the ratio of the resonator height H to the radius R for a 
cylindrical resonator mounted on a ground plane. When the dielectric 
constant is greater than 20, the eigenvalue kR is essentially independent of 
the dielectric constant. This independence was also found for the hemi-

+Y. Komatsu and Y. Murakami, Coupling Coefficient Between Microstrip Line and dielectric 
Resonator, IEEE Trans., vol. MTT-31, pp. 34-40, 1983. 
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FIGURE 7.24 
The eigenvalue kR for the TE „ mod-
cylindrical resonator on a groundpla,,. , Jf 
on Fig. 3 in R. E. Collin andD^ff 
Boundary Element Method for Dielectric R 
onators and Waveguides, Rod. Sci voi To 
pp. 1155-1167, 1987.) 

spherical resonator since, to a first approximation, (7.69) gave ka = 4.4934 
independent of er. For a given cylindrical resonator, there exists an equiva
lent hemispherical resonator that will have the same resonant frequency. If 
we let kR = xc for the dielectric resonator and let ka = xs for the hemi
spherical resonator, then since k is the same we must have 

1 = ^1 
R xc 

From Fig. 7.24 we find that a dielectric resonator with radius R equal to a 
must have a height H equal to 0.7i? in order to have the same resonant 
frequency as a hemispherical resonator with the same radius. The inset in 
Fig. 7.24 shows the two equivalent resonator cross sections and clearly they 
are very similar. 

When a dielectric resonator is mounted on the substrate materia 
instead of on a ground plane, the resonant frequency will change by a srnai 
amount. The electromagnetic f ie ld around the resonator will also c h ^ 
but will remain similar to that for a resonator on a ground plane. 
quasistatic field outside the resonator is similar to that of a n»8 

quadrapole. For a cylindrical or spherical resonator in free spai 

Cover plate 

Tuning disk 

Microstrip 
line Resonator 

FIGURE 7.25 . o leCtric «***& 
A method for tuning « **£?&**» + 
The position of the metal du» le 

end face of the resonator 1-
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dominant mode has a local field similar to that of an oscillating magnetic 
dipole. The image of a magnetic dipole in a ground plane, along with the 
original magnetic dipote, creates a magnetic quadrapole. Thus, when a 
resonator is mounted close to a ground plane, there is a significant change 
in the field around the resonator. 

The resonant frequency of a dielectric resonator in a shielded enclo
sure can be changed by a small amount by varying the position of a small 
metal disk relative to the end face of the resonator as shown in Fig. 7.25. 
When dielectric resonators are used as part of a filter, some form of tuning 
for adjusting the resonant frequency is normally required. 

7.6 EQUIVALENT CIRCUITS FOR CAVITIES 

In this section the equivalent circuits of cavities coupled to transmission 
lines and waveguides are examined. A complete treatment is not given 
because of the complexity of the problem in general (see Sec. 7.9 for further 
details). Instead, a number of specific examples are examined in order to 
indicate the type of results that are obtained. 

Aperture-Coupled Cavity 

As an example of an aperture-coupled cavity, consider the rectangular cavity 
coupled to a rectangular guide by means of a small centered circular hole in 
the transverse wall at z = 0, as illustrated in Fig. 7.26. As indicated earlier, 
a small circular aperture in a transverse wall behaves as a shunt inductive 
susceptance with a normalized value given by (5.41) as 

3ob 
BL=TRP (7.73) 

e p r 0 

where a is the guide width, b is the guide height, r0 is the aperture radius, 
and p = [kg - (Tr/af]l/2 is the propagation constant for the TE I 0 mode. 
The equivalent circuit of the aperture-coupled cavity is thus a short-
circuited transmission line of length d shunted by a normalized suscep
tance B,. 

To analyze this coupled cavity, we shall assume initially that there are 
no losses. The modifications required when small losses are present are 
given later. The cavity will exhibit an infinite number of resonances, and the 
input impedance Zm will have an infinite number of zeros interlaced by an 
infinite number of poles, this being the general behavior of a distributed-
parameter one-port microwave network. If we are interested in a resonance 
corresponding to a high value of Zin, infinite in the case of no loss, we 
should examine the nature of 2 i n in the vicinity of one of its poles. This case 
corresponds to a parallel resonant circuit, 



5 1 8 FOUNDATIONS FOR MICROWAVE ENGINEERING 

' 
Zc=\ 

^ = 0 

J*L 

IA) 

F IGURE 7.26 
(a) Aperture-coupied 
' - cavity; ( W e q u S v ^ T S f 
mission-line circuit. 

The input impedance is given by the parallel impedance of iX 
j tan pd and is J '• ^ 

-XL tan pd 
2;„ = — 

jXL + j tan pd (7.74) 

where jX, = (-jBL) '. The jmtiresonances occur when the denominator 
vanishes, i.e., at the poles of Zin, or when 

Xh = - tan pd = 
8r20d 
Zabd (7.75) 

To solve this equation for the values of P that yield resonances, graphical 
methods are convenient. By plotting the two sides of (7.75) as functions of 
pd, the points of intersection yield the solutions for pd. When p is known, 
the resonant frequency may be found from the relation 

w c 
2 ^ =f= 2 ^ 

/32 + I — 
a 

11/2 
(7.76) 

This graphical solution is illustrated in Fig. 7.27. Note that there are an 
infinite number of solutions. Normally, XL is very small, so that the valui 
of pd for the fundamental mode is approximately equal to TT. The higher-
order modes occur for pd = P„d = (n - jfrr when n, an integer, is 1 

FIGURE 7.27 frequenC °' 
Graphical solution for resonant n» 
ture-coupled cavity. 
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The value of (i for the first mode will be denoted by /3,. and the correspond
ing value of w by w t, as determined by putting 0 = 0, in (7.76). 

An infinite number of equivalent lumped-parameter networks can be 
used to represent Zin in the vicinity of o>,. Usually, the simplest possible 
network is used. This equivalent network must be chosen so that its input 
impedance Z equals Z i n at w,. Likewise, for small variations AOJ about «>,, 
the two impedances must be equal. A general procedure for specifying this 
equivalence is obtained by expanding the impedance functions in a power 
series in w — w, = Aa> about w, and equating these series term by term. 
Since Z i n has a pole at w ~ u>v, the Taylor expansion cannot be applied 
directly to Z in. However, it may be applied to (w — to,)Zm(w) to give 

(w - w,)Z i n(w) = lim (to - w,)Z i n (oi)+ — - ( « - w,)Z i r i 
*>-»*>, u to 

; w - to,) 

l d< 

+ ~ 2 d--2 
iio 

(u> ~ w,)Z,n 

We now obtain 

Z jn(w) = + 3 ~ l w ~ "M z „ i 
to — w i aio 

+ ••• (7.77) 

A similar expansion of Z gives (note that Z must have a pole at w( also) 

Z(<o) = 
Urn. (to - w , ) Z ( w ) d 

to — to, Oto 
+ ••• (7.78) 

Expansions of this type are called Laurent series expansions, and the 
coefficient of the <o> — to,)~l term is called the residue at the pole «>,. These 
two series must be made equal term for term up to the highest power in 
to — to, = Aw required to represent Z i n with sufficient accuracy in the 
frequency range of interest. For a microwave cavity, the Q is usually so 
high, and the frequency range dw/w, of interest is approximately the range 
between the two points where )Zm\ equals 0.707 of its maximum. This latter 
fractional frequency band is equal to 1/Q, and hence Aw/w is so small that 
normally only the first term in the expansion (7.77) would be required to 
represent Z in with sufficient accuracy in the vicinity of to,. In the present 
ease a simple parallel LC circuit would be sufficient to represent Zin(w) 
around «>,. 

In order to specify the values of L and C, we must evaluate the first 
terms in (7.77) and (7.78). For the LC circuit we have 

Z = 
j(oL 

1 - o>2LC 
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We now choose wf LC = 1 to produce a pole at u>1 for Z. Henc 

ui'i - to2 

and 

Thus we have 

i- , >v ~jao)\L 
hm (io - o>x)Z = <o + a), 

-Jo>lL 

<a, 

Z(co) = -
2(cu — oij) 

for a> near Wj. 
To evaluate the behavior of Zin near w,, we can place w equal to u in 

the numerator in (7.74). The denominator is first expanded in a Taylor 
series in p about fi, to give 

XL((i) + tan pd =X,.(/3X) + tan/3jrf 
dXL d tan pd 

dp dp iP~P>) 

Pi 
+ ds<x2pld\{p-px) 

since XL(pt) = XL1 = - t a n / ^ d and dXjdp = (l/p)XL. Next we expand 
p in terms of o> about w, to give 

d£ 
dw 

P=Px + 
' I 

If we denote dp/dot at «t by p\, we see that Z-m can be expressed as 

- JXLl ten Pid _____ 
i n _ [ X L 1 + ^ , d ( l + t a n 2 M ) ] ( / 3 ' i / ^ . ) ( t ^ r ^ 

upon replacing sec2 pxd by 1 + tan 2 /3,d. Replacing tan pxd by -A__ T 

gives 

« . 

NormaUy, X_._ « 1, and since /3,d ~_ir, we can make further app* 
tions to obtain (we shall verify that XLl <s 1 later) 

y2 (7.80) 

in J p\d(o> - ^ 



ELECTROMAGNETIC RESONATORS 5 2 1 

Comparison with (7.79) shows that we must choose 

<o\L XfA 

2 p\d 

2Xf, 
° r L = ^ l <7"81) 

The capacitance C is determined by the condition u>\LC = 1 given earlier. 
Up to this point we have neglected the losses in the cavity. For a 

high-Q cavity these may be accounted for simply by replacing the resonant 
frequency w, by a complex resonant frequency w,(l +j/2Q), as indicated in 
Sec. 7.1. That is, the natural response of a lossy cavity is proportional to 
e-«+j«i*f aa^ n o t t0 e >, / f w n e r e g = Wl/2Q. This is equivalent to having a 

complex resonant frequency Wjd + j/2Q). The field in the cavity is, apart 
from some local fringing because of the presence of the aperture, a TEi()1 

mode. Its Q was evaluated in Sec. 7.4, and is given by (7.48). For the lossy 
case we then have 

/3,d(w - OJ, - jw-i/2Q) 

At resonance (« = oi,), we now obtain a pure resistive impedance Rm 

given by 

2XhQ 
Rm-Zin = —^j (7.83) 

If we want the cavity to be matched to the waveguide at resonance, we 
must choose the aperture reactance Xu so that Rin = 1; that is, 

This matched condition is referred to as critical coupling. If Rin is greater 
than the characteristic impedance of the input line (unity in the case_j3f 
normalized impedances), the cavity is said to be overcoupled, whereas if R,n 

is smaller, the cavity is undercoupled. If Rm is the normalized input 
resistance at resonance for a parallel resonant cavity, then R m is defined as 
the coupling parameter K. In the case of series resonance, the coupling 
parameter equals the input normalized conductance at resonance. 

For the rectangular cavity discussed in Sec. 7.4, with a = b = d = 
3 cm, we found f, = 7,070 MHz and Q = 12,700. For this cavity 

p\ = — ^ » 4.7 x 1 0 - l l s/cm 

and (7.84) gives XIA ~ 0.0157 for critical coupling. The corresponding 
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y?=i f&. ZZC 
FIGURE 7.28 
Equivalent circuit f0r a n e , 
coupled cavity. 

aperture radius r0 from (7.73) is found to be 0.37 cm. Note that X 
so that our earlier approximation in neglecting XLI compared with u -ft 
justified. Also note that a solution of (7.84) for the required value of ? ^ 'S 

give critical coupling must, in general, be carried out s i m u l t a n e o u s l y ^ 
the solution of (7.75) for the resonant frequency a , . However, for a hiur, 
cavity, to, may be approximated with negligible error by the freque 
corresponding to [id = -rr in (7.84). This was done in the above calculation5' 
_ For the lossy cavity the equivalent circuit must include a resistance 
ftiri in parallel with L and C as illustrated in Fig. 7.28a. The reader mav 
readily verify that the input impedance Z now becomes, for w near <u 

z= -j 
iJ\L 

2 ( w - w, -JW./2Q) 
[7.85) 

where Q = Rin/u>1L. 
Since the cavity is coupled to an input waveguide, the cavity terminals 

are loaded by an impedance equal to the impedance seen looking toward the 
generator from the aperture plane. If the generator is matched to the 
waveguide, a normalized resistance of unity is connected across the cavity 
terminals, as in Fig. 7.286. The external Qc is given by (Sec. 7.1) 

Qe = 
o>xL 

(7.86a) 

and the loaded QL by 

1 

\Q + Q. 

- l 
Air 

(1+R^L 
The loaded and unloaded quality factors are related as follows: 

(1+ x X ) 

(7.866) 

1 1 

Q 

l Rinhvl* _ . r . ^ 1 = 1 ( 1 
= W j L + 

R, Q 
* i n 

or Q = (1+K)QL 

In general, the coupling parameter K may be defined as 

-I 

(7.87) 

(7.8«) 
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For a parallel resonant circuit this is seen to give 

Bin Vjl' 
oixL 1 

which agrees with the earlier definition, ^likewise, for a series resonant 
circuit with normalized jnput conductance G,„, the unloaded and loaded Q's 
are given by Q = IO^G^ Q(. = w,L. and hence K = Gm = Q/QL. again. 
The coupling parameter is a measure of the degree of coupling between the 
cavity and the input waveguide or transmission line. 

The external Q, Qe, is sometimes called the radiation Q. The reason 
for this is that the cavity may be considered to radiate power through the 
aperture into the input waveguide. This power loss by radiation through the 
aperture is equal to the power lost in the normalized unit resistance 
connected across the resonator terminals in the equivalent circuit illus
trated in Fig. 7.286. 

For the rectangular cavity under discussion, the next-higher frequency 
at which a resonance occurs corresponds to a series-type resonance at which 
\Zm\ is a minimum. In the loss-free case, Zin = 0, and from (7.74) this is 
seen to correspond to tan jid = 0, or fid = jr. At a series resonance, F in has 
a pole, and consequently an analysis similar to that presented for Zm is 
applied to Yin. It is readily found that in the vicinity of m = <u2> where u>2 is 
the value of w that makes )3d = ir, 

1 
, n = ~~Jp.A<o-«,2-jco.z/2QJ 

In this case the aperture has no effect, as would be expected, because the 
standing-wave pattern in the cavity is now such that the transverse electric 
field is zero at the aperture plane. The input admittance near w.2 is just that 
of a short-circuited guide near a half guide wavelength long. This resonance 
is not of any practical interest since it corresponds to a very loosely coupled 
cavity. 

C a v i t y 

Figure 7.29 illustrates a cavity that is coupled to a coaxial line by means of a 
small loop. Since the loop is very small, the current in the loop can be 
considered to be constant. Any mode in the cavity that has a magnetic field 

FIGURE 7.29 
Loop-coupled cavity. 
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\M, 

> • 
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\M« „Cn 

'•R« F IGURE 7.30 
Equivalent circuit of loop-coupled cavity. 

with flux lines that thread through the loop will be coupled by the loop 
However, at any particular frequency to, only that mode which is resonant 
at this frequency will be excited with an appreciable amplitude. The fields 
excited in the cavity by the current / Mowing in the loop can be found by 
solving for a vector potential arising from the current I. From the vector 
potential the magnetic field, and hence the flux passing through the loop, 
may be found. For a unit current let the magnetic flux of the nth mode that 
threads through the loop be i//„. This is then equal to the mutual inductance 
M„ between the coupling loop and the n th mode. Each mode presents an 
impedance equivalent to that of a series LCR circuit to the coupling loop. 
Thus a suitable equivalent circuit is an infinite number of series LCR 
circuits coupled by mutual inductance to the input coaxial line, as illus
trated in Fig. 7.30. The input impedance is thus of the form 

* w3M,?C„ Rq. 
Zm =>L0 +j £ iry^TJ-r R- ( 7 8 

n = 1 1 ~a> LnC„ -hja/L„2iB 

where L0 is the self-inductance of the coupling loop. If we define < 
resonance frequencies w„ by io\LnC„ = 1 and the unloaded Q of the 
mode by Q„ = io„L„/Rnl we can rewrite (7.89) as 

* a v X 2 (7.90) 

th term *TB 
If w = w„, then all terms in the series in (7.90) except the nm 
small. Thus, in the vicinity of the nth resonance, 

Zm =./<"-£ o + : 
L„(a>l-u2+ju>tan/Qn) 

~J<->L0 -j 
o> 'Ml ,7.91) 

2 L „ ( « . - w B -j<o„/2Qn) 
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FIGURE 7.31 
Illustration for Helmholtz's theorem. 

The equivalent circuit now reduces to a single LCR series circuit mutually 
coupled to the input line. For efficient excitation of a given mode, the loop 
should be located at a point where this mode provides a maximum flux 
linkage. 

The preceding results represent a formal solution to the loop-coupled 
cavity. In order actually to specify the circuit parameters, the boundary-value 
problem for the fields excited in a cavity by a given loop current must be 
solved. Also the Q's of the various cavity modes must be determined. For 
simple cavity shapes these calculations can be carried out with reasonable 
accuracy. However, they are too lengthy to include here. 

*7.7 F I E L D E X P A N S I O N IN A G E N E R A L CAVITY 

Considerable insight into the general properties of an electromagnetic cavity 
can be obtained by examining the problem of expanding an arbitrary 
electromagnetic field into a complete set of modes in a cavity of unspecified 
shape. Such general modal expansions are required in order to determine 
the fields excited in a cavity by an arbitrary source. These expansions are 
also required in the evaluation of the input impedance or admittance of 
cavities coupled to external transmission lines or waveguides. 

A fundamental theorem which is basic to general cavity theory is 
Helmholtz's theorem.t This theorem states that in a volume V bounded by 
a closed surface S as in Fig. 7.31 a general vector field P(x,y, z) is given by 

P ( * , y , 2 ) = V 
- V 

4TTR 

P ( r ' ) , P ( r ' ) • n 
dV + 6 „ dS' £ 47r 4-R 

V x 
, V X P ( r ' ) , P ( r ' ) X n 
f — I dV + 6 ^ 7 ^ — dS' 
h 4- f f X 47ri? 

(7.92) 

where R = |r - r'|. Thus the volume sources for P are given by -V • P 

+R- '5. Collin, "Field Theory of Guided Waves," 2nd ed., Mathematical Appendix, IEEE Press, 
Pisc&taway, N. J.. 1991 
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and V' X P, and the surface sources are given by P • n and P v 
only if, V • P = 0, n • P = 0, can P be derived entirely from the* 3 n d 

suitable vector potential. Also, only if n X P = 0, V X P = Q °f a 
derived from the gradient of a scalar potential, as (7.92) shows IF 
V • P = 0 and V X P = 0 in V, then P is said to be a source-free fi il b ° t h 

In this case P can always be derived from the gradient of a scalar n t '"• ^' 
but this potential must be multivalued if n X P does not equal zero ' ° 
situations. This statement will be clarified later. 

In setting up a suitable set of modes in which to expand a vector fi 
P inside a given volume V, it is necessary to know the boundary condjf * 
that must be imposed on these modes in order that a unique set of m ri"S 

may be obtained. This uniqueness is needed so that when a solution for th 
field has been obtained we are assured of the uniqueness of that solutin 
Since the electromagnetic field satisfies Helmholtz's equation, we are con
cerned with obtaining a unique solution to this equation. 

Consider V2A„ + k'f,An = 0. We wish to determine the type of bound
ary conditions that must be imposed on A„ such that the solution to this 
equation is unique for a specific eigenvalue kn. Assume that a second 
solution B„ exists such that V2B„ + /?2B„ = 0 also. The difference solution 
C„ = A„ - B„ satisfies V2C„ + k'?,C„ = 0 also. We shall require of B„ the 
conditions V • B„ = V • A„, V X B„ = V X A„ in V, so that both A„ and 
B„ have the same volume sources. Then 

V • C„ = V X C„ = 0 

in V. Consider 

f c * / | C J a W - - / c „ - V 2 C „ d V 
Jv Jv 

= j(Cn • VX V X C „ - C „ - W -C„)dV 
Jv 

Using the relations 

V • (C„ X V X C„) = IV X C„| 2 - C„ • V X V X C„ 

and V • (C„V • C„) = IV • C„ | 2 + C„ • VV • C„ 

we obtain 

k2J\C„\2dV= (\VxC,fdV+ [ |V-CJ2dV 
Jy JV V 

,c (7.93) 
- ^ • ( C , V - C , + C , X V X C , ) * 

The volume integrals on the right vanish, and to make ^ ' ' " j g vanish-
which implies C„ = 0, we must make the two surfaces " " ^ boUndary 
This may be accomplished by making A„ and B„ satisly 



ELECTROMAGNETIC RESONATORS 5 2 7 

conditions 

? - A „ = n x A „ = 0 on S (7.94a) 

or n • A„ =n X V X A„ = 0 on S (7.946) 

and similarly for B„. These are the boundary conditions that will be used 
for the electric- and magnetic-type modes, respectively. Other possibilities 
are n • A„ = n X A„ = 0 on S or V • A„ = n X V X A„ = 0 on S. The 
imposition of these boundary conditions gives a unique solution. Note that 
two conditions must be specified for a vector function. 

Cavity Field Expansions in Terms of Short-Circuit Modes 

The short-circuit modes are those corresponding to the field solutions inside 
ideal (perfectly conducting walls), totally closed cavities. For these modes 
the electric field modes E„ satisfy the boundary condition n X E„ = 0 on S, 
and the magnetic field modes satisfy the boundary condition n • H„ = 0 on 
S. In addition, as (7.93) and (7.94) show, we must impose the additional 
boundary conditions V • E„ = 0 and n X V X H„ = 0 on S in order to 
obtain unique solutions. 

Sometimes it is convenient to consider a cavity as having a surface part 
of which is perfectly conducting and part of which acts as a perfect open 
circuit. In this case the boundary conditions for E„ and H„ are inter
changed on the perfect open-circuit portion of the boundary. In practice, it 
is difficult to solve the cavity problem when the same boundary conditions 
do not apply on the whole surface. For this reason we restrict our analysis 
to the use of short-circuit modes, since these are readily found for the 
common types of cavities encountered. 

There are three basic types of cavities to be considered, as illustrated 
in Fig. 7.32. Type 1 is a simply connected volume with a single surface, 
whereas type 2 is a simply connected volume with a multiple (double) 
surface. Finally, type 3 is a multiply connected volume with a single surfa.ce. 
Examples of the latter type are toroids and short-circuited coaxial lines. 

Q ,@ S3) 
Type I Type 2 Type 3 

FIGURE 7.32 
Basic types of cavities. 

surfa.ce
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Consideration of these basic cavity types is of importance in connect--

the existence of zero frequency modes, as will be seen. 

Electric Field Expansion 

In general, both V X E and V • E are nonzero; so we require twn 
modes: a solenoida] set with zero divergence and nonzero curl 
irrotational set with zero curl but nonzero divergence. The solenoidal ^ 
are defined by ' m o d es 

VZE„ + fe*En = 0 

n X E„ = 0 

V - E„ - 0 

inV 

on S 

in Vand on S 
(7.95, 

and the irrotational modes by / „ F„ = V<f>n, where 

V2«b„ + ll*„ = 0 i n V 

<t>n = const on S 

V X F„ = 0 in V 

that is, n X V<S>„ = 0 on S (7.96) 

where k„,l„ are eigenvalues for the problem. The constant is chosen as 
zero, except for the n = 0 mode, which has /„ = 0. The above definition for 
F„ is chosen so that 

/ ** dV = - 1/ *„ Vz<t>„ dV = - ~j (V • cb„ Vd>„ - V4>„ • V*„) 
V l „ V i, V 

dV 

d<S>„ 

Note that only one boundary condition is imposed on the F„ since scalar 
functions $„ are uniquely determined if either <t>„ or d<bn/dn is specified or 
S. The modes are assumed normalized, so that 

(7.97) 

yti-

f <t$ dV - jWm • F„ dV - / E„ • E „ dV = 1 
JV JV JV 

For n = 0 the eigenvalues / 0 , k0 are assumed to be the zero eig" 
ues. The corresponding eigenfunctions E0 , F 0 are the zero-frequency n i ^ 
We shall show that E0 cannot be distinguished from F0 ; so only the ^ ^ 
will be retained. We have V 2 E 0 = 0 = VV • E0 - V X V X E 0 , or V 
E0 = 0, since V • E0 = 0 by hypothesis. Thus 

- / E 0 - V x ? x E o d V = 0 
Jv 

{(V • E 0 X V X E 0 - V X E 0 • V X Eo) 
Jv 

ft 
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This gives jv\V x E 0 | 2 dV = &,-n • E0 X V X E0 dS = 0 since n X E0 = 0. 
Thus we must have V X E0 = 0, which implies E0 = V/\ where f is a scalar 
function which is constant on the surface S. This latter relation holds for 
F0 as well, so that E0 can be discarded as long as F0 is retained. The 
zero-frequency mode F0 will be denned by 

F0 = V<D0 

V X F 0 = 0 

n X F ( ) = 0 on S that is, <t>0 = const on S 

V2<i>0 = 0 since lQ = 0 

(7.98) 

For cavity types 1 and 3, a solution for <t>0 other than a constant does not 
exist. Hence the F0 mode is present only for the type 2 cavity, with tt>0 

having different constant values on S t and S 2 . This mode is just the static 
electric field that may exist between two conducting bodies at different 
potentials. 

Orthogonality Propert ies 

Nondegenerate E„ and F„ modes are orthogonal among themselves and 
with each other. Consider 

^ ( E m V 2 E „ - E „ V * E m ) < / V 

= / ( E „ • V x V x E m - E „ • V x V x E„) dV 
Jv 

= / [V X E„ • V x E m - V X E m • V X E„ 
Jv 

- V . ( E „ X V x E , „ - E m x ? x E „ ) | r f V 

= ( £ ( n X E m - V x E „ - n x E „ - V x E m ) d S = 0 
s 

Hence, if k2
m * k\, 

fE„,-EndV=Snm (7.99) 

where the Kronecker delta Snm = 0 if n * m and equals unity for n = m. 
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For the modes Fm we show first of all that the <l>n are orth 
have °gonal. tye 

jy(% ?2*„, - *„, v^„) dV = (If, - ll )f^m ay 

so that 

Next consider 

f<Pn<P„,dV~0 w h e n / , 2 * ^ 

a<P 
JV • <Pn V<f„, dV = ^ „ ~ - dS = 0 = ^(V*B • V*„, + <!>„ v2*m) dV 

= /„/„,/" F„-F„,dV-Z^/<J» n*mdV 

Since the latter integral is zero, we have 

(7.100) 

for n and m not both equal to zero. If m = 0, n ¥= 0, the proof of 
orthogonality still holds. However, the normalization for the F0 mode will 
be chosen as 

f F 0 - F 0 r f V = riVd>0 |2dV=l (7-102 ' 
Jv Jv 

To show that the E„ and Fm modes are orthogonal, consider 

V • F„, X V X E„ = (V X Fm) • (V x E„) - Fm • V X V x E , 

= - ^ F „ , - E „ 

since V X F„, - 0, V X V X E„ = VV • E„ - V2E„ = k*nEn. We now obt 

k*JWm • E„ dV = - 6n • F„, x V X E„ dS 
Jv Ts 

c n (7 102) 
= - fa. X F„, - V X E„ dS = 0 

For n = m = 0, the modes F0 and E„ are not orthogonal, J * " " ^ sets 
identical. Since the F,„ are orthogonal to the E„, it follows that_^ ^ 
are needed, including F0 in general, to expand an arbitrary elec 
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Magnetic F i e l d E x p a n s i o n 

To expand an arbitrary magnetic field (we consider the possibility of 
n • H ¥= 0 over a portion of the surface to exist), we shall set up a dual set of 
modes analogous to those used to expand the electric field. The solenoidal 
modes are defined by 

V*H„ + **H„ = 0 

9 • H = 0 
(7.103) 

n • H„ = 0 on S 

n X V x H„ = 0 on S 

and the irrotational modes are defined by 

P,,G„ = v>„ 

# n (7-104) 
= 0 on S 

(1/2 

V X G„ = 0 

When p„ = 0, we have (assuming this occurs for n = 0) V X G = 0, Y'Vo = 
v" • G0 = 0, n • G„ = 0. Helmholtz's theorem now states that G0 can be 
derived from the curl of a vector potential, say G0 = v* X A 0 , where 
V X V X A0 = 0. Since G0 has also been assumed to be given by G„ = Vi/#0, 
it follows that i//0 must be multivalued. The function Gu corresponding to a 
static magnetic field can exist in the type 3 cavity only. For example, in a 
short-circuited coaxial line, 

/a f i Id a„ d le Ia„ la, 
H = = V — = = = - V X — - In r 

2-r 2ir r <>6 2<rr 2-r 2v 

Note that the scalar potential I6/2TT is multivalued. If k„ = 0 for n = 0, 
then (7.103) gives V x v" X H„ = 0. A volume integral of H(1 • V X V X H„ 
similar to that employed earlier in connection with F0 and E0 shows that 
V x H0 = 0. Hence H„ has the same properties as G„; that is, V X H„ = 
V • H0 = 0, n • H0 = 0 on S. Therefore we shall not retain the H„ mode, 
but keep the G„ mode for the zero-frequency mode. 

Orthogona l i ty P r o p e r t i e s 

We assume normalization according to the following: 

/ H „ - H „ d V = (G„-GndV= {>\,ldV=\ (7.105a) 
Jv Jv Jv 

fGl)-G0dV = j\V<l,l)\
2dV= 1 (7.1056) 
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By methods paralleling that used for the electric-type modes th 
orthogonality properties may be derived: '°Uoy 

)Hn • H,„ dV = / v H„ • Gm dV = )Gn • Gm dV = ^ dy = Q 

(7.106, 
for n * m. For n = m we also have 

Relationship Between E„ and H„ Modes 

The eigenvalues for both the E „ , H „ modes were designated as kn because 
they are, in fact, equal. Furthermore, we can show that 

V x H„ = fe„E„ (7.108) v x E„ = k„nn 

The curl of the first relation gives 

V X V X E„ = VV • En - V2E„ = *„V X Hn = fc2E„ = - V 2 E 8 

by using the second relation. Similarly, 

V x V x Hn = - V 2 H „ = knV x E„ = *»H„ 

Hence (7.108) is consistent with the Helmholtz equation of which the 
E n , H „ are solutions. Furthermore, the boundary condition on E„ is n X 
En = 0 on S. This implies n X V X H„ = 0 on S, which is the boundary 
condition that has been imposed on the H„ functions. Also, we have 
n • H„ = 0 on S, which implies n • V X E„ = 0 on S. Now 

n • v" x E = n V -n 
dn 

X(E„ - n n - E J 

a 
+1 V - n — I X n n • E„ + n — X E„ 

on I on 

= n - V , x B , 

since only the term V, X E,„ is in the direction of n. Here : t' ^Q 

components tangent to the surface S. Since E,„ = 0 on S, n • f^ga 
on S and is consistent with the boundary condition n • W„ - v0]u ine 
(7.108) is the only possible relation between the E „ , H „ modes. A 
integral of 

v • E„ x r x E„ = - E „ • r x r x E„ + iv x EJ 8 = -M1*1"1 

shows that the normalization of H„ is consistent with the norm ^ ^odes 
the E„ also. It should now be apparent that the E„ , F„ and H«^ ^gr&fc 
have the properties that enable them to represent the electric a 
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fields, respectively. An arbitrary field would require an infinite sum of these 
modes for its expansion. 

O S C I L L A T I O N S IN A S O U R C E - F R E E CAVITY 

Consider a type 1 cavity with perfectly conducting walls and free of all 
currents and charges. We wish to determine the possible modes of oscilla
tion. Let the fields in the cavity be expressed in terms of infinite series of 
the form 

E = I > „ ( / ) E „ + £ / - „ ( 0 F „ (7.109a) 
n n 

H = £ M * ) H „ + £ & X * ) G f l (7.1096) 
n n 

where e„, fn, hn, and gn are amplitude factors that are functions of time. 
Since n x E = n - H = 0 o n S and the mode functions satisfy similar 
boundary conditions, the series are uniformly convergent and may be 
differentiated term by term. Maxwell's curl equations thus give 

V X E = £ e„V X E„ = E enknHn = -u E ^ H „ - u E ^ G „ 
n n n n 

V X H = E b$ X H„ = E h„k„En = eE ^ E „ + « E ^ F „ 

If the first equation is scalar multiplied by H„ and G„ in turn and 
integrated over the cavity volume, we obtain 

(7.110a) 

(7.1106) 

by virtue of the orthogonality properties (7.106). Similarly, when the second 
equation is scalar multiplied by E„ and F„ in turn and integrated over the 
cavity volume, we obtain 

e„k„ = - 11 at 

•it 
= 0 

(7.111a 

at 
(7.1116 

From (7.110a) and (7.111a) we obtain 

+ 
k2 

fie 
= 0 
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The solution for e„ is 

and from (7.111a) the solution for h„ is then 
(7.1 12«) 

, JK .TT . rr . 
"«M V M V M < '1126) 

where «„ = A > e ) '•' is the resonant frequency for the nth mode 
In the absence of volume sources, the F„ and G„ for n * Q A 

exist. However, the zero-frequency modes F„ and G0 may exist in ° "° 
types 2 and 3, respectively. These modes are independent of the E ^ ^ 
modes. The n th free oscillation in the cavity is given by 

E = C„E„ = E„ e - . ' (7Al3aj 

H = j y - H n e ^ ' ( 7 . l m ) 

These results are valid if the material in the cavity is lossy as well, provided 
e and n are taken as complex quantities. In this case OJ„ is complex, with 
the imaginary part representing a damping of the mode. 

Cavity with Lossy Walls 

Consider a cavity with finite conducting walls on which 

n x E = Z , „ n X J s = Z„,H, (7.1H) 

where H, is the tangential magnetic field and n is a unit outward directed 
normal. The surface impedance Zm = (1 +j)/aS,. Let the fields be ex
panded as follows: 

Ee'"' = Z e„Ene^' + £ fmFH*** < 7 U 5 a ) 

He'*" = £ n„H,y"'+ E g„G„e^" (7-115*) 

We 
where e„, /'„, h„, and §„ are amplitude constants independent of t i m e . ^ 
have assumed a time variation eJ'"' so that the concept of a ^ ^ 
impedance Z,„ can be applied to account for the finite conductivi. 
W a l l s - • u « «nd since the 

In the present case n X E and n • H do not vanish on o, « conditio"s 

modes in which E and H are expanded satisfy the boundary ^ 
n X E„ = n X F„ = 0 on S and n • H„ = n • G„ = 0 on b' fyff & 
expansions for E and H will not be uniformly convergent at the t e r i n . T° 
Consequently, the curl of (7.115a) cannot be evaluated term ^ tia]iy « 
overcome this difficulty, we use the divergence theorem 
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integration by parts) to obtain 

f v - E x H „ d V = f ( V X E ) -H„dV- f V x H - E d V 
Jy JV JV 

= tpnXE - H n d S 

Replacing V x H„ by knE„ and V x E by ~ja>nH and using the expan
sions (7.115) and the orthogonal properties of the eigenfunctions now give 

-jtofxh,, - knen = djn X E • H„ dS = Zm(f)H • H„ dS (7.116a) 
s s 

Note that H„ • H = H„ • H, since n • H„ = 0. Similarly, we find 

( V • E„ X H dV = f (V x E • H - V x H • E„ ) dV 
•V Jv 

= ^ n x E / H d S = 0 
8 

Replacing V X E„ by knH„ and V x H by jweE and using the expansion 
(7.115) yield 

juee„=knh„ (7.1166) 

This result is the same as that obtained by taking the curl of (7.115b) term 
by term. However, (7.116a) cannot be obtained by taking the curl of 
(7.115a) term by term because of its nonuniform convergence. 

From the two relations (7.116) separate expressions for en and h„ may 
be obtained. For h„ we find 

K = TTTuZm(bH • H„ dS (7.117) 
R R n S 

where k2 = w2ixe. 
Let us now assume that the field is essentially that of the n th mode 

and that this mode is not degenerate, i.e., no other mode has the same 
eigenvalue k„. Then we have H = /*„H„, and the surface integral becomes 

hnZmj,H„ • HndS = hnZm<j)\Hn\- dS 

since H,, is real. The power loss in the walls for the nth mode is 

2 
P,= ?~6lHnl

2dS 
s 

and the average stored magnetic energy is 

W„, = - / | H J - d V = 7 
4 Jy 4 
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The Q for the n t h mode is 

2wW. 
Qn 

n: 

and thus 

2P, 4coWm Ma> 
SlH I2 dS 

For (7.117) we now get 

= •/'<»€( 1 +J)R„ /*<•>*„ 

a relation that can hold only if 

k*-k*a Q„ 1 

We thus find that, for the cavity with lossy walls, the resonant frequency 
differs from the no-loss resonant frequency <nn by a factor 1 — 1/2Q„. In 
addition, a damping constant 5 = ojn/2Qn is introduced. In terms of w and 
8, (7.119) gives 

J'-'-J'-{l-k)-k ("20) 

Degenerate Modes 

The volume orthogonality of the G„ and Hm modes hold even if p» = *«* 
as an examination of the method used in the proof will show. Howeve , 
*n = * m . t n e n t n e proof of the volume orthogonality of the H„ » 
modes breaks down. In this case 

(Hn-HmdV Jv 

may or may not vanish. If the integral does not vanish, the two ^ ^ 
coupled together, since the average magnetic energy stored i a b o v e 

modes will contain a nonzero interaction term arising t r o 

integral. it is also 
In addition to volume coupling between degenerate mo • ^ Qf $& 

possible to have coupling arising from finite wall losses. 1 "e 

surface coupling is examined below. 
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If two modes H„ and H,„ are degenerate, so that kn = k,„, and if in 
addition 

i H„-HmdS*0 (7.121) 
"s 

then the power loss associated with these two modes will contain a cross-
interaction term arising from the above integral. In this case the two modes 
are said to be coupled together by the finite surface impedance of the cavity 
walls. It is not possible to have just one of these modes present since the 
presence of one mode automatically couples the other mode. However, for 
most practical cavities such coupling does not exist. Nevertheless, the 
possibility of mode coupling must be kept in mind since, if it exists, both 
modes must be included in any calculation of energy stored, power loss, 
a n d Q . 

In the case where kn and km are not equal, the surface integral may 
be shown to vanish for rectangular and cylindrical cavities. Although a 
general proof is not available, we should anticipate that this is a general 
property of nondegenerate modes. 

The problem of coupled degenerate modes may be circumvented by 
introducing new modes that are linear combinations of the old degenerate 
modes in such a fashion that they are uncoupled. If H„ and H,„ are 
degenerate coupled modes, choose new modes 

H'„ = C l H n + C z H „ , (7.122o) 

H'„, = d , H „ + d2Hm (7.1226) 

with c, and <f, chosen so that 

0 H ' n H„, dS = 0 (7.123a) 
s 

f H'„ • H'„, dV = 0 (7.1236) 
Jv 

[ | H ' „ | 2 d V = [\n'„fdV= 1 (7.123c) 
Jy J\r 

These new modes are uncoupled and can exist independently of each other 
in the lossy cavity. For these new uncoupled modes the Q may be evaluated 
for each mode individually, since the cross-coupling term in the expression 
for power loss has been made equal to zero and, similarly, the cross-coupling 
term in the expression for stored magnetic energy has been made equal to 
zero. If more than two modes are degenerate, a similar procedure may be 
applied to find a new set of uncoupled normalized modes. In a general 
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discussion we may therefore assume that all the degenerate 
been chosen so that they are uncoupled. ^ have 

*7.9 EXCITATION OF C A V I T I E S 

In this section we consider the application of the modal expand 
field in a cavity to the problem of finding the field excited by omen t° ^ 
electric dipoles, which may represent a current loop or probe resntr 
In addition, a small aperture may be described in terms of eo ' " 
electric and magnetic dipoles as well. Thus the theory to be develop 
be sufficiently general to treat the three common methods of COUDI' *' 
cavity to an external waveguide or coaxial transmission line. 

Let a cavity contain infinitesimal electric and magnetic dipoles 

P « P o c ' - ' « ( r - r 0 ) ( 7 . 1 2 4 Q ) 

M = M 0 ^ " ' « ( r - r 0 ) (7.1246) 

at a point whose position is defined by the vector r 0 . 
The three-dimensional delta function 6(r - r n ) symbolizes that the 

dipoles are localized at the point r = r 0 . This delta function is defined in 
such a manner that, for an arbitrary vector A which is continuous at r0, we 
have 

f A ( r ) < 5 ( r - r 0 ) d V = A ( r 0 ) 
-V 

when the point r0 is included in the volume V (Sec. 2.11). 
By analogy with the following equations governing polarization u 

material bodies, 

B = Mo(H + M) D = e0E + P 

it is seen that Maxwell's equations become 

V X E = - j w B = - j w ^ 0 H -jcoixaM08(r - r0) 
n.X2ob) 

V X H=jwD = > e 0 E + jo»P„5(r - r 0 ) 

where a time factor <?•"•" has been suppressed. . , e 

We now use the general expansion (7.115) for the fields to 
/7.126") 

E = L e„E„ + I fnV„ 
n.l26t» 
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To find the expansion coefficients e„, h „, we follow the derivation leading to 
(7.116) but note that V x E and V X H are replaced by the right-hand sides 
of (7.125). Thus 

((V X E) • H dV - j r X H„ • E dV 
Jy Jy 

= Zm<f>H-H„dS 
S 

= [ [ ~jo,ft0B -jav0MQ8(r - r0)J - H„, dV - k„ JE,, • E dV 

Jy Jy 

= -j(o^0hn - k„e„ -J(OM-0M0 • H„(r0) (7.127a) 

and similarly, 

k,,hn ->«o«» + > p o ' E«(*o) (7.1276) 
To obtain an equation for g„, consider 

f V • E x Gn dV = f (G„ • V X E - E • V x G„) dV 
Jy Jy 

= 6n X E • G„ dS = Z„, (f>H • G„ dS 
s s 

Using (7.125a) for V X E, the expansion (7.1266), and the orthogonal 
properties of the modes H„ and G„ now gives 

/wjiofti +>MoM 0 • G„(r0) = - Z m 0 H • G„ dS (7.128) 
S 

since V X G„ is zero. 
In a similar fashion, use of the relation 

f V • F„ X H dV = ((H • V X F„ - F„ • V x H) dV 
Jy Jy 

= - [ F„ • V x H dV = 6n x F„ • H dV = 0 
Jy I 

together with (7.1256) and (7.126a) yields 

j<oe0fn= -jcoP0-Fn(r0) (7.129) 
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We now have the following equations for the expansion m . o . 

K,fnlmdgn:
 ncoefRc* 

jwe0en = knhn - y 'wP 0 • E„(r ( l ) 

- 1 
h = 

Qts e 

7-13& a) 
l" = Wrkl{Jwk"Po ' E" + ^ M ° ' H" -J^Z-4n • H„d s | 

< 7-1306) 

> * / . - - * * • • * . _ ,7.130c, 

/ • P d U - -Joifi0M0 • G„ - Zm(pU • G„ dS (7.i30rf> 

where /?„ = wzMoeo and (7.130a) has been used in order to eliminate t> 
obtain (7.1306). " a n d 

In many practical problems dealing with cavities, the above equations 
may be simplified. Usually, &> is very nearly equal to a particular resonant 
frequency w„. As (7.1306) shows, all coefficients hm, m * n, will then be 
small compared with h„. Thus all the coefficients em, in * n, will also be 
small compared with e„, and the field is predominantly that described by 
the H „ , E „ mode. In the surface integrals, which represent small perturba
tions from the loss-free solution, we may approximate H by A„H„ without 
appreciable error. In addition, in the equation for gn, we may neglect the 
surface-integral term to a first approximation. We may then use the relation 

, 2P, 

0H„ • H„ dS - — 
«M„ 

Q„Rm 

derived earlier if the H„ modes have been chosen so that they are uncou
pled. In place of (7.130) we now obtain the following simplified equations 

1 -J 
*SU 

or 

Q„ 

h = 

- f t h„= -jwknP0-En -k2
0M0-H„ 

M , P « • En + klUu • H„ 

k\-k% 1 + 
Qn 

jo>ti0{k„M0 • H„ + > P 0 • E „ ) 

(7.131a) 

e„ = -
7.131*) 

k l - 4n-
«o/„ = - P o - F » 

8« = - M 0 - G „ 

(7.1 

Since 
Equations (7.131a) and (7.1316) may be used for all hm

 a n ^ t o r may b 

have assumed u> to be equal or nearly equal to w„, the denorm 
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replaced by k% - k2„, for m * n. For n we may factor the denominator to 
give 

'„ - *o 1 + 

= -2k. 

i - ; 

*„ - k. 

I 2 

!„ +k0{l H 
I - ; 

1/2 

1 -
1 -j 

2Q„ 

since Q„ is very large-. 
Usually, we are primarily interested in the strength of excitation of the 

resonant mode E „ , H „ . Its excitation coefficients are given by (7.13lo) and 
(7.1316). The coefficients /'„ and g„ describe the local field that exists 
around the dipole sources. This field is a quasistatic field in its configura
tion. The excitation of fields in cavities by volume distributions of currents 
may be solved by the same method outlined above. As an example, consider 
a cavity with a volume distribution of current J(rlt)e""••'. A differential 
element of current may be considered equivalent to an electric dipole P with 
a moment given by J/JOJ. Thus, from a current element J(r„)<5(r - r 0 ) 
located at the point r„, the amplitudes of the n th mode are given by (7.131) 
divided by jto. When the current varies with the frequency u>„ of the nth 
resonant mode, only this mode is excited with a large amplitude. The 
amplitude of the electric field of the n th mode due to the volume distribu
tion of current is found by superposition, i.e.. adding up the contributions 
from each current element. Thus we have 

en = _Jw/x f 

( v J ( r 0 ) - E j r ^ c / V , , 

k'i-ki i + 
7.132) 

where the integration is taken over the volume of the current distribution. 
A similar expression holds for the amplitude constant / ;„. 

The fields excited in cavities by volume distributions of currents may 
also be solved in terms of a vector potential function. A specific application 
of the use of the vector potential is given in Chap. 9 in connection with the 
klystron tube; so we do not consider this method here. 

CAVITY P E R T U R B A T I O N T H E O R Y 

The resonant frequency of a cavity can be varied over a small range by 
inserting a small adjustable screw into the cavity as shown, for example, in 
Fig. 7.33a. A small obstacle, such as a dielectric sphere, placed in a cavity 
will also change the resonant frequency and the Q of the cavity if the 
dielectric is lossy. Small obstacles, when acted upon by electric and magnetic 
fields that are uniform over the volume occupied by the obstacle, can be 
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FIGURE 7.33 • 
(a) An adjustable screw used to tune a cavity; (b> a small dielectric sphere placed in a 

cavity 

characterized in terms of induced electric and magnetic dipole moments 
For example, a dielectric sphere of radius / and with a dielectric constant <f 
will have a total electric dipole moment P given by 

- 1 
P =4n- / ' 

e„ + 2 
f f iEn — #. .£nEi -()*-<0 t -

e 0**0 (7.133) 

where E0 is the electric field at the location of the dielectric sphere when it 
is absent. The parameter ae is called the electric polarizability of the 
dielectric sphere. For other obstacles we can write, in a similar way, 

P - « U A (7134c) 

M = * „ , H 0 (7-1346) 

where M is the induced magnetic dipole moment and om is the magneti 
polarizability. In Table 7.1 we Ust the polarizabilities for a number 
obstacles that have the shape of prolate or oblate spheroids or their degenei 
ate forms. The polarizabilities depend on whether the field acts along 
major axis or minor axis. .. 

When the dominant mode in the cavity is the n th resonant m ° d e ,
T h ( 

fields E 0 and H() in (7.134) represent the fields of the nth cavity m o d j t u d e 5 

additional field radiated by the induced dipole moments have am 
given by (7.131). If We assume that the field in the cavity is essential 
the perturbed n th mode, then the dipole moments are given by 

/ 7.1350' 
w r >n, , C « T 

(7.1356) 

Let E„ • P = e„e0A 

P = en[aeu60Enuau + aeve0E„vaD] 

and H„ • M = n„ *.„,, that is, ,7 . l36o' 

,7.1366) 
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TABLE 7.1 
Polarizabil it ies of common obstacles 

Prolate spheroid 

2/ , 

2 / , 

— U 

Oblate spheroid 

<>r, = 
( « , - l ) V ( M r - D V 

«... - r -

( e r - l ) L + l ""' (M,. - 1 ) L + 1 

2 ( c r - l ) V 2 ( M , - 1 ) V 

+ f r - ( f r - l ) L • " " 1 + M , - ( M r - l ) L 

Z,= 
1 -e2 

2c3 

« - ! - • = 

, J + e 

In 2* 
1 - e 

t/S 
V-<5»/,i3 

2/, 
/"*" ^ 

1 v^ 

1 ^ 
tan 

VI - e* 

- u 

2 ' , 

, = 1 1 - -

1/2 

Sphere 

2/ 

4TT/» 
«, + 2 

For conducting obstacles let tr -> * and set p.r = 0 

Circular disk (metallic) 

16 



5 4 4 FOUNDATIONS FOR MICROWAVE ENGINEERING 

Equations (131a) and (1316) give 

jk„Y0kn Aee„ 
h„ -

kl±mhn 

k2 - k2\ 1 + 
= 0 

e„ -
-jkl)Zak„Amhn + kj^een 

Q„ 
^ ~ * S 1 + 

= o 

This is a homogeneous set of equations and has a solution only if tk 
determinant vanishes. By equating the determinant to zero, we obi 
equation for k^ which determines the perturbed resonant frequency of th* 
n th mode when the obstacle is placed in the cavity. When we neglect term' 
in A*, A2

m, and AeA„,, it is readily found that t 

»o — î 1 -
A. + Ar 

(7.137) 

E=e oio^oio — e' 

where 8 = (1 ~j)/Q„. Normally Ae and A,„ are both very small; so the 
approximation is a very good one in many practical cases. 

As an example of the application of this formula, consider the cylindri
cal cavity with a tuning screw of length ll and radius I2 as shown in Fig. 
7.33a. Let the mode in the cavity be the TM 0 , o mode with electric field 
given by 

^o(Poi^/Q) 

ifirdaJiipoi) 

where d is the length of the cavity and a is the cavity radius. Weuv 
approximate the tuning screw as one-half of a prolate spheroid. \ 
li 3» l2 the induced electric dipole moment (see Table 7.1) is 

when the tuning screw is located along the axis of the cavity. The a ^ 
occurs because only one-half of the spheroid is present. The magnei 
along the axis is zero; hence (7.137) gives 

«... 1 
1 -k0 = k 

2 Trda2Ji(Po\) 

when we assume that the cavity Q is infinite so that 8 = 0. w r t ' 
that a = 2 cm, d = 3 cm.. /, = 1 cm, and /2 = 0.1 cm. The un* 

assuff>e 

urbed 

+R. E. Collin, "Fieid Theory of Guided Waves." 2nd ed., chap. 5. IEEE Press, 
1991. 

Piscai [.,*:*• 
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cavity r e sonan t wave n u m b e r is k010 = p0i/a = 2 . 4 0 5 / 2 = 1.2025 r a d / c m . 
T h e polarizability aeu is given by 

2„3 
aeu = ^VhH 

21 fe 
1 + e 

In 2e 
1 - e 

w h e r e e = (1 - / f / Z 2 ) 1 / 2 . For ou r example aeu equals 2.065 X 10 2. T h e 
pe r tu rbed r e sonan t wave n u m b e r i s t h u s given by 

kn = k 010 1 -
2.065 X 10 - 2 

2ir X 3 X 4 X ( 0 . 5 1 9 1 ) ' 
= * O I O (1 - 0 . 0 0 1 ) 

T h e pe r tu rbed r e sonan t frequency is t h u s 0.1 percent lower wi th the t u n i n g 
screw present . 

By m e a s u r i n g t h e change in the r e sonan t frequency and Q of a cavity 
w h e n a lossy dielectric sphere is placed in t h e cavity, t he complex permit t iv
ity of t h e dielectric mater ia l can be de termined (see Prob. 7.20). 

7.1. Show that, on a short-circuited coaxial line one-half wavelength long, the 
time-average stored electric and magnetic energies are equal. Use the expres
sions for the fields given by (3.81). 

7.2. For the folded coaxial line, show that b = /ad in order for the characteristic 
impedance of the inner and outer lines to be the same. Tins is a common 
form of line for use in high-frequency oscillators. The effective length / is 
about twice the physical length. At a frequency of 300 MHz, what must 1/1 
be in order that / = A0/4? If 2c/ = 5 cm and 2a = 2 cm, what must lb equal 
for equal characteristic impedances? For a copper line (a = 5.8 x 107 S/m), 
find the Q and input impedance at resonance. For d fixed, what are the 
optimum values of a and b that will make Q a maximum? 

2d 

1/2 
-1 

J Inner line<^ 
24 2a\ 

1 0 jier llne-< FIGURE P7.2 

7.3. Verify that an open-circuited transmission line behaves as a series resonant 
circuit in the vicinity of the frequency for which it is a quarter wavelength 
long. Obtain an expression for the input impedance at resonance. 
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rteter 
7.4. A short-circuited two-wire line is made of copper. The condui 

1 cm, the spacing is 3 cm. and the length is 40 cm. Find the "" '^^ -
frequency, the Q, and the input resistance at resonance. 

7.5. Design a microstrip-line resonator like that shown in Fig 7 o 
crostrip input line and resonator are both of width W = l mm 1.°' T h e mi. 
thickness is 1 mm and made from alumina with er = 9.7 a n j .e fu b s lrate 
equal to 2 x 10 '. The microstrip is made from copper 0.01 mm' tv t a n g e n t 

the required capacitance C, for critical coupling and the gap spaci ^ F " l d 

is the length I and Q for the resonator? The frequency of operation^ *d W h a t 

How much shorter than one-half wavelength do you have to make nl!?**Z ' 
of capacitive loading at the two ends? The gap capacitance for e = Q i***"1* 
used. 

7.6. Design a circular disk resonator operating in the TM, 10 mode at 6 GHz Th 
substrate to be used has a dielectric constant e'r -je" = 6 -J0.005 and * 
1 mm thick. The disk is made from copper. Determine the required radiu 
of the disk and the Q of the resonator. 

7.7. Find the resonant frequency and Q of a copper rectangular cavity of dimen
sions a = b = d = 10 cm for the TE,,,, mode. 

7.8. A cylindrical cavity of radius a = 2 cm and a length of 6 cm is filled with a 
dielectric with permittivity e = (2.5 y0.0001)e0. The cavity is made of 
copper. Find the resonant frequency and Q for the T E I U mode. Note that, in 
the expression for resonant frequency, the velocity of light in free space, c, 
must be replaced by 

•7.9. Use the results given by (4.25) and (4.26) to show that the Q of a at 
given by 

ax 0B 

* 2R flu, 2(3 <?o) 

where Zm = R + jX and Ym = G + jB are the input impedance andl admit
tance at the terminals. Verify that these formulas give the usual results 
series RCL network and for a parallel RCL network. 

7.10. A rectangular cavity of dimensions u,b,d is coupled to a r e c U " g ^ ^ a i n a n 
through a capacitive slit. The guide width is a, and the height is b. ^^ 
equation ror determining the first antiresonant frequency. Find ^ an (j a 

slit susceptance for critical coupling. For a = 26 = 2.5 cm, a f for 

copper cavity, compute the resonant_ frequency Q and su op ^ _jit 

critical coupling. Use the formula B, * ( 2 0 6 / i r ) t n c s c ( - r / 2 * ' 
susceptance. What is the loaded Q? 

tT. 

FIGURE P7.10 
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7.11. For a capacitive diaphragm in a rectangular guide of the dimensions given in 
Prob. 7.10, obtain an equivalent circuit to represent the susceptance function 
Bc = (2/36/-)lncsc(777/26) correct to terms up to Aw = w - wl in the vicin
ity of the frequency Wj. 

Hint: Expand /? in a Taylor series about OJ, and choose a series LC 
circuit. 

7.12. Design a rectangular cavity of length d. height b = 1.2 cm, width a = 2.5 cm 
that will resonate at 10,000 MHz. The cavity is critically coupled to a 
rectangular guide of dimensions a by b. Specify the cavity length d and the 
radius of the centered circular aperture. Determine the unloaded and loaded 
Q's if the cavity is made of copper. 

7.13. For the aperture-coupled rectangular cavity discussed in the text, let the 
incident power at resonance be 100 mW. The cavity is critically coupled-
Evaluate the peak value of the electric field in the incident wave and in the 
cavity field. How does the peak amplitude of the cavity field depend on the 
cavity Q? (See Prob. 7.12 for cavity dimensions.) 

7.14. A hemispherical resonator is to be used at 10 GHz. It is made from a 
dielectric with a dielectric constant of 100 and is mounted on a ground plane-
Find the required radius of the hemisphere and the radiation Qr. 

*7.15. A cavity is excited by an impressed electric field E„ tangent to an aperture 
surface Sa cut in the cavity wall S. Use the relation fvV - E X G„ dV to 
show that the amplitude g„ is given by 

-iu>nng„ = (bn X E • G„ dS = I n X E„ • G„ dS 

for a cavity with perfectly conducting walls. Using the general expansion 
(7.1156), show that an alternative expression is 

-y"wM,,g„ = -JW-of H ' G- dV = " j>n • H l / '« dS 

upon putting H • VI/I„ = V • Hi/>„ since V • H = 0 and using the divergence 
theorem. This last relation shows that the G„ modes are excited whenever 
n • H does not vanish over S. 

*7.16. Show that the two expressions for g„ in Prob. 7.15 are identical. 
Hint: Consider 

n • V x Ei/<„ = (/»„n • V X E - n • E X V</<„ = - jo»(X(j(&„n • H - n X E • Vi//„ 

and use Stokes' law to show that 

<̂ >n • V X Ei//„ dS = 0 
s 

*7.17. Find the eigenfunctions E„, H„ , F„, and G„ for a rectangular cavity of 
dimensions a. b,c. 

*7.18. Obtain a modal expansion similar to (7.126a) and (7.130) for the electromag
netic field in a cavity excited by a volume distribution of electric current J ( r ) . 
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FIGURE P7.19 

*7.19. (a ) For the box cavity illustrated in Fig. P7.19, show that the normalized 
electric field mode function for the TE1 0 1 mode is 

E 101 abc 

vx TTZ 
sin — sin — a „ 

(b) Let a metal sphere of radius I be placed in the center of the cavity. Show 
that when a = 6 = c and / = a/20 that the TE l t l l-mode resonant fre
quency is lowered by TT/20 percent. 

*7.20. A dielectric sphere of radius / and complex relative permittivity er = t'r - je" 
is placed in a cavity. Show that the perturbed resonant frequency for the nth 
cavity mode is given by 

k0 = k ^JL^n^u-wt'yjJ^ + l 
2Qn

 n - o>+2)*+te:> 

where the cavity Q due to the lossy dielectric is given by 

Qd = 
to + 2)2 + (e"rf 
2 T H * E „ • E„3£-; 
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CHAPTER 

8 
PERIODIC STRUCTURES 
AND FILTERS 

Waveguides and transmission lines loaded at periodic intervals with identi
cal obstacles, e.g., a reactive element such as a diaphragm, are referred to as 
periodic structures. The interest in waveguiding structures of this type 
arises from two basic properties common to all periodic structures, namely, 
(1) passband-stopband characteristics and (2) support of waves with phase 
velocities much less than the velocity of light. The passband-stopband 
characteristic is the existence of frequency bands throughout which a wave 
propagates unattenuated (except for incidental conductor losses) along tl 
structure separated by frequency bands throughout which the wave is i 
off and does not propagate. The former is called a passband, and the latte 
referred to as a stopband. The passband-stopband property is of £ 

interest for its frequency filtering aspects. . a 

The ability of many periodic structures to support a wave havi 
phase velocity much less than that of light is of basic ' m P ° r t a n ^ t i o n 

traveling-wave-tube circuits. In a traveling-wave tube, efficient 
between the electron beam and the electromagnetic field is obtain "n 0 

the phase velocity is equal to the beam velocity. Since the latter is ^ 
greater than 10 to 20 percent of the velocity of light, considerable - ^ ^ 
down of the electromagnetic wave is required. Periodic structu aCtual 
for use in traveling-wave tubes are discussed in this chapter-
principles of operation of the tube are covered in Chap. 9. micr0wave 

The last part of the chapter is devoted to an introduction to ^ ^ 
filter theory. A complete treatment Df all aspects of filter theory sufl5l.,ent 
would be much too lengthy to include in this text. However 

550 
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material is covered to provide a background so that the technical literature 
can be read without difficulty. 

r APACITIVELY L O A D E D T R A N S M I S S I O N -

L m E - C I R C U I T A N A L Y S I S 
To introduce a number of basic concepts, methods of analysis, and typical 
properties of periodic structures, we shall consider a simple example of a 
capacitivity loaded transmission line. For a physically smooth transmission 
line, such as a coaxial line, the phase velocity is given by 

vp = (LC 
, - 1 / 2 

= (Mo^o) -1/2 [8.11 

where er is the dielectric constant of the medium surrounding the conduc
tor. A significant reduction in phase velocity can be achieved in a smooth 
line only by increasing e r . This method has the great disadvantage that the 
cross-sectional dimensions of the line must also be reduced to avoid the 
propagation of higher-order modes. The phase velocity cannot be decreased 
by increasing the shunt capacity C per unit length because any change in 
the line configuration to increase C automatically decreases the series 
inductance L per unit length, since LC = /x0e. However, by removing the 
restriction that the line should by physically smooth, an effective increase in 
the shunt capacitance per unit length can be achieved without a correspond
ing decrease in the series inductance L. That is, lumped shunt capacitance 
may be added at periodic intervals without affecting the value of L. If the 
spacing between the added lumped capacitors is small compared with the 
wavelength, it may be anticipated that the line will appear to be electrically 
smooth, with a phase velocity 

UP = - f 1-1/2 

(8.2) 

where C0/d is the amount of lumped capacitance added per unit length (a 
capacitor C0 added at intervals d). The following analysis will verify this 
conclusion. 

One method of obtaining shunt capacitive loading of a coaxial trans
mission line is to introduce thin circular diaphragms at regular intervals, as 
in Fig. 8.1. The diaphragms may be machined as an integral part of the 
center conductor. The fringing electric field in the vicinity of the diaphragm 
increases the local storage of electric energy and hence may be accounted 
for, from a circuit viewpoint, by a shunt capacitance. The local field can be 
described in terms of the incident, reflected, and transmitted dominant 
TEM mode and a superposition of an infinite number of higher-order E 
modes. If the cylinder spacing b - a is small compared with the wave
length, the higher-order modes are evanescent and decay to a negligible 
value in a distance of the order of b — a away from the diaphragm in either 
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M-4 

FIGURE 8.1 
Capacitive loading of a coaxial line by means of thin circular diaphragms. 

direction. An approximate expression for the shunt susceptance of th 
diaphragm ist 

B 8(6 -ef 
a = -— = V 

ln(6/a) 
In esc 

\2b-a (8.3) 

where Yc = [601n(6/a)J_ 1 is the characteristic admittance of an air-filled 
coaxial line. The expression for B is accurate for b - a < 0.1A0. In this 
low-frequency region, B has a_frequency dependence directly proportional 
to io. At higher frequencies B will have a more complicated frequency 
dependence, although the thin diaphragm can still be represented by a 
shunt susceptance. 

The circuit, or network, analysis of a periodic structure involves 
constructing an equivalent network for a single basic section or unit cell of 
the structure first. This is followed by an analysis to determine the voltage 
and current waves that may propagate along the network consisting of tl 
cascade connection of an infinite number of the basic networks. For the 
structure of Fig. 8.1, an_equivalent network of a basic section is a shunt 
normalized susceptance B with a length d/2 of transmission line on eitl 
side, as in Fig. 8.2a. Figure 8.26 illustrates the voltage-current relatior 
ships at the input and output of the « th section in the infinitely 
cascade connection. . ul 

The relationships between the input variables Vn, I„ arid t h e °" ? n 

variables V„^„ J n M are readily found by using the .a/.W^J t r a ^f""^ r e n t 
matrix discussed in Sec. 4.9. The Vn and /„ are the total voltage a " d « ^ ^ 
amplitudes, i.e., the sum of the contributions from the inciden ^ 
f leeted TEM waves at the terminal piane. The circuit for a unit ^ ^ ^ n -
broken down into three circuits in cascade, namely, a section ° shunt 
sion line of length d/2 (electrical length 0/2 = k0d/2\ followed y 

tN. Marcuvitz (ed.), "Waveguide Handbook," p. 229, McGraw-Hill Book 
1951. 

file:///2b-a
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.'/2 *h> , 
r— i -i 

r^ 
Fc = i )B s=1 

(a) (6) 

FIGURE 8.2 
(c> Equivalent circuit for unit cell of loaded coaxial line; (b) cascade connection of basic 
unit-cell networks. 

susceptance B, which in turn is followed by another length of transmission 
line. The &.'%'&5$ matrix for each of these individual networks is, respec
tively (Prob. 4.26), 

c o s -

J sm-

J sin-

c o s -

1 

JB 

e 
c o s -

jsm-

JSin 

c o s -

The transmission matrix for the unit cell is obtained by the chain rule [see 
(4.75)], i.e., the product of the above three matrices, and hence we have 

e e 8 8 

[V c o s 2 jsm2 1 0 cos - 7 s i n - [K + I 
h e e .0 1 0 8 / „ . , 

j s i n - cos - / s i n - cos-

B •lB • o S \ ] cos 8 - —- sin 8 
ss 7 — cos0 + smfl - — 1 

'n* 1 

IB B' B ' „ + , 

j — cos 8 + sin 8 + — cos 8 - — sin 8 
j 

(8.4) 

Note that srf =9>, which is always true for a symmetrical network, i.e., a 
symmetrical unit cell. 

If the periodic structure is capable of supporting a propagating wave, it 
is necessary for the voltage and current at the (n + l ist terminal to be 
equal to the voltage and current at the rath terminal, apart from a phase 
delay due to a finite propagation time. Thus we assume that 

K*i~ *-**?* (8.5a) 

h ^ = e-T*ln (8.56) 

where y = jp + a is the propagation constant for the periodic structure. In 
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terms of the transmission matrix for a unit cell, we now have 

or 

\v„] \.'V m l [ v B + l l o-yrf [K + 1 l 
h f §>. . ' „ + , . — c 

' - > 

[ \se m\ \eyd 0 \ [Vn + 1l 
t 9 J " 0 eyd 1 7„+i, = 0 (8.6) 

This equation is a matrix eigenvalue equation for y. A nontrivial 
for V„ , i, /„ +, exists only if the determinant vanishes. Hence 

j / - ey" OS 
= tfB -&W+e2v>-e?d(sS +&) = 0 

Hon 

(8.7) 

For a reciprocal network the determinant s?9 - <M<d? of the transmiss' 
matrix equals unity (Sec. 4.9); so we obtain 

sf +Qi 
COSh yd = — ^ — ( 8 g ) 

For the capacitively loaded coaxial line, (8.8), together with (8.4), yields 

B 
cosh yd = cos 6 - —sin 6 

2 
(8.9) 

When Icos 0 - (B/2)s in ()\ < 1, we must have y =jfi and a = 0; that is, 

B 
cos lid = cos 0 sin 6 

2 

(8.10a) 

When the right-hand side of (8.9) is greater than unity, y = a and (i - 0; sc 

B 
cosh ad = cos 6 sin 8 > 1 

2 

(8.106) 

Finally, when the right-hand side of (8.9) is less than - 1 , we must hav 
yd = jir + a, so that 

cosh yd = cosh(J7r + ad) = -cosh ad 

B (8.10O 
= cos0 - — sinfl < -1 

I t i s apparent, then, that there will be frequency bands for whic u^ i h e 

ated propagation can take place separated by frequency bands in sjble 
wave is attenuated. Note that propagation in both directions 
since ~y is also a solution. . js roade in 

A detailed study of the passband-stopband characteristic^ f r e q u e nO 
Sec. 8.6. For the present we shall confine our 

attention to the W J ! * t h e n 8 i * 
limiting value of /?. When d « A0, 6 = k0d is small, and pa 
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be small. Replacing cos 6 by 1 - 0 2 / 2 and sin 9 by 0 in (8.10a) gives 

0 2 d a fc^d 2 B* 0 d 
cos£d - 1 ~ - g - - 1 - - | | -

Using the relations k% = W2M»«O = a>2LC and B = B/Yc = »GJJL/CW*t 

where wC0 = B, we obtain 

w2LC„ 
/32 = «2LC + 

a 
and hence 

-u 

,f = «tfZ|C7+-^J (8.11) 

Therefore we find that, at low frequencies where d <K A0, the loaded line 
behaves as an electrically smooth line with a shunt capacitance C + C^/d 
per unit length. The increase in fi results in a reduction of the phase 
velocity by a factor k0/fi. 

Another parameter of importance in connection^ with periodic struc
tures is the normalized characteristic impedance ZB presented to the 
voltage and current waves at the reference terminal plane, i.e., input 
terminals of a unit cell. An expression for Zn may be obtained from (8.(5). 
which may be written as 

Hence 

ZH _ V,,,, -M v' - e~"' 
-* = £ B = — i = - = (8.12) 

Replacing 2 e r " by .rf +0 ± [(.!/ +&)2 - 4 ] 1 / 2 from (8.7), we obtain 

%m 
•sf ± yO^ + ^ ) 2 - 4 

where the upper and lower signs refer to propagation in the +z and -z 
directions, respectively. We are using the convention that the positive 
directions of V„ and /„ are those indicated in Fig. 8.2, independent of 
the direction of propagation. For a symmetrical network, si = .C*\ and since 
&&> -&<& = 1, we have . i /2 - 1 = m% • In this case (8.13a) reduces to 

Z§ = j= ~ (8.13a) 

zi- , 2 = ± V - <813fe> 
±V4.W2 - 4 

In general, for a lossless structure, Z'a = ~(Z'b )* in the passband, since 
\st +S\ < 2, as (8.8) shows. 
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Jf the unit cell is represented by a T network with paramet 
and Z22, then, by using the relations between the st/xi't. p- pg. "• —Iz, 
the impedance parameters given in Sec. 4.9. we can also show th rS an^ 

cosh yd = 
2Z 12 

— * ^ L 1 A1' 

Z„ = ± ZVi sinh yd 

(8.1 4 ) 

(8.15) 

The waves that may propagate along a periodic structure are oft* 
called Bloch waves by analogy with the quantum-mechanical electron wa 
that may propagate through a periodic crystal lattice in a solid. It is for t] 
reason that we have denoted the characteristic impedance as Z for th' 
Bloch wave. The voltage and current at the nth terminal plane will h 
denoted by V„;„ 7B*„ for the Bloch waves from now on instead of by the 
quantities V„. In. The + and - signs refer to Bloch waves propagating in 
the +2 and -z directions, respectively. We shall also adopt the convention 
that the positive direction_of current flowjbr Bloch waves is always in the 
+ 2 direction; thus l'b = Y^V^ and Ilt = YjtVg. However, for a symmetri
cal structure such that -'/ = V, we shall have ?„ = - Y% = -(Z^)'l. 

If (8.13) is used, we find that, for the loaded coaxial line, 

2 sin e + B cos 0 - B 

i V 2 sin 6 + B cos 0 + B 

In the low-frequency limit, where we can replace sin 6 by 

0 = k0d = iodjLC 

and cos 0 by 1, we obtain 

(8.16) 

2„ = 
20 

20 f 2B C + C0/d 

and thus 

Zp ~ ZffZ,. - C + C0/d 
ically 

Again we see that, in the low-frequency limit, the loaded h"l^ ^tidp'-1^ 
smooth and the characteristic impedance is modified in ^ ^ k>ngth 
manner by the effective increase in the shunt capacitance pe ^ ^ &&#& 

The characteristic impedance of a periodic structure is ^ ^ . ( (:e\\. 
quantity since it depends on the choice of terminal planes , 0 ^ t i o 0 i the » 
the terminal planes are shifted a distance / in the -
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characteristic impedance becomes 

Z« = 
Z 8 +j tan A-n/ 

1 + . /Z H t an /8 0 / 
(8.18) 

WAVE A N A L Y S I S O F P E R I O D I C S T R U C T U R E S 

Periodic structures may be analyzed in terms of the forward- and 
backward-propagating waves that can exist in each unit cell with about the 
same facility as the network approach gives. In the wave approach the 
wave-amplitude transmission matrix \A\ discussed in Sec. 4.9 is used. 

With reference to Fig. 8.3, let the amplitudes of the forward- and 
backward-propagating waves at the nth and (« + l)st terminal plane be c*, 
c,;, c*+1, and c~+1. The e*+Be~H , are related to the c*,C~ by the wave-
amplitude transmission matrix as follows: 

"-AM A12 

A2, A22 •r, • ! 

(8.19) 

The solution for a Bloch wave requires c~, , = e y''c* and c„ ., = e~**'en. 
Hence (8.19) becomes 

= 0 (8.20) 
A21 A 2 2 - e > " ' c „ . , 

A nontrivial solution for c~rX,c~., is obtained only if the determinant 
vanishes. Consequently, the eigenvalue equation for y is 

A , l A 2 2 - A 1 , A 2 l + e 2 ^ - ^ " ( A , 1 A22) = 0 

or cosh yd = 
A u + A .r/, 

(8.21) 

since the determinant of the transmission matrix, that is, AnA22 ~ Al2A2V 

equals 1 when normalized wave amplitudes are used. 

Fa 

— T 1 «&1 

Cif' 

%. Ca*t 

Unit 
cell " " " " Unit 
cell " " " " Unit 
cell 

f n«l 

FIGURE 8.3 
Wave amplitudes in a peri
odic structure. 
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up from 
The BJoch wave which can propagate in the periodic struct 
om forward- and backward-propagating normal trancm;*--propagating normal transmission.,. m a d e 

-«- - . i - -o r. . - ' " " a m i s s i o n U 

waveguide waves that exist between discontinuities. When v h 0r 

determined from (8.21), the ratio of c~ to c' is fixed. This ratio • ***" 
the characteristic reflection coefficient YB. Thus the transverse c\ tL 
of the Bloch wave will have an amplitude ^ n c fielcj 

VBO = CO + CO = C O ( 1 + 1"B) 

at the zeroth terminal plane and an amplitude 

vft„ = <-•;+ c;= cr; (i + vB) = c; (i + vB)e~y"d
 (822a) 

at the n th terminal plane. The transverse magnetic field of the Bloch wa • 
will have an amplitude 

/ / j„=c0*(l-r f i)e->""' ( 8 .226) 

at the rcth terminal plane. 
The characteristic reflection coefficient may be found from the pair of 

equations (8.20) by eliminating e yJ by the use of (8.21). It is usually more 
convenient to express rB in terms of ZB by using the relation ZB « 
(1 + r B ) / ( l - YB). Thus we have 

r = —-
1 R = 

zs-\ 
zi-

(8.23) 

where the + and - signs refer to Bloch waves propagating in the +z and 
—z directions, respectively. 

The above wave formulation is now applied to the capacitively loade 
transmission line discussed earlier. The unit cell is chosen as in Fig. 8 
The wave-amplitude transmission matrices for the three sections of the unit 
cell are (Sec. 4.9 and Prob. 8.7) 

,jk.Qd '•> 0 
, -Jkud n 

2+jB 

B 

B 

4+B2 

2(2 +jB) J 

and another matrix like the first one. The [A] matrix for the u » , 
obtained by multiplying the three component matrices together. 

cell is 

[A] = 
,>»/2 0 

,-}»/2 

2 +jB 

B 

B 

4 + B 2 

2(2 + jB) 

,j«/2 0 
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where 0 = kf)d. After multiplication we obtain 

[A] 

2+jB 
_e;« 

B 
-J-

B 
jl 

4 + B~ 

2(2 +jB)e 
J ii 

(8.24) 

Making use of (8.21), we find that 

(4 + B ' 2 ) e ' * + ( 2 + . / B ) V S 
cosh yd " My^S) = cos e' ^Sin ° 

which is the same as (8.9) obtained earlier. 

« 3 P E R I O D I C S T R U C T U R E S C O M P O S E D OF 
^ S Y M M E T R I C A L T W O - P O R T N E T W O R K S 

The capacitively loaded coaxial transmission line can be considered as made 
up of symmetrical sections by choosing terminal planes midway between 
each diaphragm. For other choices of terminal-plane positions the unit cell 
would be unsymmetrical, and its equivalent T network would then also be 
unsymmetrical. Other types of periodic structures are composed of intrinsi
cally unsymmetrical unit cells such that there is no terminal-plane location 
that will reduce them to a symmetrical structure. Several unsymmetrical 
structures are illustrated in Fig. 8.4. 

For nonsymmetrical structures the Bloch-wave characteristic imped
ance is given by (8.15), which we rewrite as 

f W + z (8.25a) 

(8.256) 

nnnnnn 
/ i i < < 

I 
I* 

in 
A. 

FIGURE 8.4 
Periodic structures with unsymmetrical unit cells, (a , 6) Rectangular waveguide loaded with 
thick unsymmetrical diaphragms; (c) coaxial line loaded with diaphragms and dielectric rings; 
(rf) equivalent T network of a unit cell. 
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where 

2 n Z2-, 
- ' • . : 

c = 

Z = ±Zl2 sinh yd = ±JZl2 sin £d 

(8.26 a) 

(8.266, 
and the sign is to be chosen so that Z has a positive real part Th 
constant $ is given by ' he Phase 

cos fid = 
Zu+Z, 22 

2Z 12 
(8.26c) 

in the propagation band. The physical length of a unit cell is d. Th 
quantities Z£ and [id are often called the iterative parameters of the T 
network. A consequence of the nonsymmetry of the unit ceil is that Z^ is 
different from ZB. B 

Let the voltage of the Bloch wave at the zeroth terminal plane be V -
where the signs + or - refer to Bloch waves propagating in the +z and -z 
direction, respectively. The corresponding Bloch-wave current is Z^0 = 
V&a/Z'B- At the « th terminal plane the Bloch-wave voltages and current-; 
will be 

Vp* = VR* e "Bn BO* 
f y ;i ,1 

LB 

^.•2'c 

(8.27b) 

Recall that we are taking the positive direction of current flow to be in the 
+ z direction, independent of the direction of propagation for the Bloc 

waves. 
If the restriction is made that the only points at which the voltages 

and currents will be specified are the terminal planes, the periodic stru< 
has properties similar to any uniform transmission line or wavegu • 
such, transmission-line theory can be applied to study the effects 
nating a periodic structure in an arbitrary load impedance, ' ^ 
matching sections for periodic structures, etc. These applications 
cussed in the following two sections. 

8.4 T E R M I N A T E D P E R I O D I C S T R U C T U R E S 

Figure 8.5 illustrates a periodic structure terminated in a k>a« ^e „th 
2,, at the JVth terminal plane. The total voltage and current a^ ^ ] o c h 

terminal plane will be a superposition of an incident and re 
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"sol 
rx t 

FIGURE 8.5 
Periodic structure terminated in a load Z,. 

wave; thus 

V = V p " : W + V~ pJP"<i 
vBn vB~e + vB0e 

I = I* p~.ll1'"1 + J' u)V"<> 
-Bn -B~e T ~B0e 

where YB = Zg1 . At the N t h terminal plane we must have 

(8.28a) 

( 8 . 2 8 6 ) 

and hence 

'L ~ *BN ~ "IABN ~ -'IJI. 

V£N + vB-A. = zL( Y< v;N + ?B vHN) (8.29) 

The reflection coefficient f, of the load for Bloch waves is, from (8.29), 

rBN ZLYS-1 
BN ZL^B~ 1 

Z-£ZL-Z- j 

z + t zL + z- ( 

-'B Z;_ ZL 

B Z,, - Z'R 

(8 .30) 

For a symmetrical structure f = 0 and the expression for I', reduces to the 
usual form. 

The Bloch-wave reflection coefficient at th$ nth terminal plane is 

,-j<N-n)-d 

r„ = 
"Br, 

VBNC 

vBNe 

= r e - j x N - n ) p d (8.31) 

The input impedance at the nth terminal plane is 

vjWi + r j 
z„ = 

VL + v£„ 
Jin + IBn 

1 + r„ 

*B + r„y8-

vs
+„^+vBnyB-

zB + Zfl(i + r„) 

z« + z : r 
(8.32) 

p~.ll1'%221


5 6 2 FOUNDATIONS FOB MICROWAVE ENGINEERING 

From (8.32) we can also obtain the alternative expressions 

ZR+ZIV. B ' n 

r„ = - ( z . - Q - z 
zB {zn-c)+z 

(8.33a) 

(8.336) 

's used to 
If (8.31) is used to express F„ in terms of YL and (8.30> j, 

express F, in terms of Z,, we find that (8.33a) gives 

« g ^ - £ + j Z tan( N-n)fid 

" " Z + . / ( Z t - f ) t a n ( N - / , ) / 3 d <8-34) 

This equation gives the transformation of impedance along a periodi 
structure. It differs somewhat from the usual transmission-line formula 
when the unit cell is unsymmetrical, so that f * 0. 

For a Bloch wave propagating in the +z direction, the periodic struc
ture must be terminated in a load Z, = ZB = £ + Z to avoid a reflected 
wave. Similarly, the matched-load_termination for a Bloch wave propagating 
in the —z direction is -ZB= Z - C- The two characteristic Bloch-wave 
impedances are the iterative impedances for the T network of the unit cell. 
With voltages and currents chosen as in Fig. 8.6, it is readily shown that an 
impedance ZB connected at terminals 2 is transformed into itself at termi
nals 1. Similarly, an impedance — ZB connected at terminals 1 is trans
formed into itself at terminals 2. It is for this reason that Zg is called an 
iterative (repeating) impedance. For a lossless T network, f is pure imagi; 
nary and Z is pure real in the propagation band. Ambiguity in the sign of Z 
as given by (8.15) or (8.266) may be avoided by noting that, in a passband, Z 
is real and positive, in order to be consistent with our choice of positn 
direction for current. We must have positive real power transmission, an 
hence 

(8.35) 

requiring the reactive part of 
P = RekV£(ltf = Rei|/«|2Z^= \\ltfZ > 0 

Another criterion that may be used is the one 

* i . i=« 

(61 

FIGURE 8.6 
Iterative impedance properties of a T network. 

file:////ltfZ


n 1 1 I 1 i r 
A, 

, 2 , 2 d 

rX 

r _JU n B _JLT 
c ^ r ^ 

u ~f^~ir 1! ̂ CT. 
J 8 h 

PERIODIC STHUCTUBBS AND FILTERS 5 6 3 

[*] 

FIGURE 8.7 
(a) Tapered transition matching section for a di
aphragm-loaded rectangular guide; (6( quarter-
wave transformer matching of a capacitively loadt-d 
coaxial line. 

Zg to have a positive derivative with respect to w (Sec. 4.3). There is also 
reactive power in a Bloch wave in a passband, and this is given by 

* reactive 2 ' ' « ' & (8.36) 

Complex power for a Bloch wave propagating in the —z direction is given by 
- ^VH(IBY* because of our choice of direction for positive current. 

MATCHING O F P E R I O D I C S T R U C T U R E S 

If a periodic structure is connected to a smooth transmission line or 
waveguide, some means of matching the periodic structure to the input 
waveguide must be provided to avoid reflection of the incident power. A 
situation encountered quite frequently is the one where the periodic struc
ture is identical with the input waveguide apart from the periodic loading. 
One way of providing a matched transition from the unloaded to the loaded 
waveguide is to use a tapered intermediate section. The matching taper 
section is similar to the loaded waveguide except that the periodic loading is 
gradually reduced to zero over a distance of about a wavelength. Figure 8.7a 
illustrates a tapered transition in a rectangular waveguide connected to a 
similar guide periodically loaded with diaphragms. 

Any of the matching networks discussed in Chap. 5 may also be used 
to match a periodically loaded guide to an unloaded guide. For example, at 
some distance d.'/2 in front of the first terminal plane for the periodic 
structure, the characteristic admittance YB of the periodic structure is 
transformed into an admittance 1 - jB', so that placing a shunt susceptance 
jB' at this point provides a matched transition. Matching by means of a 
shunt susceptance may be viewed as an application of the quarter-wave 
transformer matching technique. The unit cell consisting of the shunt 
susceptance jB' plus a length d ' / 2 of transmission line (or waveguide) on 
either side, as in Fig. 8.76, may be considered as part of an infinite periodic 
structure with a propagation phase constant fi' and a normalized character-
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istic impedance Z'a. If the parameters B' and d' are chc 
(5'd' = 7r/2, Z'B = Z^ / 2 , then at the input terminal to the matok-
(8.34) gives aiciwng ^ . ^ 

so t 

7 - ' ° = 1 
(8.37) 

Note that the matching section is a symmetrical structure 
and £' = 0. We also require that Zu be real in order for (8.37) to h ° = ^ 
solution for Z'B. When these conditions are met, we see that the ^ i ! ^ 
section behaves essentially as a quarter-wave transformer. For svmm 
structures the required values of B' and d' mav be found from (8 8?"°^ 
(8.136); thus, as cos B'd' = cos(~/2) = 0, we have 

= 9>' = 0 

- . ,2 

(z«) = r 

(8.38a) 

(8.386) 

For the capacitively loaded transmission line, we obtain, by using (8.4) and 
(8.16) applied to the matching section, 

2 cot ftnd' = B' (8.39a) 

_ 2 2 sin k„d' + B' cos k0d' - B' 
{Z'B)I-

2 sin £na" + B' cos 6na" + B' 
— = tanz .*od' J 

= ZB (8.396) 

when (8.39a) is used to eliminate B' . The above results are the equivalent 
of those derived in Chap. 5, i.e., given by (5.8) and (5.9). 

To obtain a match over a wide frequency band, more elaborate match
ing networks must be used since a single shunt susceptance usually does n< 
provide a match over a wide frequency band. Broadband matching i 
complicated by the fact that the characteristic impedance ZB of a periodic 
structure is a function of frequency. No general technique exists for design 
ing broadband matching networks because of the general nature of a-
Each periodic_structure must be considered by itself so that the treq 
variation in ZB can be incorporated into the design. For this reasi 
matching problem is not discussed any further. 

k0-B D I A G R A M 

We now turn to a detailed study of the passband-stopband c h a r a C ' f e earlier 
the capacitively loaded coaxial transmission line discussed m ^ tn 

sections. The information contained in the eigenvalue e t 5 u a t ' ° o n a M 
propagation constant B in a periodic structure is usually plot 

„. . m, „ _ . - _ -j-.ntrAv the " (or co-B) plane. The curves of B versus k0 show immediately 
bands for propagation and also the stopbands in which no prepay 
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F I G U R E 8.S 
k0d-jid diagram for a capacitively loaded coaxial line, B = 2k0d. 

place. The resultant plot is called the k0-fi diagram, or the Briilouin 
diagram, t 

For the capacitively loaded coaxial line, (8.9) gave 

B 
cos (id = cos k0d - —sin knd = cos k0d - Kknd sin k0d (8.40) 

where B/'l = wC0/2Yc has been expressed as Kk_ud. Curves of k0d versus 
fid are sketched in Fig. 8.8 for K = 1, that is, for B = 2k„d. A low-frequency 
passband exists for 0 < k0d < 0.4167T. This passband is followed by a 
stopband and further alternating passbands_ and stopbands. As knd be
comes large, the loading is increased, since B increases with k0. This has 
the effect of decreasing the width of the passbands in terms of frequency. 

tNamed after Briilouin, who used diagrams of this sort to illustrate the energy-band structure 
in periodic crystalline media. 
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The edges of the bands occur when the magnitude of th 
side of (8.40) exceeds unity. The lower edge of the first na= t " g l u ~ 
when 0 < k0d < v and Passband 

cos k0d - Kk0d sin k0d = -1 

This equation may be solved for k0d to give 

cot 
k0d 

= Kk0d 

cos-
kad 

= 0 (8.416, 

The corresponding principal value of fid is -, and the values of h w 
obtained from (8.41) mark the edges of all the bands for this value of ft' 
The edges of the bands where fid = 0 are obtained by equating (8 40) t 
unity, in which case we obtain 

tan 

sin-

M 
2 

= -Kk0d i 8 42o 

(8.426) 

One edge of the passband always occurs when the spacing between disconti
nuities equals one-half wavelength in the unloaded waveguide, in the pre
sent case, when k0d is a multiple of ir. When the spacing between disconti
nuities equals one-half wavelength, they may all be lumped together, with 
the result that the line becomes effectively loaded at a single point by an 
infinite susceptance (or reactance). Clearly, power transmission along the 
periodic structure must reduce to zero at this frequency. 

Only the principal value of fid is plotted in Fig. 8.8. In addition 
fid + 2n~, where n is an arbitrary integer, are solutions. These oth 
solutions are the propagation constants of the spatial harmonics into wn 
the Bloch wave may be expanded. The spatial harmonics are discuss 

S e C- 8 ' 8 - h t fea-
The ku-fi diagram for other types of periodic structures exhibit ^ 

tures similar to those in Fig. 8.8. For example, if the capacitive , 0 ^ £ ^ 
replaced by inductive shunt loading, the relative locations of the 
and stopbands are interchanged. The zero-frequency region will be '^ 
band since the shunt inductors will short-circuit the line at zero u 

*8.7 G R O U P VELOCITY A N D E N E R G Y FLOW 

The phase velocity for a Bloch wave in a periodic structure is giv e 

oi feo M (8-43) 

With reference to Fig. 8.9, it is seen that k0d/fid is the slope < 

° P = 
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»0d 

0 50ff -

0 2 5 T T -

F1GURE 8.9 

Enlarged drawing of first passbmd for a capaci-

lively loaded transmission line, B = 2k0d. 

from the origin to a point P on the knd-fid diagram. Since fi is a function 
of w, the periodic structure has frequency dispersion. The group velocity vK 

as given by (Sec. 3.19) 

do) d(k0d) 
(8.44) 

is therefore different from the phase velocity. Again referring to Fig. 8.9, it 
is seen that the group velocity is equal to the slope of the tangent to the 
curve of k0 versus /3 multiplied by the velocity of light c. Thus we have 

vp = c t an 4>,, vg = c t an 4>g 

where <t>p and d>, are the angles given in Fig. 8.9. 
For the capacitively loaded coaxial line, use of the eigenvalue equation 

for 15, that is, (8.10a), enables us to obtain 

dk, do c sin fid 
vg = c ~ c-dft d(lid] B \ B 

— — T + 1 sin kltd + —cos kX)d 
lk„d l I 

(8.45) 

This expression shows that the group velocity becomes zero when /id = 0 or 
77, except when kf) also equals zero. Thus, as the edges of the passbands are 
approached, the group velocity goes to zero. 

The group velocity is also the signal velocity for any signal consisting 
of a sufficiently narrow band of frequencies such that /? can be approxi
mated by a linear function of w throughout the band. The signal delay r for 
propagation through a unit cell is given by 

d 
r= — (8.46) 

In Sec. 3.19 it was shown that for a waveguide, which is a dispersive 
medium, the velocity of energy flow in a propagating wave was equal to the 
group velocity. The same result will be shown to hold for a lossless periodic 
structure also. 
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Periodic 
structure 

Sc 

Unit cell 

Se 

S2 — 

FIGURE 8.10 ^ ^ 

A unit cell of a periodic structure. 

Consider a unit cell of a lossless periodic structure as in Fie 8 10 & 
surface S is chosen to consist of surfaces S; and S2 at the input a rf 
output terminal planes plus a cylindrical surface Sc surrounding the struc
ture. If the periodic structure is enclosed by a perfectly conducting wave
guide, the surface Sc coincides with the waveguide wall. If the periodic 
structure is an open-boundary structure, the surface Sc is that of a cylinder 
with infinite radius. In both cases n X E vanishes on Sc , so that the 
Poynting vector is zero over this surface. For generality we shall let the unit 
cell contain regions with frequency-dispersive material, i.e., material with 
parameters n and e that are functions of to. 

In the derivation of Foster's reactance theorem in Sec. 4.3, it was 
shown that [see (4.24a)] 

j) E X 
dU* 

dco + dco 
x H • d S = -j( H • H 

= - 4 / ( W m 

dco ii 

dco 

We) 

+ E -E* 
<?<•)£ 

(8.47a) 

since the latter integral is equal to four times the time-average energy 
stored in the volume bounded by S. Since the Poynting vector is zero on i>e 

and dS is directed inward, we have 

A 
/ dU* dE? . 
E, X -=2- + -zr- x H , | - a , d S 

dco 

I 

dco 

dn* 
E 2 X 

S_\ dco (1a> 

XH2)-a.,dS=-4,(Wm + We) (8.47« 

where E „ H ! are the fields at terminal plane 1 and E2 , H2 are ^ 
terminal plane 2. For a Bloch wave, E2 = E,e"-"", where pi » 
shift through a unit cell of length /. We thus find that 

dH* aEl m* - , ^ F xH? 
da) dco "dot ^ ^ ^ ^ 

+ — - X H , + ^ T - E i x 

dco du) 
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Consequently, (8.476) gives (note that the integral over S2 can be evaluated 
as an integral over S,) 

dp f dp 
-2jt— Re [ E , X H t - a , dS = - 4 / 7 — P = - 4 / ( W,„ + W„) (8.476) 

a co -'s. a to 

where P = ^Re js E, X Hf • a, dS is the power transmitted across a ter
minal plane. We now see that 

dco 
vg = 

dp (Wm + Wt)/l 
(8.48) 

But the energy density (Wm + WJ/l in a unit cell multiplied by the velocity 
of energy flow is equal to the power P, and therefore the group velocity is 
the velocity of energy flow. 

8.8 F L O Q U E T ' S T H E O R E M A N D S P A T I A L 
HARMONICS 

It has been noted that in an infinite periodic structure the field of a Bloch 
wave repeats at every terminal plane except for a propagation factor e~yd, 
where d is the length of a unit cell. Since the choice of location of a terminal 
plane within a unit cell is arbitrary, we see that the field at any point in a 
unit cell will take on exactly the same value at a similar point in any other 
unit cell except for a propagation factor e~yd from one cell to the next. 
Thus, if the field in the unit cell between 0 < z < d is E(x, y, z),THx,y, z), 
the field in the unit cell located in the region d < z < 2d must be 

e-ydE(x,y,z - d),e"y,,H(x,y,z - d) 

Consequently, the field in a periodic structure is described by a solution of 
the form 

E(x,y,z) =e-y*El>(x,y,z) (8.49a) 

H ( x , y , 2 ) =e-**Hp(x,y,z) (8.496) 

where E^ and Hp are periodic functions of z with period d; for example, 

E „ ( x , y , 2 + nd) = Ep(x,y,z) (8.49c) 

The possibility of expressing the field in a periodic structure in the form 
given by (8.49) is often referred to as Floquet's theorem.f From (8.49a) we 

tActually, Floquet's work dealt with differentia] equations with periodic coefficients. The case 
of periodic boundary conditions is an extension of thai work. 
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see that the electric field at z{ + d is related to the field at ? 

E(x,y,zl +d)=e ^"WJx,?,^ + d) 
f0ll0W8: 

which has, indeed, the correct repetitive properties of a Bloch 
Any periodic function such as Ep(x,y, z) may be expan^fecT-

infinite Fourier series; thus 

Ep(x,y>z) = £ E p „(x ,y)e-> 2 "«/ r f 

an 

18.50) 

where Ep„ are vector functions of x and y. Multiplying both sid k 
^jimirz/d g^fi integrating over a unit cell, i.e., from z = 0 to d eivp eJ— - ana integrating over a unit ceil, i.e., trom 2 = 0 to d!, give 

*,J*<y) - yoX
{x'y> *>*'*"""'* (8.5i) 

since the exponential functions form a complete orthogonal set; i.e. 

fd
e j-lm,z/deJ2mTri/d fe = / 0 m * re 

0̂ ' \ rf m = re 

The field in a periodic structure can now be represented as 
x 

E(x,y,z) = Z Epn{x,y)e--jl3*-j2n™/d 

- E Ep„(x,y)e-^ (8.52) 

where y = ,/"/3 and /3„ = /3 + 2mr/d. Each term in this expansion is called a 
spatial harmonic (or a Hartree harmonic) and has a propagation phase 
constant 0„. Some of the 0„ will be negative whenever the integer n 
sufficiently negative. The corresponding phase velocity of the nth spatis 
harmonic is 

w (8.53) 10 

vnn = 

and will be negative whenever /?„ is negative. The group velocity of the 
harmonic is 

ven = 
dm 

dio 

dp 
dio 

- l 

= v, 
(8.54) 

tha* t is see" i'"** 
and is the same for all harmonics. From the above relations it ^g ^ 
some of the spatial harmonics (approximately one-half) have p

 e r ty is 
group velocities that are directed in opposite directions. This p ^ teT0 

made use of in the backward-wave tz-aveling-wave-tube oscilla 0 - ^ ^ ^\ 
backward wave, or reverse wave, is often used to refer to 
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oppositely directed phase and group velocities. The voltage and current 
waves can, of course, also be expanded into an infinite set of spatial 
harmonics (Prob. 8.10). 

Although a Bloch wave can be expanded into an infinite set of spatial 
harmonics, all the spatial harmonics must be simultaneously present in 
order that the tota) field may satisfy all the boundary conditions. The 
eigenvalue equation for /3 for a periodic structure always yields solutions 
f}n = f} + 2n7r/d, in addition to the fundamental solution. These other 
possible solutions are clearly the propagation constants of the spatial har
monics. A complete kad-fid diagram thus exhibits k(ld as a periodic func
tion of (id; that is, the fid curve is continued periodically outside the range 
— 77 s fid ^ TT. The slope of the line from the origin to any point on the 
curve still gives the phase velocity, and the slope of the tangent to the curve 
gives the group velocity, when multiplied by c. 

S T R U C T U R E S F O R TRAVELING-WAVE 

Traveling-wave tubes require a structure capable of supporting an electro
magnetic wave with a phase velocity equal to the velocity of the electron 
beam. Since the latter is usually much smaller than the velocity of light, the 
required structure is commonly referred to as a slow-wave structure. A 
common type of slow-wave circuit used in traveling-wave tubes is the helix. 
The helix is treated in the following two sections, and hence this section is 
restricted to a discussion of some of the other types of slow-wave periodic 
structures suitable for use in traveling-wave tubes. 

A periodic slow-wave structure often used for the linear magnetron 
tube is the vane-type structure illustrated in Fig. 8.11. It consists essentially 
of a corrugated plane with thick teeth. It will be instructive to apply 
Floquet's theorem and carry out an analysis of this structure in order to 
illustrate the general techniques employed. Edge effects at * = ± o / 2 will 
be neglected for simplicity; i.e., we shall treat the structure as being 
infinitely wide. If a is large compared with the spacing b, and this in turn is 
small compared with A0, the edge effects will not produce a significant 

/ / 

\b 

FIGURE 8.11 
Vane-type, or corrugated-plane, periodic structure. 
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change in the characteristics of the ideal structure. For use in a mam 
a strong axial electric field is required, and hence we shall exam' ^ 
possibility of having TM- or E-type modes. e 

For TM modes having no variation with x, the field component 
be expressed in terms of the single magnetic field component H «.», 
present. We have 

V X H = ~ax X Vffx =jioe0E 

and so 

= 0 bz 

E, = i-^ 
k0 9y 

The field H, is a solution of 

a3 ;>2 

(8.55Q, 

(8.556) 

(8.56) 

According to Floquet's theorem, the field / / , can be expressed in the form 
e~jPz\l>(y,z), where \}i{y,z) is periodic in z with a period d. Hence we shall 
assume that 

nx= L f„(y)i -JP„! 

where f}„ = fi + 2mr/d and the /"„(y) are functions of y to be determined. 
The substitution of this series into (8.56) shows that the f„(y) are solu
tions of 

d2f„(y) 
-02-*§) /" n (y ) = o (8.57) 

Above the corrugations, i.e.. in the region c <y < b, we must choose the i 
so that E, will vanish on the perfectly conducting wall at y = b. Thus ^ 
require dfjdy = 0 at y = b. Since solutions to (8.57) are sinh h 
cosh hny, where hn = ($ j - k'l)W2, we choose 

f„(y) =°n cosh k,,(b~y) 
• "For 

where a„ is a constant. At y = b, this function has a zero derivative^ 
the fields Hx and Ez in the region above the corrugations, we now n 

/« 58o I 
Hx= Z «., cosh hn(b-y)e~*«* 

K--J-T £ anhnsmhk„(b-y)e-»'* 
*.58&' 

upon using (8.556). 
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As a next step we must obtain a suitable expansion for Hx in each 
corrugation, or slot. If H t(y, z) is the field in the slot extending from * = 0 
to z = s and for 0 < y < c, then the field in the n th slot beginning at 
z = nd will be e~J'{"dHl{y, z — nd) according to Floquet's theorem. There-
fore we need to concentrate on one slot only. We must determine Hx so that 
Ev will vanish at z = 0 and s and also so that E, will vanish at y = 0. A 
suitable expansion to use is 

* m 772 

m o ,s 

since </[cos(mvz/s)l/dz vanishes at z = 0 and s. If this expansion is 
substituted into (8.56). we find that 

dsgm{y) > f i l l 

~d? 
mrr 

g,„(y) = o 

Normally, s <s: A0, so that mir/s > &„ for m * 0. Thus appropriate solu
tions that have a zero derivative at y = 0 are 

Smiy) = o ^ c o s h ^ y 

where lm = [(m-/s)2 - &§]' "2 a n d °m 's a constant. For m = 0, the solu
tion is gQ(y) = ft,, cos fej^y, and this part of the solution corresponds to a 
TEM standing wave in the slot. This mode has Ev = 0. In the first slot we 
can thus write 

* m -z 
H, = E b,„ cosh lmy cos (8.59a ) 

m II S 

Z,, " m —z 
K -j-;- E bjm sinh /,„ycos (8.596) 

R0 m=0 s 

The final step in the analysis is to determine the expansion coefficients 
a„ and b,„ by imposing boundary conditions at the plane y = c separating 
the two regions. We require the tangential electric and magnetic fields to be 
continuous across the gap y = c, 0 < z < s. In addition, we require the 
tangential electric field to vanish on the upper faces of the teeth, i.e., at 
y = c for s s z < d, or nd + s s z < (n +- l)d in general. Using (8.58) and 
(8.59), we see that the boundary conditions require 

* * mirz 
E a„e •"'"* cosh h„{ b - c) = E K, cosh lmc cos 0 < z < s 

n - - » m - 0 
(8.60a) 

E o ^ ^ - ^ s i n h A ^ o - ^ ) 
n= - = 

„ OTJT2 

- E ^ A . s i n h ^ c c o s — 0 < ^ S ( g 6 0 6 ) 

>0 s s z ^ d 
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If we multiply (8.60b) by «•**, we obtain 

£ «,,*« sinh h„{b - c)eJ2"Tr:,/'1 

E K*mi, 
m = o 

sinh /„,ccos-
m - 2 

S <Z <d 
f8.60c» 

Now the coefficients in a Fourier series are uniquely determined onlv T 
function which the series is to represent is specified for the co ' i 
interval over which the series is orthogonal. The functions e~'2"~-/d 
orthogonal over the range 0 to d, and thus, since the left-hand side*™? 
(8.60c) is specified for all z over one period, we can obtain unique exDre° 
sions for the a„ in terms of the bm from (8.60c). Note that this is not true 
for (8.60a), which holds only in the region 0 < z < s. If we multiply (8 60c) 
on both sides by e'-'rT7-"' and integrate from 0 to d, we obtain (r is an 
integer) 

darhr sinh hr(b - c) 

sinh / „, 
m=0 

= £ bjt 
m = 0 

(%M - a«r 
•'n 

/d)z rmrz 
cos- dz 

sinh /,„c 
j{p + 2irr/d)[(-l)meJ"'* - l] 

(li + 2Trr/df - (imr/sf 
(8.61) 

since / 0 V J2™/<'*'--'->dz = 0 for n * r and equals d for n = r. The above 
represents an infinite set of equations, i.e., one for each value of r. 

Although (8.60a) is not a unique equation for the a„, it does specify 
the o,„ uniquely in terms of the a„ . The a„ have already been expressed in 
terms of the b,„; so we may regard them as known. Multiplying (8.600) bv 

cos(r7T2/s) and integrating from 0 to s give 
s 

— 6, cosh lrc 

= £ a„ cosh h„(b - c) I e 

= -J E o„cosh h„(b - c) 

-Jli„z rirz 
cos- dz 

— 3 - | [ l - ( - 1 ) e 
-M+*"""\ 

^ + 2n1r/df - (rW») (8-62) 

0. Th*8 lS 

where the Neumann factor e0r = 1 for r = 0 and equals 2 for r ^ ( g ' 6 l ) f l nd 
also an infinite set of equations since r = 0 , 1 , 2 , . . . , x- Equa ^j b„-
(8.62) constitute two linear systems of equations involving the 
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If the solutions for the a„ as given by (8.61) are substituted into (8.62), the 
result is a homogeneous set of equations for the bm. For a nontriviai 
solution, the determinant of this homogeneous set of equations must van
ish. Setting the determinant equal to zero yields the eigenvalue equation for 
ji. However, the sets of equations are of infinite order, so that, in practice, 
an exact solution is not possible. Therefore we shall find only a first 
approximation to the exact eigenvalue equation. 

If the slot spacing s is small compared with A„, it seems reasonable to 
expect that the field in the slot can be approximated by the TEM standing-
wave field alone. Thus we shall take all bm except 6„ equal to zero. If we 
lump all the constants in (8.61) together and replace r by n. the equation is 
o[ the form 

> 
a „ = L bmRma n = 0,±l,... (8.63a) 

m =0 

Likewise, (8.62) is an equation of the form 

b,„= Z o„T„m m = 0 , 1 . 2 , . . . (8.63b) 

Replacing an by (8.63a) gives 

bm= L £ bmRmnTBm m = 0 . 1 , 2 , . . . (8.64) 

The determinant of this infinite set of homogeneous equations, when 
equated to zero, gives the exact eigenvalue equation for fi. When we take all 
6ni except 6„ equal to zero, we obtain instead 

60 = £ b0Rl)„Tn0 

n -x 

1- £ /?o„T„«, = 0 (8.65) 

for a first approximation to the eigenvalue equation. Now i?„„ are all the 
constants in (8.61), multiplying b„ when the equation is solved for a„ and 
with r replaced by n. Likewise, Tn0 is the constant relating bu to the a, in 
(8.62). When these values for R0„ and Tn„ are substituted into (8.65), we 
obtain 

1 s Uinfrt s /21 2 1 
(8.66) :-H k0d tan k0c d P„s/2 h,.d tanh h (b - c) 

For slow waves /3 is much larger than kn. and hence /(„ can be replaced by 
/3„ in this equation with negiigible error. In this case the right-hand side is 
not dependent on k0. By evaluating the right-hand side for a range of 
assumed values for fi, the corresponding value of ka may be found by 
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J* A=A 

FIGURE 8.12 
Simplified equivalent circuit for the vane structure of Fig. 8.11. 

solving (8.66). The numerical work is straightforward. Tynical r -^ .u 
given by Hutter . t ts ^ 

A reasonably accurate description of the dispersion curve relating ft 
k0 may also be obtained from a simple transmission-line analysis Th° 
region above the corrugations is essentially a parallel-plate transmission 
line (strip line) with a characteristic impedance Z, = Z0(6 - c) per unit 
width. The slots are short-circuited transmission-line stubs connected in 
series with the main line at periodic intervals d. The stubs present a 
reactance 

jX =jZ0s tan fc0c 

to the main line. The equivalent circuit of the structure is therefore of the 
form shown in Fig. 8.12. This periodic circuit may be analyzed in the same 
way that the capacitively loaded transmission line was. It is readily found 
that the eigenvalue equation for p is 

X 
-sin knd cos fid = cos kad -

2Z, 

= cos kQd — -tan AQcsin k0d (8.67) 

This equation is quite accurate as long as s «d and also much small 
than A„. . 

For frequencies such that 0 < k0c < i r /2 , the loading is inductive, ^ 
for 77-/2 < k0c < v, it is capacitive, etc. A typical dispersion curve lor 

case s = 2(6 - c) and d = 0.83c is given in Fig. 8.13. For these a"™*™ wr 

the phase velocity is reduced by a factor of about 3 only. M u c t l ^ & i a e 

reduction factors are obtained by making s/(b - c) larger so as t o . g o n the 

the normalized characteristic impedance of the stubs. For compar ^ ^ 
results from (8.66) for d = 2s are plotted also (broken curve), vervj^ ^ubs 

accuracy of (8.67). The first cutoff occurs approximately ^ h e n
a J s 0 reduce 

become resonant, i.e., for kQc = ir/2. Increasing c will therelore 

tR. G. E. Hotter, "Beam and Wave Electronics in Microwave Tubes, 
Nostrand Company. Inc., Princeton, N.J., 1960. 

sec. 
7.4. D V»J> 
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FIGURE 8.13 
k0d-lid diagram for a stub-

-Zv -ir 0 rr Zrr loaded transmission line. 

the phase velocity in the first passband, since (id will equal — for a smaller 
value of k0. 

The foregoing analysis is typical for periodic structures that cannot be 
represented by simple transmission-line circuits. The essential steps to be 
followed are summarized: 

1. Obtain suitable field expansions in each region of the periodic structure. 
This involves solution of the Helmholtz equation and the use of Floquet's 
theorem. 

2. Impose appropriate boundary conditions on the fields at all common 
boundaries separating the different regions. In general, it will be found 
that both E and H modes may be required in order to satisfy the 
boundary conditions. 

3. By Fourier analysis convert the boundary conditions into algebraic equa
tions for the amplitude constants. 

4. The system of algebraic equations can be written in the form of a 
homogeneous set of equations. Equating the determinant to zero gives 
the eigenvalue equation for (3. Since the equations are usually infinite in 
order, some assumption must be made as regards the number of nonzero 
amplitude constants that will be chosen. Equating- the higher-order 
amplitude constants to zero results in an approximate eigenvalue equa
tion. 

c Structures for Millimeter-Wave Traveling-Wave 

At millimeter wavelengths a helix has too small a diameter to be a useful 
slow-wave structure. Various forms of tape ladder lines, interdigital tape 
lines, and meander tape lines are preferred. Illustrations of these structures 
are given in Fig. 8.14. A discussion of these structures together with typical 

tA. F. Harvey, Periodic and Guiding Structures at Microwave Frequencies, IRE Trans., vol. 
MTT-8, pp. 30-61 . January. 1960. 
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Ladder .— 
Ladder 

Ll 1_ 
Rectangular 

guide 

(*l 

Ridge guide 

(c) 

u r 
£] 

trf) (*) 

FIGURE 8.14 
( a - e ) Tape ladder lines; id) interdigital tape line; (e) meander tape line. 

k0-fi curves, is given in a paper by Harvey,t which also provides references 
to the original analysis of these structures. 

The two structures shown in Figs. 8.14 a1 and e are complementary, or 
dual, structures. That is, the meander line is obtained by interchanging the 
open region and the conducting region in the interdigital line. For a 
complementary structure of this type, we can show that the field is also a 
dual solution and hence both structures have exactly the same kQ-P disper
sion curve. A detailed discussion of the dual properties is given below. 

Let the interdigital line be located in the xy plane as in Fig. 8.15. Let 
us consider a mode of propagation having an electric field for which t 
transverse U and v components) field E, is an even function of «r, that u>, 
the same on the upper and lower sides of the structure. Since V • E. - • • 
now have dEjdz = -V , • E„ and hence BEt/9z is an even function o . 
and E, must then be an odd function of z. From the curl « l u 

V x E = -j"oi/i0H, we can readily conclude that H, must be an oaa ^ 
tion of 2 and Hz an even function of z. The field structure is llwstr_ ^ 
Fig. 8.15a. The field E, will vanish on the conducting surface, ana ^ ^ 
is an odd function of z, it must vanish on the open part of the *~v P 5 J l v jn 
the conductor surface, |H , | will equal one-half the total current , - t h e 

the line since the total change in |H, | across the conductor musx 
total current density. 

A dual field E ' ,H ' given by 

E ' = ± Z 0 H H ' = + 7 0 E 
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FIGURE 8.15 
Illustration of dual properties 
of interdigital and meander 
lines. 

is easily shown to satisfy Maxwell's equations 

V X E' = -jto^H' V x H ' =./w€ t lE' 

if the field E , H does. The dual field is a solution to the meander-line 
problem (Fig. 8.156), provided we choose the dual solution 

E' = Z 0 H H' = - y 0 E (8.68a) 

above the meander-line plane and the solution 

E ' = ~Z0H H = 7 0 E (8.686) 

below the structure. In both regions the primed fields satisfy Maxwell's 
equations. The field E', will vanish on the conducting portions of the 
meander line since the field H, was zero in the open regions of the 
interdigital line. Similarly, H'( vanishes over the open regions of the mean
der-line plane since the field E, was zero on the conducting surfaces of the 
interdigital line. All boundary conditions being satisfied, the solution is 
complete. It may now be concluded that both structures must have the same 
k0-fS dispersion curve. It should be noted, however, that duality applies only 
if the two structures are exact complements; i.e., superimposing the two 
structures must result in the whole xy plane being a single conducting 
sheet. The sides of the interdigital line must therefore extend to y = ± », 
and the line must be infinitely long. However, in practice, the field is 
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(a) 

Ztra 

-7 

<j 
FIGURE 8.16 
(a) A tape helix; (.6) sheath 

confined to the vicinity near the cuts, so that the sides do not have to extend 
much beyond the toothed region before they can be terminated with negligi
ble disturbance of the field. The duality principle used above is often 
referred to as Babinet's principle. 

8.10 S H E A T H HELIX 

The sheath helix is an approximate model of a tape helix. The tape helix. 
illustrated in Fig. 8.16a, consists of a thin ribbon, or tape, wound into a 
helical structure. The pitch is denoted by p, and the pitch angle by i//. If the 
spacing between turns and the ribbon width are made to approach zero, the 
resultant structure becomes electrically smooth. At the boundary surface 
r = a, the boundary conditions for the electric field may be approximated by 
the conditions that the conductivity in the direction along the tape (air 
tion of current) is infinite, whereas that in the direction perpendicular to 
the tape is zero. The use of these boundary conditions permits a solution fc 
the electromagnetic field guided by the helix to be obtained with r ^ t " ' e 

ease. This anisotropic conducting cylinder model of a tape helix is canea 
sheath helix, illustrated in Fig. 8.166. The field solution, derived below, w 
show that the sheath helix supports a slow wave with a phase 
vp = c sin >li. The wave may be considered to propagate along the 
conductor with a velocity c, and hence progresses along the axial a 
with a phase velocity c sin i//. The sheath-helix model is valid at low e ^^ 
cies, where p is much smaller than A0. At higher frequencies a^ ^ 
realistic model must be used, and the existence of spatial harrnor 
becomes apparent, as shown in Sec. 8.11. .„ s sin<# 

The field solution for the helix consists of both E and H m ^ ] o n g the 
these are coupled together by the boundary conditions at r ~ «• ^ the 
direction of the tape, the tangential electric field must vanish. ^m 
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conductivity in this direction is taken as infinite: thus 

fi^! cos ili + Ei{ sin tli = Etl,t cos tji + Ez2 sin I]I = 0 (8.69a ) 

where the subscripts 1 and 2 refer to the field components in the two 
regions r <a and r > a. The component of electric field on the cylindrical 
surface r = a and perpendicular to the tape must be continuous since the 
conductivity is taken as zero in this direction. Hence 

Ezl cos ili - £,,,, sin i]/ = Exi cos <// - EiU2 sin i/» (8.696) 

The component of H tangent to the tape must also be continuous since no 
current flows perpendicular to the tape; so a third boundary condition is 

Hzl sin 4i + H^j cos i// = H.2 sin i// + r/,,2 cos i// (8.69r) 

Expansions for the E and H modes in the two regions r $ a may be 
obtained in terms of the axial field components E, and Hz, as shown in 
Sees. 3.7 and 3.18. The axial fields Ez = e,(/-,rf>><>L'̂ . H, = hAr,4>)e "" 
are solutions of 

Since we anticipate slow-wave solutions for which fi2 > kfly the solutions 

involve Bessel functions with imaginary arguments, that is, J„(ryftf, - iil) 

and Y^ryk2. - p2 ). In place of these functions, the modified Bessel func

tions In(ryP2 - k2, ), K„(ryp2 ~ /ef, ) are more convenient to use. These 

functions are related to the J„ and Y„ functions as follows: 

/„ (*) =./''•-/„(./*) (8.70a) 

K„( x) = jj""[ J„{ jx ) + jYJ jx) ] (8.706) 

For small values of x, the K„ functions approach infinity in a logarithmic 
fashion, and hence only the /„ functions are used in the region r < a. For r 
large, the asymptotic forms 

h(x)^ihxeX (8-7l0) 

K"{x)" fEe~x (8-716) 
are valid. Since we require a field that decays for large r, only the functions 
Kn are employed in the region r > a. Suitable expansions for ez and hz in 
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the two regions are now seen to be 

Z a„e-J"AIn(hr) r<a 

* 
Z b„e-;"*Kn(hr) r>a 

n= — x 

Z c„e^In(hr) r<a 
« - i. 

Z dne-J"*Kn(hr) r>a 

h = 

where h = {fi* - t g ) " 2 and a„, 6„, c„, and d„ are unknown amplitude 
constants. 

For the sheath-helix model it is possible to find a solution for a field 
that satisfies the boundary conditions (8.69) for each integer n. We are 
primarily interested in the solution n = 0, which has circular symmetry. If 
we make use of (3.67), (3.68), and (3.72), together with the relations 

dh(hr) dKn(hr) 

^T = / ' ( / i r ) W = ~Ki(hr) 

we find that the field in the two regions can be expressed as follows: 

For r < a, 

Ez = o 0 / 0 (Ar)e- -** Er = J-^-a0Ix{hr)e^ E„=- ~ ^ c 0 / , ( A r ) ^ 

Jfi IP !">ea 
H z = c0I0(hr)e-^ H r = — c Z ^ r ) ^ H* = — ^ ( f t r ) * 

, -w* 
h 

(8.72o) 

For r> a, 

Et = b0K0(hr)e-*> Er = ~J±b0Kt(hr)e-^ E, = J-^d0Ks(hr)e-jP' 

Hz = d0K0(hr)e~^ Hr = -JAdKl(hr)e-^ H, = -J-^b0Kl(
hr>t 

ft ft
 (8.72ftl 

for the rc = 0 mode. . boun^* 
If the above expressions for the f ields are substituted into ^^ f o r 

ary conditions (8.69), the result is four homogeneous ^ " ^ if the 
the constants a0 , 60, c0, and cf„. A nontrivial solution exists .^ tf,e 

determinant vanishes. Equating the determinant to zero res 
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1.0-1 

0.5-

sin 10°-

0 
0.5 I.O 

" FIGURE 8.17 
, »-*0a Phase-velocity reduction factor for a sheath helix 

1.5 with pitch angle i/> = 10°. 

eigenvalue equation for /3, which is 

K1(ha)Ii(ha 

K0[ha)I„(ha) 

ha) tan 2 t/< 

{kQa)2 
(8.73) 

For ha greater than 10, the ratio # , / , / / ? „ / „ rapidly approaches unity. In 
this region (8.73) gives h = k(l cot i//, from which we obtain 

,1/2 
n = (k2

0 + h2y/ =ft0csc// 
The resultant phase velocity vp is 

VP= J = j c = c s i n * 

(8.74) 

(8 .75) 

and is reduced by the factor sin ill. A plot of vp/c as a function of k(la is 
given in Fig. 8.17 as determined by the solution of (8.73) with iji equal to 
10°. For k0a greater than 0.25, the phase velocity is well approximated by 
(8.75). In the frequency range where vp = c sin i//, the group velocity vg is 
also equal to c sin i//, and there is no frequency dispersion. 

SOME GENERAL PROPERTIES OF A HELLX 
The tape helix consists of a thin ribbon of metal wound into a helical 
structure, as shown in Fig. 8.16a. A helix may also be constructed by the 
use of a round wire. The parameters describing the helix are the pitch p, or 
turn-to-turn spacing, the diameter 2a, and the pitch angle i//. These param
eters are given in Fig. 8.16a, which shows a developed view of a tape helix. 

The helix is a periodic structure with respect to translation by a 
distance p along the axis and also with respect to rotation through an 
arbitrary angle 0, followed by a translation pti/2-rr along the axial direction. 
In other words, an infinitely long helix translated along the z axis by a 
distance p or rotated by an angle B and then shifted by a distance p8/2-n-
along z will coincide with itself. 
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The above periodic, or symmetry, properties of the helix 1 
restrictions on the nature of the field solutions. If E,(r, <ptZ) ^E a ° e cei 

are cylindrical coordinates, is a solution for the electric and 
E,(r,<ji + e,z + p0/27r) multiplied by a propagation factor e--»«M/2-
another solution, since the point r, <f> + 0, z + pd/2-n- is indisti 
from the point r, <£, z. The solution E ^ r . ^ . z ) must be periodic^lf2 3 1 1 

apart from a propagation factor e~jf>*, must also be periodic in 2 with* 3 n d" 
p. Hence E( may be expanded in the double Fourier series 

E](r,<t>,z)= £ £ E l „ , n ( r ) c - ^ - > 2 ' ' « V J / f e 
(8.76) 

where E 1 < m n ( r ) are vector functions of r corresponding to the usual amnl" 
tude constants in a Fourier series. The relationship between translation 
rotation noted above requires that eJfs'E^r, rf>, z) does not change when d> ^ 
are replaced by </> + 9, z + pB/2v. Thus, in (8.76), we require 

c-/m(rf. + H)-.;2;i7r(j \-pO/%ir\/p _ g-jnUQ + ei-jnf)-j'ln-rrz/p 

= g-Ji»4,—j2n?rz/p 

This condition will hold only if m = —n. Consequently, for a helix, the 
double Fourier series expansion for the electric field reduces to a single 
series of the form 

E , ( r > , z ) = £ ^ . . ( r j e ^ 2 " ^ ' ^ - * (8.77) 

The solution for a helix proceeds by expanding the field in the two 
regions r < a and r > a into an infinite series of E and H modes expressed 
in cylindrical coordinates. The boundary conditions at r = a will couple the 
E and H modes together, so that pure E or H modes cannot exist 
independently. For the rath term in (8.77), the radial dependence in t! 
region r > a will accord with the modified Bessel function of the second 
kind, that is, Kn(hnr), of order n and with an argument 

2nrr 
ft. r = -k\ 

The K„ functions are asymptotic to U/2h„r)>/2e h"r for r l a r ^ - f o r 

field will decay exponentially as long as all hn are real, i.e., g 

(0 + 2 n i r / p ) 8 greater than k%. When the field decays exponen 
corresponds to a surface-wave mode guided by the helix. g , are 

At a given frequency only certain discrete values of P, ^.'^'mode 
possible solutions. For each value of pm, corresponding to a par 
of propagation, the field is given by a Fourier series of the form 

(8.78) 
Em(r,*,z) = £ E m , „ ( r ) , - > ' 2 ^ - ^ ' ^ 
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Forbidden 
regions shaded 

FIGURE 8.18 
Illustration of allowed and 
forbidden regions in the kn-p 
diagram for a helix. 

Each term in this expansion is called a spatial harmonic, and has a propaga
tion phase constant /3,„ + 2mr/p. On a k^p-pp diagram the region above 
the lines kQ = ±/3 is a forbidden region, as shown in Fig. 8.18, since it 
corresponds to a situation where h0 = (fi'z - k\Yrz is imaginary and the 
n = 0 spatial harmonic does not decay in the radial direction. Since we also 
require |/3 + 2mr/p\ to be greater than k0, all possible allowed values of /3, 
corresponding to bound surface-wave modes, are further restricted to lie in 
the unshaded triangular regions in Fig. 8.18. The boundaries of these 
regions are marked by the lines 

2nv 
* o = ± \P± 

where n is an integer. In the forbidden regions the propagation constant 
turns out to be complex rather than pure real, a feature which is different 
from that of a normal cutoff mode. 

A first approximation to the solution for a tape helix is obtained by 
assuming that the current is directed along the direction of the tape only, is 
uniform across the width of the tape, and has a propagation factor e -"*'. A 
typical k0-fi curve obtained on this basis and with </» = 10° is shown in Fig. 
8.18. For further results the paper by Sensiper or the book by Watkins may 
be consulted.t 

I N T R O D U C T I O N T O MICROWAVE F I L T E R S 

The ideal filter network is a network that provides perfect transmission for 
all frequencies in certain passband regions and infinite attenuation in the 

tS . Sensiper, Electromagnetic Wave Propagation on Helical Structures, Proc. IRE. vol. 43, pp. 
149-161, February, 1955. 

D. A. Watkins, "Topics in Electromagnetic Theory," John Wiley & Sons, Inc . New York, 
1958. 
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the 
er 

stopband regions. Such ideal characteristics cannot be obt 
goal o[ filter design is to approximate the ideal requirements t ' ^^ c^e 

acceptable tolerance. Filters are used in all frequency ranges to* Wlt^.'n an 
nearly perfect transmission as possible for signals falling with^' ^ ' ^ ^ 
passband frequency ranges, together with rejection of those H'"" d e s i r e d 

noise outside the desired frequency bands. Filters fall into t 
categories, namely, (1) low-pass filters that transmit all signals bet ^ m a " 1 

frequency and some upper limit <oc and attenuate all frequencies ah*0 ^ 
cutoff value «(., (2) high-pass filters that pass all frequencies above "\ 
cutoff value w,. and reject all frequencies below W t , and (3) bandpass f j * 
that pass all frequencies in a range w, to <o2 and reject frequencies out^H3 

this range. The complement to the bandpass filter, i.e., the band-reje< 
filter, which attenuates frequencies in the range m, to a>2, is also of int • \ 
in certain applications. 

At low frequencies the ' 'building blocks" for filters are ideal inductor-
and capacitors. These elements have very simple frequency characteristic* 
and a very general and complete synthesis procedure has been developed for 
the design of filters utilizing them. It is possible to synthesize directly filters 
with a wide variety of prescribed frequency characteristics. The filter design 
problem at microwave frequencies where distributed parameter elements 
must be used is much more complicated, and no complete theory or synthe
sis procedure exists. The complex frequency behavior of microwave circuit 
elements makes it virtually impossible to develop a general and complete 
synthesis procedure. However, in spite of these added complications at 
microwave frequencies, a number of useful techniques have been developed 
for the design of microwave filters. The case of narrowband filters is 
particularly straightforward since many microwave elements will have fre
quency characteristics essentially like those of an ideal inductive or capaci-
tive reactance over a limited frequency range. In this case a low-frequenq 
prototype filter may be used as a model. The microwave filter is reahzec 
replacing all inductors and capacitors by suitable microwave circuit ele
ments that have similar frequency characteristics over the frequency ran 
of interest. For this reason a good deal of the effort in microwave hie 
design has been based directly on the application of low-frequency 
synthesis techniques. . s jn 

There are essentially two low-frequency f i l ter -synthes is t e c h ^ ( a nd 
common use. These are referred to as the image-parameter me ^ ^ 
variations thereof, such as the constant-/? and in -derived f l l t e ^ t e r design 
insertion-loss method. The image-parameter method provides a^ ^ 
having the required passband and stopband characteristics, u insertit>n-
specify the exact frequency characteristics over each region. reaiizab^e 

loss method begins with a complete specification of a physica _^ svnthe-
frequency characteristic, and from this a suitable filter netvyor -^^ 3 

sized. The image-parameter method suffers from the s n o r * . C ° m
i n order * 

good deal of cut-and-try procedures must often be resorted 
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obtain an acceptable overall frequency characteristic. For this reason the 
insertion-loss method is preferable and is the only method considered in 
detail in the following sections. The image-parameter method is only briefly 
outlined, in order to show its relationship to the properties of periodic-
networks as already discussed. 

The labor involved in filter synthesis is largely obviated by the use of 
certain frequency transformations and element normalizations. These en
able high-pass and band-pass niters operating over arbitrary frequency 
bands and between arbitrary resistive load terminations to be obtained from 
a basic low-pass filter design. The characteristics of any filter will, of course, 
be modified by the losses that are present in all physical network elements. 
To incorporate the effect of lossy elements into the synthesis procedure 
makes the synthesis theory a great deal more involved; so this is usually not 
done. At microwave frequencies losses can be kept reasonably small, to the 
extent that most filter designs based on the use of lossless elements do 
perform satisfactorily. 

The aim of the following sections is to present the essential features of 
low-frequency filter synthesis, frequency transformations, normalized filter 
design, and the applications of these techniques to microwave filter design. 
A number of typical microwave filters are also discussed. An extensive 
account of all aspects of microwave filter design is beyond the scope of this 
text. However, a number of selected references are given where further 
details may be found. 

8.13 I M A G E - P A R A M E T E R M E T H O D OF F I L T E R 
DESIGN 

Filters designed by the image-parameter method have many features in 
common with those of periodic structures. As noted in the previous sections, 
a cascade connection of lossless two-port networks behaves similar to a 
transmission line. For unsymmetrical networks two characteristic 
impedances ZB' = ±Z + £ occur, and each section has a propagation factor 
e±yd. A periodic structure of this form has passband and stopband charac
teristics and is therefore a bandpass filter. However, the proper load termi
nation to prevent reflections is ZR and is complex when £ *• 0. Usually, a 
filter must operate between resistive load terminations, and it would not be 
possible to have matched input and output terminations in this case unless 
£ were zero, i.e., unless symmetrical networks were used or unless matching 
sections were used at the input and output. For this reason the image-
parameter method of filter design is based on considerations somewhat 
different from those which have been discussed for periodic structures. 

Consider a single two-port network with parameters sf, *, %, and '/ 
Let the output be terminated in a load Z l 2 , and let the input be terminated 
in a load Zn, as in Fig. 8.19. For particular values of Z,, and Z,2, known as 
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FIGURE 8.19 
Image parameters f0r _ . 
port network. 

the image impedances, the input impedance at port 1 equals Z and th 
port 2 equals ZlZ. These impedances then provide matched terminate !fe!! 
the two-port network, and if they are real, they also provide a m-
power transfer when the generator has an internal impedance equal ti 
image impedance. The governing equations for the two-port network 

are 
Vl =.</K + .,• /, = Sf% +£>!, 

and hence 

V, _ .&V.Z +m2 _ sfZi2 +3g 

i, KZi2+& 

If we solve for V2 and lz in terms of V, and / , , we obtain 

V2 =£?V, - m t T2 = -&Vt +s^IJ 

We thus have 

(8.79) 

7 A i « .2 _ 

- 9V} + Sfly wza +* 
(8.80) 

The requirement that Z,, = Z„, , and Z,2 = Z-m2 gives 

Z,,(&Z iS + 0) = .a/Z,2 + ^ Z l2( STZ,, + st) = •SrZfi +« 

A simultaneous solution of these equations gives 

2, ,= 

2 l 2 = 
v /, 

(8.81a) 

(8.816) 

I and Also we find that Z l 2 = l0/ss/)Zli. ^ , 
I f a generator with internal impedance Z n i s connected a t ^ ^^ 

the output port 2 is terminated in a load Z,2, the voltage i 
transfer ratios are readily found from the relations 

I2 = ~WV, +JTI, = ( - * f Z a + .» ' ) ' i 
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where V, is the voltage across the network terminals at port 1 (the 
generator voltage is 2V,). Thus we find that 

(8.82a) 

~ = ^{{tfy-JIm) (8.82b) 

In a similar manner the transfer constants from port 2 to port 1 are found 
to be [or from (8.82)] 

V, / F " . 
(8.83a) 

(8.8361 

(8.84a) 

(8.846) 

(8.84c) 

(8.84d) 

The factor (y[a//@)2 is interpreted as an impedance transformation ratio 
and may be viewed as an ideal transformer of turns ratio fof/& . 

For a lossless network, sf and & are real and .£ and % are imaginary. 
In the passband of a filter, y is pure imaginary and equal to j/3, and this 
occurs for \jsf&\ < 1, as (8.84c) shows. Also, in the passband, the image 
impedances are pure real, whereas in a stopband they are pure imaginary, 
as the following considerations show. In a passband, SS and W must be of 
the same sign, so that .'M'i? = j\.<%\j\'*?\ = -\$g<&\ will make sinh y in (8,84a1) 
pure imaginary, that is, y =j(5. Thus, in (8.81), the quantity under the 
square root will be real and positive since sfSt must be positive to give a 
real solution for cosh y. Hence the image impedances are real in a passband. 

If N two-port networks are connected in cascade and these have 
propagation constants y„, n = 1 ,2 , . . . , N, and voltage transformation ra
tios 

v2 
y— (faa+ 499 

h fgT 
\j — (fas + JggW 
V .a/ 

The image propagation factor e~y is defined as 

e 
y = io/9> - 4&W 

whence it is found that 

e ' IB iw'9> + vfe«?if 

and cosh y = J$/@i 

s inh y = J<M%' 

r t - i / 5 T.2,...,T„,...,TN 
* t 
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and the output section is terminated in an impedance equal to its 
image impedance, the overall voltage transfer ratio is 

YE 'N 

V, .V 1 

-TxTt 

\ 
TNe- •vi~vs~ -y.v _ nr..-r. (8. •85) 

provided also that the output image impedance of any one section is eo 
the input image impedance of the adjacent section. With this filter net ' 
terminated in a load impedance Z, N equal to the image impedance of th 
output section, and with the generator at the input having an jn te i 
impedance Z,„ the overall network is matched for maximum power tran' 
fer. The filter operates between impedance levels of ZlN and Z wh"* 
provide an overall impedance-ratio change of amount 

Z,A Z,.\' 
Z. i,V - l Zrl 

N 

nv 
» = ! 

18.86) 

If symmetrical two ports are used, </ = y and Z,x = Zi2, and both are 
equal to the Bloch-wave characteristic impedance Z'!f. For a symmetrical 
network no transformation or change in impedance level is obtained. The 
filter consisting of N symmetrical sections terminated in load impedances 
equal to the image impedance Z, behaves exactly like an infinite periodic 
structure, with its characteristic passband and stopband features. 

In the image-parameter method of filter design, the two-port para
meters st, i&, &, & are chosen to provide for the required passbands and 
stopbands. In addition, the image parameters are also chosen equal to the 
terminating impedances at the center of the passband. The shortcomings o' 
the filter are now apparent, namely, the image impedances are functions oi 
frequency and do not remain equal to the terminating impedances over 
whole desired passband. This results in some loss in transmission (loss 
to mismatch) within the passband, an amount that cannot be prescribe 
determined before the filter has been designed. In addition, there i 
means available for controlling the rate at which the attenuation i n c r e a ^ 
with frequency beyond the edges of the passband, apart from increasu 
number of filter sections. Nevertheless, many useful microwave filter 
been designed on this basis, f 

, „u Freq" 
tS . B. Cohn. chaps. 26 and 27 in Radio Research Laboratory Staff, "Very « « " 
Techniques," vol. 2 McGraw-Hill Book Company, New York. 1947. Coille< 

For a discussion of image-parameter methods at low frequencies, see £•• 
"Communication Networks." vol. 2, John Wiley & Sons. Inc., New York, 193° 
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D E S I G N B Y I N S E R T I O N - L O S S M E T H O D 

The power loss ratio of a network was defined in Sec. 5.14 as the available, 
or incident, power divided by the actual power delivered to the load; thus 

1 1 
PLH = l _ r r * - 7 3 7 (8.87) 

where T is the input reflection coefficient for a lossless network terminated 
in a resistive load impedance ZL = Rh. The insertion loss, measured in 
decibels, is 

L = 1 0 1 o g P L R (8.88) 

when the terminating resistive load impedance equals the internal 
impedance of the generator at the input end. In general, the insertion loss is 
defined as the ratio of the power delivered to the load when connected 
directly to the generator to the power delivered when the filter is inserted. 

The insertion-loss method of filter design begins by specifying the 
power loss ratio P L R or the magnitude of the reflection coefficient |T| ~ p as 
a function of w. A network that will give the desired power loss ratio is then 
synthesized. This procedure is seen to be essentially the same as was 
followed in the synthesis of quarter-wave transformers in Sees. 5.12 and 
5.13. Indeed, the multisection quarter-wave transformer may be considered 
a particular type of bandpass filter. It must be kept in mind, however, that a 
completely arbitrary Hoi] as a function of w cannot be chosen since it may 
not correspond to a physical network. The restrictions to be imposed on f 
are known as the conditions for physical realizability, and some of these are 
discussed below. 

For a passive network it is clear that the reflected power cannot exceed 
the incident power, and hence one restriction on l'(w) is 

| r ( w ) | < l (8.89) 

If the normalized input impedance of the network is 

Z(w) = R(io) +jX(co) 

we have 

Z i n - 1 R(w) - 1 +jX{») 
r ( w ) = •=-Zin+ l /?(«,) + 1 + JX(co) 

As shown in Sec. 4.4, ~R is an even function of 10 and X is an odd function of 
co. Hence 

g(a,)-WX(„) 
i ( — 0 1 ) = • = = — = r (10) 

R(w) + l-jX(M) ^ ' 
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and thus 

|T(«»)l*-**(•) =ir*-r(*>)r(-6») 

w and must therefore contain only even powers of at. Now anv 
W f c t I o n o f 

impedance function (impedance of a network made up of resist" r e q u e r i cy 
tors, and inductors) can be expressed as the ratio of two poiynomi^31*' 
Consequently, T can also be expressed as the ratio of two polyn' S i" (°' 
follows that />H a)) can then be expressed in the form °mials. It 

PZM = 
M( u>2) 

M(w*) + N(cu2) 

( • g - 1 ) + X2 

(R + if +X2 (8.91) 

where M and N are real and nonnegative polynomials in w
2 . The pow 

loss ratio can now be expressed as 

Pi.« = 1 l.K 

M(u>2) _ [fl(o) - l ] 2 + [Xja)]* 
N(<o2) ' 4R(a>) (8.92) 

The last result inj8.92) shows that N(co2) must be an even polynomial in a> 
since it equals 4/?(«). Hence we write N(u>2) = Q2(w), which is clearly an 
even polynomial in w. If we denote M(ur) by the even polynomial P(ws) 
instead, we have 

P,.R = 1 + (8.93) 

The conditions specified on Put up to this point are necessary conditions i 
order that the network may be physically realizable. It may be shown th£ 
the condition that the power loss ratio P L R be expressible in the form (8.93 
is also a sufficient condition for the network to be realizable.t In succe<jdlT| 
sections we consider suitable forms for the polynomials P and Q and 
types of networks required to yield the corresponding power loss rati 

8.15 SPECIFICATION OF POWER LOSS RATIO 
could be 

There are virtually an unlimited number of different forms that ™woT^ 
specified [or the power loss ratio and be realized as a physical ,ex power compfe* 
However, many of these networks could be anticipated to be v f 7 a v € 

and hence of little practical utility. The power loss ratios that ^ ^ ^ 
found most useful for microwave filter design are those that gi 

tG . L. Ragan fed.). "Microwave Transmission Circuits," sec. 9.13, McGraw-
pany. New York, 1948. 
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mally flat passband response and those that give an equal-ripple, or 
Chebyshev, response in the passband. Such passband-response characteris
tics correspond to those of the binomial and Chebyshev multisection quar
ter-wave transformers discussed in Chap. 5. The maximally flat filter (com
monly called a Butterworth filter) and the Chebyshev filter are described 
below for the low-pass case only. In a following section it is shown that 
high-pass and bandpass filter characteristics may be obtained from the 
low-pass filter response by suitable frequency transformations, or mappings. 

ally Flat Filter Characteristic 
The power loss ratio for a maximally flat low-pass filter is obtained by 
choosing the polynomial Q equal to unity and choosing P(w2) equal to 
k2(co/<oc)

2N. Hence we have 

P L K = l + * 2 ( — | (8.94) 

The passband is the region from 10 = 0 to the cutoff value <or. The maxi
mum value of PIjR in the passband is 1 + ft2, and for this reason k2 is called 
the passband tolerance. For w > wc, the power loss ratio increases indefi
nitely at a rate dependent on the exponent 2N, which in turn is related to 
the number of filter sections employed. A typical filter characteristic is 
illustrated in Fig. 8.20 for N = 2. 

ebyshev Filter 

The power loss ratio for the equal-ripple, or Chebyshev, filter is chosen as 

PLR=l + k 2 T 2 ^ (8.95) 

where TN(a)/(oc) is the Chebyshev polynomial of degree N discussed in Sec. 

Chebyshev 

Maximally Hat-

FIGURE 8.20 
Low-pass-fiJter response for maximally flat and 
Chebyshev filters for N - 2. 
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5.13. Recall that 

T v | — ) = C O S | N C O S - 1 — 

and thus TNi(o/w,,) oscillates between +1 for \w/coc\ < 1 an-i 
m cregsgg monotonically for w/wc greater than unity. The power loss" 

+ k2 in the passband, equals 1 + k~ at 
frequency, and will increase monotonically for w > u>c. A tvpica]' r '

C ' 
curve is shown in Fig. 8.20 for N = 2 Or.P nartir-nWlv <*„;u: e 

oscillate between 1 and 1 + k m the passband, equals 1 + k2 at *u *^ 
f t _ - j -u ! .__ _ . _ • • 11 <- . a l l n e CUtntt 

2. One particularly striking featurer 
the Chebyshev response curve compared with the maximally flat curvp 
much greater rate of rise beyond the cutoff point. This means thatY^ 
corresponding filter has a much sharper cutoff" region separating the na 
band and stopband, which is usually a desired characteristic. 

For o>/<i)t large, the power loss ratio for the Chebyshev filter ap
proaches 

LR 

k2 /2(o 

TUT 
2JV 

(8.96) 

Compared with the maximally flat response characteristic this is larger by a 
factor 22N'2. In fact, no other polynomial P(co2) yielding a passband 
tolerance of k 2 can yield a rate of increase of PLH greater than that given by 
(8.96). Conversely, for a specified rate of increase in the power loss ratio 
beyond the cutoff frequency, the Chebyshev polynomial gives the smallest 
passband tolerance. In this sense the Chebyshev filter represents an opti
mum design. The proof is similar to that used in Sec. 5.14 to prove the 
optimum properties of the Chebyshev quarter-wave transformer. 

When the power loss ratio is equal to 1 + ks, the magnitude of the 
reflection coefficient at the input is 

k 
P = 

(1 + A 2 ) 

The input voltage standing-wave ratio is given by 

S = 
1 + p _ (1 +k2)U2 + k 

1/2 

btai**1 

1-P (1 + * 2 ) - A 

If P is chosen as unity and Q is set equal to k2T$Uo/t»<X * '^ 
filter having Chebyshev behavior in the attenuation or stopband J^h a v i or » 
It is also possible to choose P and Q so as to give Chebyshev ^ow**8*' 
both the passband and the stopband. The required network is- ^^-av-e 
usually too complex to be realized in a satisfactory manner wit 
circuit elements. 
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8.16 
S O M E L O W - P A S S - F I L T E R D E S I G N S 

The maximally flat and Chebyshev low-pass-filter power loss ratios dis
cussed in the preceding section can be realized by means of a ladder network 
of capacitors and inductors in the form illustrated in Fig. 8.21. The load 
impedance is chosen equal to 1 12, and the generator impedance as R. The 
circuit in Fig. 8.21b is the dual of the circuit in Fig. 8.21a. Both circuits can 
be designed to give the same power loss ratio. For maximally flat or 
Chebyshev response in the passband, the ladder network is symmetric for 
an odd number of elements. This is also true for N even, in the case of the 
maximally flat filter. The element values are denoted by gk, and are the 
same in both circuits. However, the required generator impedance R' in 
the network of Fig. 8.216 is equal to 1/R. For N odd both R and R' equal 
unity. 

If we let Zm be the input impedance at the plane aa in Fig. 8.21a, the 
reflection coefficient will be 

r = 
z,n-R 
Z.„ + R 

In terms of Z i n and R, the power loss ratio is readily computed to be 

I2 in - J?|2 

P,M = 1 + 2ff(Z in + Z*) 
(8.97) 

At to = 0, all capacitors appear as infinite impedances and all inductors as 
zero impedances, and hence Z i n = 1. For a maximally flat filter or a 

-ntw<— 
9B 9* 9z 

9i 9% 9i 

(a) 

97 ? 5 ?i 9, 
'WP—l—npSG^—f—^555^—t—^5W^-

? 6 9* 9z 

(A) 

F IGURE 8.21 
Low-pass ladder-prototype-filter networks. 
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Chebyshev filter with N odd, we must have unity power loss rat" 
This requires that we choose the generator impedance equal to 3 ' °' * 
Chebyshev filter with N even, we have P I K = 1 + k2 at u> = ft

Un'ty- por a 
u ' ^ d hence 

1 + A 2 = 1 + 
4/? 

or i? = 2k2 + 1 - / 4 * 2 ( 1 + £ 2 ) = — 
v ' R' (8.98) 

The required values of the elements gk in the ladder network w, 
obtained very readily by solving for Z-m and equating the power loss rat 
given by (8.97) to the desired power loss ratio for N up to 3 or 4 As° ^ 
example, consider the case of N = 2 for the circuit in Fig. 8.21a. We'readT-
find that 

Zm =ja>L + 
1 + jtoC 

where C = gx and L = g2. Using (8.97) gives 

(1 - R)2 + w 2 (L 2 + C2f l2 - 2LC) + *AL2C2 

J \ R = 1 4-ft 

To make PljR equal unity at to = 0 and to obtain maximally flat response, 
we must choose R = 1 and L2 + C2 - 2LC = 0. If we specify cutoff to 
occur at w = 1 with a passband tolerance of k2, we also have 

1 +&2 = 1 + 
L2C2 

or LC = 2k. hence we find L = C = (2fc)1/2. For Chebyshev response we 
equate P , ^ to 

1 + »2T2 
w 

^1 — =1 +fe 
1 *>J 

2 

- I " I 

in order to determine L and C. ^^ 
For large values of N the above procedure is very laborious t^ ^n 

out. In place of this direct substitution scheme general solutions a^ ^ 
worked out.t In addition, tables of element values, i.e., values or 
have been prepared by a number of people.t 

. , 29 PP- l 0 * 
tV. Belevitch, Chebyshev filters and Amplifier Networks. Wireless Eng., vol-
April, 1952. T a b l e s . rW-
±L. Weinberg, Network Design by Use of Modern Synthesis Techniques an 
Natl. Electron. Co/if., vol. 32. i956. 

S. Cohn. Direct Coupled Resonator Filters, Proc. IRE, vol. 45, pp- 187 
See also "The Microwave Engineers' Handbook." Horizon House. Inc . '• 

,196. February 
195' 

_1964-
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For the maximally flat network with a power loss ratio 

/>LR = 1 + " 2 N (8-99) 

the element values are given by 

R = l (8.100a) 

2k - 1 
gk = 2sm—-——7T k = l,2,...,N (8.1006) 

where gk is the value either of inductance in henries or of capacitance in 
farads. Each end of the filter is terminated in a 1-0 resistance. 

For a Chebyshev low-pass filter with w, = 1, the element values are 
given by 

(1 Wodd (8.101a) 
gN+i ~ \ 2k2 + 1 - 2*Vl + k2 N even (8.1016) 

When element gN is a capacitor, gN + 1 = R, but when gN is an inductor, 

gk = . ' (8-lOlc) 

2k - 1 
where ak = sin ——v 

,. P , k-rr 
bk ~ s inlr —— + sin-2 -— 

* 2N N 

Vi + k2 + i 
p = In 

gi 

/T+ A2 - 1 
2a , 

sinh fi/2N 

Numerical values for the gk are given in Tables 8.1 and 8.2 for N up 
to 5, aic = 1, and a passband tolerance k2 equal to 0.0233 (a 0.1-dB ripple in 

TABLE 8.1 
Values of gk for maximally flat filter 

N 

k 2 3 4 5 

1 1.414 1.00 0.7654 0.6180 
2 1.414 2.00 1.848 1.618 
3 1.00 1.848 2.000 
4 0.7654 1.618 
5 0.6180 
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TABLE 8.2 
Values of gk for Chebyshev filter with k2 = 0.0233 

N 

k 2 3 4 5 

1 
2 
3 
4 
5 

0.8430 
0.6220 

1.0315 
1.1474 
1.0315 

1.1088 
1.3061 
1.7703 
0.8)80 

1.1468 
1.3712 
1.9750 
1.3712 
1.1468 

the passband) for the Chebyshev filter. More extensive tables are givei 
the references cited. 

8.17 F R E Q U E N C Y T R A N S F O R M A T I O N S 

The low-pass filter with cutoff at w,. = 1 and terminated in a 1-fl bad 
impedance may be used as a basis for the design of high-pass and bandpass 
filters with arbitrary resistive load termination. For this reason it is re
ferred to as a prototype filter. For the purpose of this section, it is conve
nient to denote the frequency variable for the low-pass prototype filter by 
u>. The power loss ratio may be expressed in the form 

1.K 1 + P(OJ'2) (8.102) 

for maximally flat and Chebyshev responses. 
If it is desirable to have a load termination RL different from 1 O, the 

required filter is obtained by multiplying all other reactances and the 
generator resistance by a factor R,. That is, the prototype-filter reactance 
can be viewed as normalized with respect to RL. The new values for t 
inductances and capacitances are 

(8.103a) 

(8.103b) 

(8.103c) 
R=RLR ( 8 ; 

where R' denotes the new value of R here, and not the generator " ^ f o r i n a . 
in the dual circuit of Fig. 8.216. In the discussion of frequency " .^^ance 
tions below, we assume a 1-il termination since the change i 
level of the filter can be made as a last step in the design P r ° ^ s ' w acCord-

If we replace the frequency variable to' by a new varia 
ing to 
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the power loss ratio becomes 

PLR = 1 + P(a>'2) = 1+P[ f\m)] (8.104) 

As a function of a> or f, this power loss ratio is that of the low-pass 
prototype filter, but as a function of to, it has a different characteristic, 
depending on how /"(«) is chosen. A number of different frequency transfor
mations, or mappings, are considered below. 

Frequency Expansion 

If it is desirable to change the cutoff frequency from unity to some other 
value o)c> we choose 

/H = 

and thus 

^ L R = 1 (8.1051 

Cutoff occurs when the argument w/wc equals unity or when m = <ou. The 
series reactances and shunt susceptances in the prototype filter must be 
replaced by new reactances and susceptances 

jX;=j{^-\Lk /B i= / (—[ i 

when a)' is changed to w/oi,. in order to yield the power loss ratio given by 
(8.105). Examination of the latter equations shows that the new values of 
the Lk and Ck must be 

L\-=± 

Q -
c, 

(8.106a) 

(8.1066) 

The power loss ratios in terms of <o' and ai are compared in Pigs. 8.22a 
and b. 

*-Pass tp High-Pass Transformation 

A high-pass filter is obtained by choosing f(w) equal to — <»c/o> to yield a 
power loss ratio 

LR 1 + P 
a' 

(8.107) 
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(4) 

•»-« 

FIGURE 8.22 
(a) Low-pass prototype-niter 
response; (b) frequency ex-
pansion; (c) low-pass-to-
high-pass transformation, (d) 
low-pass-to-bandpass trans
formation. 

This frequency transformation maps the point w' = 0 into the points ID = 
±*>, the points to = +1 into co = +wc , and the points u>' = ±<x. into co = 0. 
The effect is to interchange the passband and stopband regions, as illus
trated by Figs. 8.22a and c. To obtain a power loss ratio of the form (6.107), 
the series reactances and shunt susceptances in the new filter must be 
chosen as follows: 

ior to. 

&Z = ~j—i* jB't = -j~ck 
CO CO 

From these equations it is seen that all inductances Lk must be replaced by 
capacitances C'k and the Ck must be replaced by inductances L\ m 
following manner: 

(8.108a) 

(8.108b) 

P* = 

L\ = 

<»cLh 

1 

cZcl 

Low-Pass to Bandpass Transformation 
To obtain a bandpass filter, consider a change of variable accordin 

{8.lOS) 

u> = f(to) 
co2 ~ 

co0 

(I) 
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T 
i 

0 ^ 5 ^ - H ( _ ^ y F I G U R E 8 2 3 

Series and parallel tuned circuits. 

This equation may be solved for to to give 

ft) = ft) ± \l lt> 

( U 2 - W I . / , 2 | ' W 2 - « V 2 

If we also choose w'f, = o>|Co2, we obtain 

to., — a) 2 — lO] 1 / 2 2~~ 
<o = 0/ + —yio (a);, — o)y) + 4&),ft)2 (8.110) 

The point ft)' = 0 is seen to map into the points to = ±toQ, and to' = +1 
maps into the four points ±(o>2 ~ tot)/2 + (w2 + tot)/2 = ±ft)2 and +«>,. 
Thus the prototype-filter passband between ± 1 maps into passbands ex
tending from ft), to o)2 and — ial to -ft>2, which represent bandpass filters 
with band centers at ±&0 equal to the geometric mean of <w, and a>2, as in 
Fig. 8.22c/. 

The required filter elements may be deduced by considering the fre
quency behavior of series and parallel connections of L and C, as in Fig. 
8.23. For the series circuit we have 

;X = 7ft)L + -^ = . n / ^ I WLC -
jwC J V c \ to4W 

and for the parallel circuit we have 

JB' = jtoC + — mj-JT \W{LC -
jmL -'V L \ ' ftjyXC 

If we make vXC equal to (u0 ' , we obtain 

rn ((o ft)0\ .mi . rc~ (w «„ 

The required frequency transformation may now be seen to be obtained if 
we replace the reactance jXk = jtoLh and the susceptance jBk = j<oCk in 
the prototype filter by series and parallel tuned circuits such that 
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o TRHT'—|(—. TSUTT—| 

FIGURE 8.24 
A bandpass-filter network. 

This requires that we choose 

ukch 

t 

1 
.2 

' - " n 

w0L 

1 ukch 

t 

1 
.2 

' - " n 

w0L 

0) l w 2 

0>2 /t 
t 

1 
.2 

' - " n 

w0L 

0) l w 2 

0>2 - w, 

(8.111a) 

or LA = (8.1116) 

for the series circuit. For the parallel circuit we must choose 

1 1 
^*CJk - 2 -

o>5 to1w2 

— = o^C* = 
Lk w2 - wx 

(8.112a) 

The resultant filter network is illustrated in Fig. 8.24. 

Period Bandpass Mapping 
-ariety of 

The general concept of frequency mapping may be applied in a v ,^ 
other ways as well. All that is necessary is to replace the r e a c t a n c e

n c e and 
and susceptances jw'Ck in the prototype filter by other reac ^ ^ 
susceptance functions having <o' replaced by a new function /vw . rt-cir-
further example we shall consider the effect of replacing all w- ^ j a n C e 2. 
cuited transmission-line stubs of length / and characteristic '^L^cterist '0 

and the capacitors Ck by open-circuited stubs of length ' a n d c 
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admittance Yk. The new reactance and susceptance functions become" 

jX'h = jZk tan | - / = jZk tan 0 = jgk tan 0 

jB\ = jYk tan 0 = jgk tan 8 

This filter has a power loss ratio given by 

PIM = 1 + P ( t a n 2 « ) (8.113) 

The frequency transformation w' = tan(wl/c) = tan 0 maps the whole <u' 
axis periodically into intervals of length -rr in the 0 domain or of length -c/l 
in the w domain. This filter would be satisfactory at low frequencies where 
junction effects at the points where the stubs are connected to the main line 
are negligible and where the separation between stubs could be kept very 
small in terms of wavelength.t 

At microwave frequencies the alternative occurrence of series and 
parallel tuned circuits in the filter derived from the low-pass prototype filter 
by a frequency transformation is an undesirable feature. It is difficult to 
construct a filter of this type using microwave elements. However, it is 
possible to convert the filter with series tuned elements into an equivalent 
filter containing only parallel tuned circuits in a cascade connection, or to 
convert the circuit into one containing only series tuned circuits. The 
desired transformation may be obtained by the use of impedance and 
admittance inverters or quarter-wave transformers, as discussed in the next 
section. 

I M P E D A N C E A N D A D M I T T A N C E I N V E R T E R S 

An impedance inverter is an ideal quarter-wave transformer. A load 
impedance connected at one end is seen as an impedance that has been 
inverted with respect to the characteristic impedance squared at the input. 
Impedance inverters may be used to convert a bandpass-filter network of 
the type shown in Fig. 8.25 into a network containing only series tuned 
circuits. By using admittance inverters the bandpass filter can be converted 
into a network using only parallel tuned circuits. Furthermore, by choosing 
the inverters correctly all of the inductors and capacitors can be chosen to 
have the same values. Thus impedance and admittance inverters enable us 

tThis transformation is known as Richard/s theorem. 

i l f a filter is made up of transmission lines of commensurate length and resistors, the only 
frequency variable occurring is tan(w//c). In this case the frequency transformation iu = 
tan(<o//c) permits the use of conventional low-frequency-network synthesis techniques to be 
applied. 
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Yp(o» *«(») 
-« o— 

rf = 1 K = 1 

(a) 

Zs(<o) 

>/= 1 J=1 YP(<°) 

(b) 

FIGURE 8.25 
la) Impedance inverter used lo convert a parallel admittance into an equivalent seriffi 
impedance: (6) admittance inverter used to convert a series impedance into an equivalent 
parallel admittance. 

to use identical resonators, either series or parallel tuned, throughout the 
network. 

In our initial discussion of inverters, we will assume that they are ideal 
frequency-independent elements. Later on we will consider the practical 
realization of inverters and how to compensate for their frequency-depen
dent characteristics. 

Consider the parallel admittance element Yp(a>) with an ideal 
impedance inverter with characteristic impedance K connected on D 
sides as shown in Fig. 8.25a. A short circuit at the output will be trans
formed to an open circuit in parallel with Yp. The input impedance 
given by 

K* 
Z in ~ li K Yp = Yp - Zs 

Thus the shunt element with two impedance inverters converts t t e s ^ ^ 
admittance into an equivalent series impedance Zs(co) = YpUo>-^ 2 ' ^ ]g 
parallel tuned resonator with Yp = > C - j/coL =jotC(l ~ a%f%\ 
converted into a series tuned circuit with Zs =jioL(l " °*o/ ^ 
the inductance L in henries having the same numerical v a l u

c e 

capacitance C in farads. If we want to convert an admit j0duc-
j w C j d - wl/to'z) into a particular series tuned circuit with arbitra 

with 
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tance L, then we must choose K so that 

/ «>n \ | WQ \ 
K'VOJCAI- — =ju>L 1 - — 

\ GJ / \ <0 / 

Thus we can transform a shunt element into a series element having the 
same dependence on frequency and an arbitrary impedance level. 

Consider next a series element Zs(o)) with an admittance inverter with 
characteristic admittance J connected on both sides as shown in Fig. 8.256. 
An open circuit at the output is transformed into a short circuit in series 
with Zjo)) so the input admittance will be 

Ym =~ = J% = Y„ 

Thus the series element with the two admittance inverters will appear from 
the terminals to be an equivalent shunt admittance. If Zs is the impedance 
ju)L(\ - u>'o/w2) of a series tuned circuit, it is converted into a parallel 
tuned circuit with admittance Y= jwLil - wj/w2) = jcoCil - to'i/w2), 
where C is numerically equal to L. For a series tuned circuit 
7'a)L,(l - (O'Q/U>'2) to be transformed into an arbitrary parallel tuned circuit 
with Yp = ;'wC(l - ia\/m2), we must choose J2LX = C or 

From another point of view we see that a series element can be replaced by 
a shunt element with an impedance inverter at the input and output. 
Similarly, a shunt element can be replaced by a series element with an 
admittance inverter connected at each port. The admittance and impedance 
functions for parallel tuned and series tuned resonators can be expressed in 
the form 

The factor J(T/L is the admittance level of the resonator and y[L/C is the 
impedance level. The remaining factor is the frequency variable. 
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c 'TRRP-

K K 

C,L, C,L, C , t , 

L2 C2 

, — / T J U ^ — 1 | — 
L2 C2 

—innp—|J— 

J J 

FIGURE 8.26 
Use of inverters to convert a section of a filter into a network using only identical parallel 
series tuned resonators. 

We will illustrate the use of inverters to convert the circuit shown in 
Fig. 8.26 into one with two identical parallel tuned resonators or one with 
two identical series tuned resonators. For the first case we choose K so that 
K2jtoC^l - W'Q/OJ2) =./aiL2(l - a>oAo2) which requires that K = yjL2/Cl. 
For the second case we choose J so that J2jwL2(l - CO\/<D1) =jmCl(l -
co2)/to~) which requires J = yC]/L.2. Impedance and admittance level 
changing can be accomplished by using different input and output inverters 
as shown in Fig. 8.27. For example, in Fig. 8.27a the parallel admittance 
appears as a series element K'2Yp at the left-side port and as a serie 
element K2Yp at the right-side port. Similarly, in Fig. 8.276 the series 
element Zs is made to appear as a parallel admittance JfZs at the left-side 
port and as an admittance JjZs at the right-side port. We can modify t. 
impedance and admittance inverters to accommodate an arbitrary change I 
the impedance and admittance levels of a resonator. In Fig^ 8.2 ie 
impedance level y[Lx/Cx of the resonator is changed to ^Lu/Ca by c 
ing the impedance K' of the inverters to K, where K is chosen so tha 

K ,2 K2 K- K" 

•JLJC-L /L0/C0 aioLy COQL.0 

or K = K V -

mra-
From the terminals the new circuit is equivalent to the o l d o n ^ . o f t h e 

8.270" we show a similar transformation of the admittance yj^i/ \ ^e 

parallel tuned resonator to a value y/C0/L0 obtained by rep 
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Z^KfY. 

e —-

K, Y, K2 K, Y, K2 Zin = K2Yp 

(a) 

&«</%. A 

zs 1 
j2 A 

zs 1 
j2 A 

1 
j2 A 

1 
j2 A j2 

0 

'm - J^Z. 

(b) 

L, C, 
i • —TRTtP—1|— ° 

K K-

|—iwr-—li

fe) 

<-, c, 

J' 
1 
Jo 

J ' 

o 

«.r^r 

- 0 <--0 

J = J ' . Co 
C, 

(tf) 

FIGURE 8.27 
(o) Impedance level changing property of two impedance inverters; (6) admittance level 
changing properties of two admittance inverters; (c) equivalent basic sections with a series 
tuned resonator; id) equivalent basic section with a parallel tuned resonator. 

inverters with characteristic admittance J' by new inverters with charac
teristic admittance J = J'yJCQ/Cl . 

Impedance and admittance inverters are ideal quarter-wave transform
ers. There is no basic difference in their inverting properties. The only 
distinction that we make is to use the symbol K to denote the characteristic 
impedance of the impedance inverter and we use J to denote the character-
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istic admittance of an admittance inverter. An impedance in 
characteristic impedance K is equivalent to an admittance inv F ^^ 
characteristic admittance J = l/K. When K = J = l we \laJ

>rter ^ t h 
inverter and it does not make any difference whether we identify \w U n ' t j ' 
impedance inverter with K ~ 1 or as art admittance inverter with }*-?* ^ 

In Fig. 8.28a we show a bandpass filter terminated in a load r ~ l" 
RL and a source resistance R^. We will use impedance inverters ( 
this circuit into one using identical series tuned resonators with el mcn 

L0 and Cn and terminated at both ends in a resistance R. The transf C n t S 

tion process is easiest to understand by carrying it out as a successi ^ 
several intermediate transformations. We first introduce unity invertp ' 
convert all of the parallel tuned resonators into series tuned resonatn 
Thus, with all J, = Kt equal to unity, we obtain the network shown in pit, 
8.28o, where L\ = C, and Z/3 = C3. We now change the impedance level of 
resonators 1 and 3 to -JL0/C0 by changing the first and second inverters to 
inverters with K\ = K'2 = ^L0/L\ = yjLa/Cy and the third and fourth 
inverters to inverters with K'3 = K\ = ^L0/L':i = y]LQ/C%. The new net
work is shown in Fig. 8.28c. This impedance shifting is the same as that 
illustrated in Fig. 8.27c. 

As a next step we change the impedance level of resonator 2 from 
y/L2 /C2 = o>0L2 to u>0L0 by changing inverters 2 and 3 so that 

# 3 ^ 3 

and hence 

Kl K? 
o)0L0 <i>0L2 

l 
L0 , Li 

0)QL0 ft) o^J 

The resultant network is shown in Fig. 8.28d. 
In order to change the load termination from RL to R, we modify 

first inverter so that 

K\ Kf 

R R 

and thus choose 

The last modification needed to complete the transforma 
change the fourth inverter to one with an impedance 

^ /Xo L\ 
KA = K\ ' L4 y L4Cs 
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(a) 

L4 C« 

K=1 

L'3 °'3—-L^rSh k^HH 
K=1 K=1 K=1 

(6) 

L4 C4 <-o C0 L2 C2 | _ t 0 Co, , 

9© 
KS 

-nm^-\\-

* 3 

^55!THt-

K'2 

^ 0 0 0 ^- |p 

Kl 

1 
T_ 

KS * 3 K'2 Kl 

( O 

L4 C4 i-o C0 

kswMH 
L0 C 0 l-o C 0 | . ^ 

K3 

-nm^-\\-

Kt 

—' 000 '—1|— 

K', } K3 
Kt K', 

( d ) 

/ „ Cn l-o C„ l-o Co l-oi Co: [ 

Ks 

^ 5 W H h 

K* 

^6TSTH|-

K3 

-TSoTT,-||-

K2 

-^ooo^i i -

K, 
Ks 

^ 5 W H h 

K* 

^6TSTH|-

K3 

-TSoTT,-||-

K2 

-^ooo^i i -

K, 

1 
1 

Ks K* K3 
K2 K, 

(e) 

S S S L 8 ? successive transforations used to convert the b a n d ^ s filter •" (^ ^ 
network with identical series tuned resonators and equal .nput and output term.na 
resistance R as shown in (e). 
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and to introduce a fifth inverter between Rg and the fourth res 
place an inverter with impedance K'5 chosen so that r- If we 

* • 

-F-*-
we can replace Rg by the new source resistance JR. After introrf 
f i f th inverter to accommodate the change in source resistance we "^ t h e 

change it again when L4 is replaced by L 0 . The new impedance K 
chosen so that 5 m u s t *« 

and hence 

The final transformed network is the desired one and is shown in Fig. 8.28e. 
The required inverters that will transform the original filter network 

to the final form shown in Fig. 8.28e have impedances given by 

/ LQR 

A/.C, 

K, = Jji- (8-1W*) L2 

K3 = 

K4 = 

K5 = 

L 2C, 

(8.114c) 

(8.11*0 
L4C3 

lL0RRg I L0R~ ( 8 . H 4 e ) 

r2 

L4 V L-G* 
If instead of specifying identical resonators we choose L0v ^ Rg5 

and L0 4 for the new inductances, f l 0 0 for the new load resistanc^, ^ ^^ 
for the new source resistance (this is viewed as a parallel elemen 
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series of transformations would give 

Ki = ^ 1 0 = 

K-2 = ^ 2 1 = 

#3 _ ^ 3 2 _ 

K4 ~ #13 _ 

# 5 ~%U~ 

'-'01 " 0 0 

CtRL 

L2Ci 

^ 0 3 ^ 0 2 

C3L2 

^ 0 4 ^ 0 3 

^ 0 5 ^ 0 1 

G g i -4 

(8.115a) 

(8.115o) 

(8.115c) 

(8.115d) 

(8.115e) 

These expressions exhibit a regular pattern and can, by induction, be 
extended to a network with a larger number of resonators or to one with 
fewer resonators. For example, if we have three resonators then in the 
expression for K43 we interpret L04 as the new source resistance RM and 
interpret L4 as the old source resistance. For a network with five res
onators, we would obtain 

and 

* M = 

* 6 5 = 

" 0 5 " 0 4 

~C7L7 

• " 06 ^ 0 5 

Rec5 

The inverters shown in Fig. 8.28 can also be viewed as admittance inverters 
with J, = 1/K,. 

By using admittance inverters the bandpass filter shown in Fig. 8.28a 
can be converted to a network that uses only parallel tuned resonators as 
shown in Fig. 8.29. The analysis can be carried out in a manner similar to 
that used for impedance inverters as a series of elementary transformations 
of the type illustrated in Figs. 8.266 and 8.27d. The required expressions 

°»: Jn*\,N 

FIGURE 8.29 
Equivalent filter network obtained by use of admittance inverters. 
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for the characteristic admittances of the inverters can be obt l 
expected, by interchanging the role of inductance and resistance win! 
of capacitance and conductance. It is readily found that 

J l = ^ 1 0 = 1 

= J 21 • 1 

= -^32 = 1 

= ^ 4 3 = 1 

= ^ 5 4 = 1 

/ ^ 0 1 ^ 0 0 

J2 

= ^ 1 0 = 1 

= J 21 • 1 

= -^32 = 1 

= ^ 4 3 = 1 

= ^ 5 4 = 1 

/ L2Ct 

J, 

= ^ 1 0 = 1 

= J 21 • 1 

= -^32 = 1 

= ^ 4 3 = 1 

= ^ 5 4 = 1 

/ ^ 0 3 ^ - 0 2 

\j C3L2 

J4 

= ^ 1 0 = 1 

= J 21 • 1 

= -^32 = 1 

= ^ 4 3 = 1 

= ^ 5 4 = 1 

/ ^ 0 4 ^ 0 3 

Js 

= ^ 1 0 = 1 

= J 21 • 1 

= -^32 = 1 

= ^ 4 3 = 1 

= ^ 5 4 = 1 
/ & 0 5 ^ 0 4 

Js 

= ^ 1 0 = 1 

= J 21 • 1 

= -^32 = 1 

= ^ 4 3 = 1 

= ^ 5 4 = 1 \j C5Rg 

(8.116a) 

(8.1166) 

(8.116c 

(8.116d 

(8.116e) 

If we denote the load and source terminations by RL and Rg in the 
unmodified bandpass filter and by R0L and R0g for the transformed 
network, then the general expressions for Kkk.x and Jkik-\ f ° r a filter 

with N resonators are 

# io _ 

K *.*-! 

K, A . A - l 

ft N+l.N 

ft N + l.N 

" 0 1 **0L 

" 0 t - ^ 0 * - l 

LkCk_1 

" 0 * " 0 * - l 

RogL'ON 

^ 0 g " « ^ , 0 A ' 

'iV 

fcodd 

A: even 

Nodd 

jV even 

(8.117a) 

(8.1176) 

(8.H7C) 

(8 .H 7 

(8.n7e? 
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and 

' " - V C K S ;
 (8118fl) 

tf>'*-'sy t t * . ' feodd (8,1186) 

*•*-' = V~L~C en (8.118c) 

'-'ON 

'"--VmZfc Nodd (8UM) 

Jw-UH-V p r - N e v e n (8.118e) 
V Kog^.v 

The impedance and admittance inverters used in the preceding analy
sis were assumed to be ideal frequency-independent quarter-wave trans
formers of electrical length j r /2 independent of frequency. Such ideal 
inverters do not, of course, exist. Nevertheless, the theory can be applied in 
practice. For very narrowband bandpass filters, say bandwidths of 1 or 2 
percent, a quarter-wave length of transmission fine or waveguide does not 
depart appreciably from the ideal inverter having a i r /2 electrical length. A 
filter designed on the basis of ideal inverters would have a response very 
close to the theoretical response in this case. For greater bandwidths the 
departure of a quarter-wave transformer from the ideal can be incorporated 
into the design by splitting the transformer into an ideal one with twt 
additional short lengths of transmission line on either side to account foi 
the excess or deficit in phase shift from the ideal phase shift of 90°. Fo: 
example, a transformer of length 0.3A0 at a wavelength of A0 can be treatec 
as a transformer of length 0.25A0 plus sections of line of length 0.025A0 oi 
both sides. The excess length of line may be incorporated into and mad 
part of the resonant circuit on either side of the inverter. 

Lumped-element circuits that act as impedance inverters and admi< 
tance inverters are illustrated in Fig. 8.30 along with their equivalen 
characteristic impedance or admittance. These circuits involve negativ 
elements and are frequency-dependent. However, the negative elemenl 
may be absorbed into the elements of the adjacent resonant circuits I 
eliminate them from the overall network. The resultant filter then consist 
of tuned circuits coupled by single reactive elements, as illustrated in Fi 
8.31. Application of these techniques to microwave filter design is discuss* 
in the following sections. 
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FIGURE 8.30 
I.umped-elernent inverters. 

Example 8.1. In this example we will design a two-resonator filter 
final form as shown in Fig. 8.32a. The filter is to be used in an intermediate^ 
frequency amplifier with center frequency of 10 MHz, a bandwidth of 0.5 MHz 
and having a load and source termination of 1,000 ft. The passband ripple is 
2 d B . 

(-^RRT o 

I I 

Li C* -C 

o—omHh—If 
-c "1 fi i, 

| l( j I H w o ^ 

X 
c I 

Ll c-ct c-c, k 

•~1 
1 - H V - ' 

( T I - r . T-r> T 1 " 1 q ' ""/. AT 

i i 

FIGURE 8.31 inverted 
Reactance-coupled resonator-type circuits obtained by use of lumped-eleme 
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R = 1,000 ft ? I 

92 

R-

(*) 

L, C, 

=r 9, $1 * ; 

J i 

C, L, 

L2 C2 

=rC,k-\ 

1 - c c ^ = 

(O (e) 

FIGURE 8.32 
(a) Bandpass filter; (6) low-pass prototype circuit; (c) bandpass prototype circuit; (d) trans
formed bandpass prototype circuit; (c) admittance inverter used to obtain the circuit shown 
in (a). 

We begin the design by first designing a low-pass prototype circuit with a 
cutoff radian frequency o>c = 1 as shown in Fig. 8.326. For a 2-dB ripple the 
maximum power loss ratio in the passband is 1 0 0 3 = 1.5849 = I + ft3. The 
parameter p is 

P = In 
\/TTki 

+ 1 

/ T ^ _ i 
= 2.1661 

From (8.101) we obtain R = 2fc2 + 1 - 2j%/l 4 k2 = 0.244175 for the low-
pass filter input termination. We also obtain from (8.101) a, = sin-rr/4 = 
0.7071, a2 = sin 3TT/4 = 0.7071, 6, = 1.32306, 62 = 0.32305, and gx = 2.4881 
and g2 = 0.6075. Hence, for the low-pass prototype circuit in Fig. 8.326, we 
have C, = gt = 2.4881 F and Z,2 = g2 = 0.6075 H, The values of a> at the 
band edges are <o, and to2. Since o>,<i>2 = u>% and u>2 - to, = 2ir x 0.5 x 10B, 
we get <u,i = OJX + TT x 106 = ai%/oiy By solving this equation we obtain <ux = 
6.1281 x 107, w2 = 6.4423 x 107. The corresponding frequencies are 9.7532 
and 10.2532 MHz. For the bandpass-h Iter prototype circuit, we use (8.1116) 
and (8.1126) to obtain C, = 2 . 4 8 8 1 / T T x 106 = 0.79199 MF and L2 = 
0 .6075 /CT x 106 = 0.19337 ,uB. The elements L, and C, are found using 
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<»%LiCl =ajlL2C2 = I and are Lx = 3.198 X W'10 

10 9 F. 
H and C ~ i „ 

2 " 1-3099 x 

resonator 
By introducing two unity inverters, we can convert the 
ator to a parallel tuned resonator with L'2 = C2 = 1.3099 x in^9 t U n e d 

CV, = L2 = 0.19337 M F . In 
from o)aC2 to OJQC|, we change 

J, - « / , = 

3099 X 1 0 * H 
order to shift the admittance level of thi a n d 

lange the admittance inverters to ones wi»h e S° n a t o r 

\ 

7.9199 X 10 

1.9337 x 10 — = 2.0238 

For the admittance inverters we use the capacitive circuit shown in Fie 8 70 
for which Jx = J2 = OJQCC; thus Cc = ( 2 . 0 2 3 8 / 2 T T ) X 10" 7 = 0.0322 MF Sin 
we want Jo use the same input and output terminations, we change J i 
so that R = 1 appears the same_to the network looking through the oriei' 1 
inverter; thus J'2

Z x 1 = J| x R so J2 = 2.0238v'0.244175 = i. This l^st 
result shows that a 1-41 source resistance appears the same to the network ai 
the 0.244175-41 resistor seen through the inverter with J = J2. Thus we can 
discard the input inverter. 

We now scale the impedance level to 1,000 O by multiplying L, by 1,000 
and dividing Cx by 1,000. We also absorb the — Cc in the remaining inverter as 
part of C,. Thus we obtain L = 0.3198 /xtl, C = (C, - Cc)/1,000 = 760 pF. 
and Cc = 32.2 pF, for the element values in the final filter shown in Fig. 
8.32a. 

The double-tuned coupled circuit that we have designed is a classic one 
that has been widely used in low-frequency radio IF amplifiers. The power 
transmission coefficient is equal to 1/PL R and is shown in Fig. 8.33. If the 
circuit is designed for a maximally flat response, it is said to be critically 
coupled. When the response has a dip in the center, the circuit is overcoupled. 
The coupling coefficient for the circuit equals CC/(C + Cc). For critical coupling 
the coupling coefficient equals 1/Q = w0L/R = 0.02. For the circuit that we 
designed, the coupling coefficient equals 0.0406 so clearly the circuit is 
overcoupled. Two other well-known properties of this classic circuit are that 

0 -

co -10 
•a 
c 
.9 
1 -20 
c 
a> 
< 

-30 h 

-40 

PC/ 

1 \\ 

1 
1 

// 
//Double 

. / tuned 
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\ \ filter 
\ \ 
\ \ 
\ \ 

1 
1 

// 
//Double 

. / tuned 
/ / filter 

\ X 

/ / 
-.1 ' 1 U 

i i 

0.8 0.9 1 

W0 

1.1 1.2 

FIGURE 8.33 f r , the <*ou' 
Power transmission coefficient lor &&*** 
tuned filter shown in Fig. 83 , - ^ y coup^ 
curve shows the response for a en j fl o5/-„. 
circuit with a 3-dB bandwidth equaf 
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the 3-dB fractional bandwidth equals </2 /Q for critical coupling, and for an 
overcoupled circuit having a 3-dB dip at <o„, the coupling coefficient equals 
(1+ ^2J times critical coupling and the 3-dB fractional bandwidth equals 
2 i / 2 l l 4 / Q . 

l 9 A M I C R O S T R I P HALF-WAVE F I L T E R 

In Chap. 7 we showed that open-circuited or short-circuited transmission-
line sections one-quarter or one-half wavelength long were equivalent to 
either series or parallel tuned lumped-parameter LC circuits. Thus it is not 
surprising to find that sections of transmission lines are widely used as 
resonators in niters. Such structures are particularly appropriate for mi
crostrip filters because of easy fabrication and low cost. In this section we 
will describe a microstrip filter that uses one-half wavelength open-circuited 
microstrip lines for the resonators. The resonators are coupled by means of 
the capacitance of the gap between the resonator sections. A typical half-wave 
filter consisting of three resonator sections is shown in Fig. 8.34. 

For an open-circuited transmission line the input admittance is 
given by 

F j n = y y ; t a n ^ 

We can expand Yin in a Taylor series about the frequency to0 where 
/3(w0)Z = TT; thus 

dp 
Yu, ~jYJ — 

dco 

eJW(«-»o) "JK 

[sec2/3(w0)Z](w - w0) 

rr<aQP'0 ft/ - ft>„ 

0n w<] 

where /3'0 equals d/3/dio evaluated at For a parallel tuned LC 
circuit, 

10L \ w 

1 (D — (Oc 
= J«"0C (w - w„)(w + w0) = 2JOJ0C 

w c « 0 f c > o 

C 0) — a),, 

V L wn 

Thus, for frequencies within around ± 10 percent of ai0, the open-circuited 
transmission line is equivalent to a parallel tuned LC circuit if we choose 

C a>n7r/3'n 

I - -ST* < 8 U 9 > 
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s, s2 s3 

FIGURE 8.34 
A microstnp half-wave filter with three resonators. 

In the half-wave filter the open-circuited transmission lines can be used 
equivalent parallel tuned resonators. We can choose all of the resonato ' 
be identical provided we insert appropriate admittance inverters betw 
each resonator. 

The network shown in Fig. 8.35 functions as an admittance inverter It 
consists of two transmission lines with negative electrical length 6 and a 
series capacitor Cg in the center. For this network a load admittance Y 
connected at one end is transformed into 

YL = Y, 
YL-jYrt 

cYc-jYLt 

at the location of B = o>Cg and where t = tan 6. Jus t to the left of Cg, we 
have 

K > 
jBY-;n 

JB + Y{n 

and at the input 

Y,n yrK _ m - Y^YJi - 2BYt) +jY2[B(i -12) - m 

We now equate the coefficient of YL in the numerator and the const 
term in the denominator to zero. Both conditions give 

Y, 

t 1 
- = - tan 20 

1 -t2 2 
(8.120a) 

-e -0 

F I G U R E 8.35 
A simple admittance inverter used in the 

filter. 

^crostr-P * * — 
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With th i s condit ion imposed 

Y'2t(2B-Yj) Y2tan-0 
Y. = — — = (8.1206) 

(Yc + 2Bt)YL Y,_ 

upon subs t i t u t i ng for B. When the re la t ions specified by (8.120) hold, we 
obtain an admi t t ance inver ter wi th 

J = y c t a n 0 (8 .121) 

T h e fact t h a t t h e ne twork in (8.35) involves t ransmiss ion- l ine sections wi th 
negative electrical l engths does not cause any difficult}' since we can add a 
length 6 at each end of the t r ansmiss ion line and t h e n add lengths of 
electric l e n g t h ~0 to serve as p a r t of t h e inve r t e r ne twork . Since b o t h 
B = <i)C„ a n d 8 a r e proport ional to w t h e inve r t e r is not an ideal one. 
However, for n a r r o w b a n d fi l ters J does not change very m u c h over t h e 
passband t h a t t h e f i l t e r m u s t opera te . 

In t h e next example we carry out t h e design of a th ree - resona to r f i l ter 
of t h e type we jus t described. 

Example 8.2 Design of a t h ree - sec t ion half -wave b a n d p a s s filter. We 
will design a filter with a center frequency of 10 GHz, a bandwidth of 1 GHz. 
and having a passband tolerance k'1 = 0.1 which gives a maximum VSWR 
equal to 1.863. 

We first design the low-pass prototype circuit shown in Fig. 8.36a. From 
(8.101) we readily find that g, = C, = g:i = C;, = 1.5062 and g% = L2 = 
1.1151. For the bandpass-filter prototype network shown in Fig. 8.366. we 
require C", = C,/( (y3 - w,) = C£ = (1 .5062/2- ) x 10 9 = 239.72 pF. L'., = 
L2/(a>2 - to,) = ( l . f l . 5 1 / 2 - ) x 10 9 = 177.47 pH. By introducing unity-
inverters we can convert the series tuned resonator to a parallel tuned 
resonator with C2 = L'2 = 177.47 pF. We now change these inverters into 
inverters with J chosen so that J2/C\ = 1/C2 or J = \JC\/Cl = ijC\/L'.z = 
1.16221. The network in Fig. 8.36a* is the final one after we scale all impedances 
by a factor of 50 so that the input and output transmission lines will have a 
characteristic impedance of 50 i! instead of 1 SI. Thus we require C = 
(239.72/50) pF = 4.7944 pF, and J = 1.16221/50 = 0.023244. The ratio of 
the resonator admittance \jC/L = w0C to V", of the input and output lines is 
2- X lO™ x 4.7944 x W~'2/0.Q2 = 15.062. 

If we use 50-fl transmission-line sections for our resonators, then the 
ratio of the resonator admittance given by (8.119) to the characteristic 
admittance of the input and output lines is a>„Trp'„/2lin. If we neglect 
dispersion, then 0O = ^u>0/c and p0/pn = \/u>„, where c = 3 x lO" m / s is 
the free-space velocity of light. In this case the ratio equals - / 2 which is 
different from the required ratio of 15.062. This problem is overcome by 
inserting an admittance inverter between the input line and the filter and also 
one between the output line and the filter. These inverters are chosen so that 
the line admittance Yc will appear to be 15.062 times smaller than the 



6 2 0 FOUNDATIONS TOR MICROWAVE ENH1SEKUISG 

La 

fi = 1 c, 4= T=C, ^ f l = 1 

Cj LJ 

1 * =4= 

(a) 

Ls 
j—TJTO"»—| 

" II " 
Cj 

L\ c; 

=4= * 1 

5012-

Co U, 

1 a =f= j' 

(b) 

C'i Lg 

(c) 

J ' 

14 c, 

50 O 

(O 

FIGURE 8.36 <rf> final 
(o) Low-pass prototype circuit; (6) bandpass filter; (c) transformed bandpass niter, 
filter network. 

resonator admittance vtjt. Thus we require 

4 TTV;. 
or c/„ = '-f Yc. 2 x 15.062 "* V 2 x 15.062 

If dispersion is important then we note tha t 

dp d^.oj/c _ y/ej_ a <^£ 

~d7o = du> c 2y/Tdc do) 

y = 0.3229V, 

which now gives 

2\ €, do 
(8 
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in place of (8.119) for the resonator admittance. This expression can be 
evaluated once the substrate material and microstrip width W have been 
chosen to give a 50-JI transmission line. The frequency dependence of e,, can 
be evaluated using Kobayshi's formula (3.176). For simplicity, we will neglect 
dispersion effects. 

Our last step is to design the required inverters. For the two middle 
inverters we require the ratio of J to the resonator admittance to be 
0.023244/<,.„C = 0.023244/(2- x 0.047944) = 0.07716. Hence we must scale 
J from the value 0.023244 to 0.023244 x 7rF r/2w„C since we are using 
resonators with admittances equal to —Yc/2. Our new and final value for J is 
0.07716-Y (./2 = 0.1212Yr. From (8.121) we find that we require 0 = 
tan ' 0.1212 = 0.1206. From (8.120a) we obtain B = O.Oltan20 = 0.00245 
and hence a gap capacitance CA, of 0.00245/wo = 0.039 pF. 

For the input and output inverters, J0 = 0.323Yr = Yc tan l)n so 0O = 
0.3124 and B0 = 0.01 tan2« 0 = 0.00721 which gives a gap capacitance Cg0 of 
0.1147 pF. 

In this example we determined the inverter parameters from basic 
principles in order to illustrate again the theory involved. We could have made 
the evaluations more directly by using the general formulas (8.118). Thus we 
would have 

'/ c^Z = J™ ~ J" 
Coi^m 

where C0l = C02 ~ TrYr/2t»0 is the chosen value for the resonator capacitances 
and C, = C\ and L2 = L2 are the values used in the prototype bandpass-filter 
circuit. The reader can readily verify that the above expressions give the same 
results that we found after a series of steps. 

The equivalent circuit of a symmetrical microstrip gap (equal width 
input and output lines) is a symmetrical capacitive n network shown in Fig. 
8.37a. Therefore, when we introduce a gap capacitance Cg for our inverters, 
we will also introduce a shunt capacitance C, at the ends of the two coupled 
fines. These capacitances are equivalent to a small effective lengthening of 
each line. For the two circuits in Fig. 8.376, we have 

Y,„ = > C , =jYc tan /3 M *>jYe0 M 

and hence the line will appear to be 

,1 = g mm 
longer due to the capacitive loading. Thus we need to reduce the physical 
length of each resonator by an amount proportional to the capacitive loading 
at each end. For the two middle gaps we will let A/ be the length reduction 
required and for the two outer lengths we will let the length reduction be 
denoted by A/„. 

The designed filter is symmetrica) about the midsection. In Fig. 8.38e 
we show one-half of the filter with the various parameters that we have 
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(a) (o) 

FIGURE 8.37 
(a) Equivalent circuit of a gap in a microstrip line; (6) equivalent transmission-line 
used to represent shunt capacitive loading. 

determined. At each end of the transmission-line sections, we add and subtract 
lines of length I) and - 0 or «0 and - 0o. The lines with negative electrical 
lengths are then part of the required inverter circuits. The additional lengths 6 
and 0O are absorbed as part of the resonators and require that the physical 
length of each resonator be shorter by the corresponding amounts. We must 
also account for the line lengthening due to capacitive end loading. The length 
of the first resonator is chosen so that 0l)ll + p0($-l0 + AO + 00 + 8 = ir; 
thus 

' i = 
r-»t-$ 

- M0- M 

Similarly, we find that the required physical length of the second resonator 

IT - 26 

h = -2M 

• • II • • ' - li * 
-p0(l2+2 Al)—~}g -B .. -0 6 

(a) 

2 mm * 

FIGURE 8.38 filter »*** 
(a) Half-wave filter equivalent circuit; (6) metalization pattern tor nau ngtant-1-2 
microstrip construction on a substrate with thickness 0.5 mm and dielectric 
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The third resonator has the same length as the first one. We can ignore the 
effects of A/0 and 00 at the input and output lines since the length of these 
lines are arbitrary. 

We will complete the design by assuming that the filter will be built 
using microstrip construction and a substrate 1 mm thick and with a dielectric 
constant er = 4.2. This thickness of substrate at 10 GHz results in negligible 
dispersion of the characteristic impedance. The required strip width is 2 mm 
for a 50-fl line. The low-frequency effective dielectric constant is 3.2. By using 
Kobayshi's formula we find that ec = 3.37 at 10 GHz. The dielectric constant 
is about 5 percent larger at 10 GHz and since fi = \ft,.kn this will result in 
about a 2.5 percent shorter resonator length than what would have been 
specified if we used the low-frequency value of e... If we did not change the 
resonator lengths, the filter center frequency would have been about 2.5 
percent below the design value. Since the filter bandwidth is 10 percent, this 
amount of detuning is significant so a satisfactory design would not have 
resulted if we had ignored the dispersion in tir 

For the two outer gaps we need a capacitance of 0.1147/2 = 0.0557 
p F / m m . For the two inner gaps we need a capacitance of 0.039/2 = 0.0195 
p F / m m . From the data given in Fig. 7.10c, we see that the required gap 
spacings will be very small, to the extent that the shunt capacitance C, is 
negligible; so we do not need to adjust the resonator lengths to compensate for 
Cs. When Ct in Fig. 7.10c can be neglected, the gap capacitance CA, = C 0 / 2 . 
For the inner gaps we thus require C0 = 0.39 pF/cm, which is obtained using 
a gap spacing of about 0.22 W = 0.44 mm. The data in Fig. 7.10c do not give 
values for the capacitance for S/W less than 0.05 for which C„ = 0.6 pF/cm. 
For the outer gaps we require C0 = 1.147 pF/cm. The data in Fig. 7.10 apply 
to infinitely thin strips. For very small gaps the strip thickness will be 
comparable to the spacing, so that the parallel plate capacitance of the end 
faces must be accounted for. If we use 1-oz copper-clad board, the strip 
thickness will be approximately 0.036 mm. If the gap spacing were 0.05 mm, 
the parallel plate capacitance between the two end faces would be 

C P P " eo 7T^ = 0.0127 PF 
0.036 x 2 x 10 

0.05 

for a strip 2 mm wide. This amount of capacitance is about 10 percent of the 
required amount. Since the data for determining the outer gap spacing are not 
available, they need to be found either experimentally or numerically before 
the filter design can be completed. 

The resonator lengths can be specified since we can neglect A/ and A/„, 
Thus for the center resonator we require 

- - 20 77 - 2 x 0.1206 
l2 = — ~ — = — p = = 0.754 cm 

/3 1/3^37 2 - / 3 
The required length for the two outer resonators is 

v - e - e0 7T - 0.1206 - 0.3124 
/, = = = 0.704 cm 

The metalization pattern for the filter is shown in Fig. 8.386. 
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FIGURE 8.39 
(a) Comparison of attenuation of half-wave filter and ideal Chebyshev filter in the passband 
(6) comparison of half-wave and ideal Chebyshev filter attenuations as a function of normalized 
frequency over an extended frequency band. The dotted curve shows the deterioration in the 
filter response when the two outer gap capacitances are reduced in value by 10 percent-

Prom the attenuation of the microstrip line, which is approximately 
0.0029 Np/cm, we obtain the intrinsic resonator Q = p/2a = 665. The 
ex te rna l Q of the first r e s o n a t o r is <o0C/G = <o0CYc/Jjj = 
(flT r

2 /2)/(0.323y c)2 = 15.06. Since this external Q is much smaller than the 
unloaded resonator Q, the losses in the resonators will have a negligible effect 
on the performance of the filter. 

The calculated insertion loss or attenuation for the filter is shown in Fig. 
8.39 as a function of the normalized frequency o>/(o0. Also shown is the 
response or attenuation of the ideal Chebyshev filter which has the power loss 
ratio 

P I . „ = 1 + fe2r3
2(o»') = 1 + * 2 ( 4 » ' 8 - 3 a / ) 2 

where o> = (a>/o>0Ka>/u>a - wQ/io) = U2 - w2)/a>0. Since P J J , = l A 1 ~P^ 
where f> is the magnitude of the input reflection coefficient, the p< 
transmission coefficient 1 - p2 equals 1/PL R . The filter insertion l o s s ^ 
attenuation in decibel units is given by 10 log P L R . In Fig. 8.39a we s*0Jf 
filter attenuation and that of the ideal Chebyshev filter in the P ^ s b ^ b y s h e v 
be seen that the filter response is very close to that of the ideal C e _ ^ ^ 
filter with the main difference being a somewhat smaller a t t e n u a

j t s over 
OI/OIQ =» 1.025. In Fig. 8.396 the two responses are shown in decibel un ^^ 
the not-malized frequency range 0.8 to 1.25. The response of the ^ g( 

filter is remarkably close to that of the Chebyshev filter with the e * ^ £ u a t j 0 n 
somewhat greater attenuation below the center frequency and l e s s_ a

 2 5 ) The 
above the center frequency (33.8 dB versus 40.9 dB at w/o>o " '"funCtion 
half-wave filter was designed on the basis that the a d r n i t t a n C ^ m a t e d W 

jYe tan pi for an open-circuited transmission line could be apPr(W 
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(a) 

cs 

Z\n *" *-c Zc 
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2 

(b) 

FIGURE 8.40 
(a) Illustration of point at which the impedance mismatch is evaluated; (6) equivalent circuit 
used to evaluate Z". 

jYcv(a) - w0)/io0 in the vicinity of the frequency at which the resonator was 
one-half wavelength long. Thus it is not surprising that there should be some 
difference in the attenuation at frequencies that are far from the center 
frequency. The results shown in Fig. 8.39 do, however, show that the 
approximations made are acceptable and lead to useful filter designs. If we use 
w' = (a» — w0)/u>0 in place of the expression (8,109) in the Chebyshev 
polynomial, we will obtain a symmetrica) response about the point <o„ and a 
closer agreement with the response of the half-wave filter. The latter has a 
symmetrical response curve because tan 0 is symmetrical about H = 0. 

The impedance mismatch M at the input to the filter is equal to 1 - pl. 
In Sec. 5.7 we showed that in a lossless network the impedance mismatch is 
invariant throughout the network. Hence we can evaluate it at the center of 
the filter. If we let Z,J, and Z i n be the impedance at the center of the filter 
when looking toward the right and left as shown in Fig. 8.40a, then the 
impedance mismatch is given by 

A/ = 
4 ^ ; / ? - (R, : , ) 2 

iz£ + z , j 2 " |z:ia 

since the filter is symmetrical so Z ln = Z'n. The evaluation <̂ f Z* is easily 
carried out using the circuit model shown in Fig. 8.40b. This method was used 
to evaluate the filter attenuation shown in Fig. 8.39 and is much simpler than 
evaluating the input impedance for the whole filter network. 

The construction of a filter requires good control on the electrical 
parameters if the theoretical performance is to be met. In Fig. 8.396 we show 
the response of the filter when the two outer gap capacitances are reduced in 
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H 

# • b. FIGURE 8.41 
JT1 S A Paral le l coupled microstrip filter 

value by 10 percent from the design specification of 0.1147 to 0.1032 DF F 
the figure it can be seen that the passband attenuation at u/a, = n°o 
increased to 1.43 dB which exceeds the passband tolerance of 0.414 dR I 
about 1 dB. Nevertheless, the overall filter response is still quite good 

8.20 M I C R O S T R I P P A R A L L E L C O U P L E D F I L T E R 

The parallel coupled filter shown in Fig. 8.41 is more compact than the 
half-wave filter described in the previous section. Since the coupling be
tween resonators occurs over a quarter-wave-long side of each resonator 
the slot width is larger and the tolerance on the slot width is not as critical. 
The ends of each resonator section may be open-circuited or short-circuited. 
The design of parallel coupled filters is readily carried out by using an 
equivalent circuit of the filter which is easily designed. This equivalent 
circuit for each pair of coupled resonators is derived below. 

Consider the pair of coupled microstrip lines shown in Fig. 8.42a. The 
strips will be considered to have unequal widths. When the voltage applied 
to each strip is the same (even mode) as shown in Fig. 8.426, the currents 
on the two strips will not be the same because of the different widths, We 
will let the currents be /, = Yt

aV and I2 = Ye
bV, where i^" and Yc

b repre
sent the characteristic admittance of strip a and strip b relative to the 
ground plane. For the odd mode with a voltage V applied to strip a and - V 
applied to strip 6, the currents are given by /j = Y°V and I2

 = ~ ".' 
where Yv

a and Yn
b are the characteristic admittances of the two strips for 

the odd mode. We will show that the coupled-line circuit shown in Fig 
8.42a is equivalent to the circuit shown in Fig. 8.42c, where 

Yx = y(Y0°-Ye°)(Y0
b-Yj>) ( 8 - l 2 4 a > 

r.-W + m-r, (8-1246) 

The equivalence will be established by showing that the input admittan^ ^ 
port 1 with port 2 terminated in an open circuit or a short circui 
same for both circuits. _ ipa can 

The voltage and current waves on the circuit shown in Fig- • wjth 
be expressed in terms of a superposition of odd and even rno ^t 
voltages Va and Ve. Thus on strip a we express the voltage a*1 
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(D 

(a) 

>L 

/T\ 
y.-= — v.= 

D '2 

(ft) 

v,„ = v, 

(0 

FIGURE 8.42 
(a) A pair of coupled niicrostrip lines; (6) illustration of even and odd modes; (c) equivalent 
circuit of coupled strips shown in (a) , 

waves in the form 

Va(z) = V;e~Jlii + V~em + V*e-** + V„ e"5'' 

IA*) = Y?V?*~i0* ~ Y?V~eif>* + Y?V*e &* - Y°V„ eJIU 

It is assumed that both modes have the same propagation constants. On 
strip b the voltage and current waves are 

V*(z) = Ve-1** + IT**" - T*"*' - K «•** 

/ 6 ( z ) = 1*V+e~** - Ye
bV;e^ - Y0

hV?e-J'<>* + y„*VnTe-"i2 

When 2 = 0 we must have VA(0) = 0; thus 

(K.+ + V;) - ( V; + V-) - 0 (8.125a) 

since the end at 2 = 0 on strip 6 is short-circuited. If we place a short 
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circuit at port 2, we will require that at z = I, where /3Z = o 
which eivp.R ' *>'•) = which gives 

(Vr
+ - V:)e~j0 + {V; ~V,;)eJ JB 

On strip a we must have VaU) = 0 since this is also a short-circuited 
(8.1256) 

thus end; 

( v ; + v;)e ~J0 + (V; + \7)«-*«-o (8.125c) 
The last terminal condition is that Va(0) must equal the applied vnlto 
port 1 which is Vx. Hence , l a g e at 

^ = K , (0 ) = K+ + K - + V O
+ + VO- (8.125$) 

From the above four equations we can readily solve for V*, V~, V* and V~ 
The input admittance at port 1 is given by 

V. 
h Y.°{V; ~v;) + Ya°(v; -vo~) 
Vt v: + v~ + v: + v-

= -j cot 6 (8.126) 

When we place an open circuit at port 2, the terminal condition Vb(l) = 0 
given by (8.1256) is repJaced by 7A(/) = 0 or 

Y*{V?e'» - Ve~e^) - Y*(V?e-* - V;eJ") = 0 

The other terminal conditions remain the same. After solving for 
voltage amplitudes for this case and using (8.126), we find that 

•*in.oc J 2(YJ> + Y0
h) 

. ( ^ + C T X t , ( « 
•> yb i yb 

For the network shown in Fig. 8.42c, a straightforward evaluation I 
that when port 2 is short-circuited 

18 1280 
Y>n.»:=-J(Yi + Y2)<:ot0 

and when port 2 is open-circuited 

r,.=y^^tan^y^^^^cot, (»•*» 
Yi Yl + Ys 
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From a comparison of (8.126) and (8.128a), we see that 

y„" + Yf 
Y, + Y2 = 

If we excite the networks at port 2 and place a short circuit or an open 
circuit at port 1, the expressions for Yin ^ and Ym (11, are the same as given 
by the above equations but with the superscripts a and 6 interchanged and 
the subscripts 1 and 3 interchanged. Thus, for the short-circuit condition at 
port 1, we will find that 

Fi + y» -
Yh + Y* 

Hence we have 

* i - • = = - = - = - - * i 
n + Y," 

2 

Yn
h + Y* 

y 3 = - ^ T ^ - y . 
When we use the expression for V, + Y-, in the coefficient for tan ti in 
(8.1286), we easily find that 

Thus we have shown that the circuit in Fig. 8.42a is equivalent to that in 
Fig. 8.42c. For the special case when the coupled strips have the same 
width, Ye

b = Y° = Yc and Y* = Y° = Y0 and we obtain 

Y - Y 
Y, = — g - ± (8.129a) 

Yz = Y3 = Ye (8.1296) 

Consider now the filter structure shown in Fig. 8.43a. By replacing 
each coupled strip pair by its equivalent circuit in the form shown in Fig. 
8.42c, we arrive at the circuit shown in Fig. 8.436. This circuit is readily 
reduced to the one shown in Fig. 8.43c by combining the admittances of the 
stubs that are connected in parallel. A Chebyshev filter based on the circuit 
shown in Fig. 8.43c is readily designed. 

For parallel coupled filters using microstrip construction, it is desirable 
to use open-circuited coupled microstrip sections in place of short-circuited 
coupled sections. A parallel coupled filter using open-circuited coupled 
transmission-line sections is shown in Fig. 8.44a. The equivalent circuit for 
this filter is shown in Fig. 8.446. A basic coupled section is shown in Fig. 
8.44c and its equivalent circuit is shown in Fig. 8.44rf. 



6 3 0 FOUNDATIONS FOR MICROWAVE ENGINEERING 

The equivalent circuit for the basic section is readily obtj 
set of equations (8.124) through (8.129). If we regard all voltage v "* 
representing currents, current variables as representing Vni*»-^ l a^ es 

voltages, admit. tances as representing impedances, and open circuits/short ' ' • ' 
representing short circuits/open circuits, then all the equations and"'1 

nal conditions remain the same. Thus we obtain immediately 

Z^ = \{(z°~Za
0){Zh

e-Z>) 

Z-i = \{Zl+Zl)~Z, 

zz = \w.+z:)~zl 
and when Z« = 2* Zft = Z\, 

z.. - z„ 
2 , = 

z., = z« = z„ 

termi 

(8.130a) 

(8.1306) 

(8.130c 

(8.13la) 

(8.1316) 

The equivalent circuit shown in Fig. 8.44b for the filter is obtained by 
replacing each coupled section by its equivalent circuit shown in Fig. 8.44a" 
and combining the adjacent series-connected transmission-line stubs. This 
filter and its equivalent network is the dual of the one shown in Figs. 8.42 
and 8.43. In extracting the square root of (8.130a) for the case of symmetri
cal strips, we choose the positive root which is the one given by (8.131a) 
since Z(, > Z„. 

For both of the parallel coupled filters described, each section is A/4 
long at the center frequency and hence each transmission line is A/2 long. 
In the equivalent circuits of these filters, we have transmission-line stubs 
separated by A/4 transformers. These quarter-wave transformers function 
as nonideal admittance and impedance transformers. In the circuit shown m 
Fig. 8.43c, each short-circuited stub is the approximate equivalent of a 
parallel tuned LC resonator, while in Fig. 8.446 each open-circuited stub « 
the approximate equivalent of a series tuned LC resonator. 

Equations for designing Chebyshev bandpass filters, with bandwd 
up to one octave, using parallel coupled strips have been derived oy 
Matthaei.t The filter design equations were obtained by setting the i 
impedance and phase of each section of the network shown in rig- . 
equal to that for a bandpass-filter prototype circuit of the f o r m \e 

Fig. 8.29 at the center frequency «0 and at the passband edge w ^ 
m = w,. The design equations for the filter circuit shown in Fig. 8. 
the dual of those for the filter circuit in Fig. 8.43c. We will give the 
equations below without derivation. 

tG . L. Matthaei, Design of Wide-Band (and Narrow-Band) Band-Pass 
Insertion Loss Basis, IRE Trans., vol. MTT-8, pp. 580-593, 1960. 

Microwave F i ! " « 0 0 
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FIGURE 8.43 
(a) A parallel coupled filter; (6) equivalent circuit; (c) reduced equivalent circuit. 

K-

For a Chebyshev filter with N sections, there are N + 1 impedance 
inverters and N + 1 even- and odd-mode line impedances to specify. The 
filter is assumed to be terminated in input and output lines with character
istic impedance Zc. Each resonator has an electrical length of IT at the 
center frequency co0. The frequency at the lower edge of the passband is w, 
and file = 0j at this frequency, where lc is the effective length of each 
resonator after correcting for the capacitive end loading at each open-cir
cuited end. The impedances of the input and output impedance inverters are 
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given by 

K i n K 
Z,. 

N - 1, N 

The following parameters are also required: 

» l - -
TTto, 

2w0 

P sin 01 = 
K10/Zc 

[UanO.-h (Kl0/Zcf] 
21 V2 

S = 

(8.132, a) 

(8.1326) 

(8.132c) 

<8.132rf) I t an f t . + C X ^ / Z , ) 2 

Z * = Z f + I ^ ( 1 + P s i n f l J 

Z,l = Z » * l - £ c ( l - P sin 0,) I 

The remaining impedance inverters and even- and odd-mode impedances 
are given by 

Z,. 
k = 1,2,..., N- 1 (8.133o) KA--l,i 

(8.132e) 

(8.132/) 

Nt 

K 
t + i,ft -2,. 

+ 5 tan2 0X (8.1336) 

(8.133c) 

(8.l33rf) 

In the above equations the gk are the element values for a loss-pass 
prototype filter with cutoff frequency coc = 1, and are given by (8.101). 

For the dual network all Kk + Uk are replaced by </* + i.*» d\ ^ ' 
replaced by Y*, and all 2* are replaced by Yc*. 

In the next example we will illustrate the application of the t 
equations to the design of a two-section Chebyshev filter. 

Example 8.3 Parallel coupled Chebyshev bandpass filter. Tte ^. 
will be designed for a 30 percent bandwidth, a passband tolerance a 

and a center frequency of 6 GHz. The input and output lines 
characteristic impedance of 50 ft. The filter is illustrated in Fig. 8.45a- ,ated 

The element values for the low-pass prototype circuit are yg" 
using (8.101) and are g„ = 1, g} = 2.33754, g2 = 0.62634, and g3 T h e 

3.7321. The frequency at the lower band edge is f0 - 0.15 f„ = °.%\?& 
value of <?, is 0.85n/2 and sin 0, = 0.97237, tan #, = 4.165. By uS,n_S

04i2»-
and (8.133) we obtain Kl0 = 0.65406Zr, K21 = 0.826447Z,, P sin <»i = 
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fa) 

7 a * 7° zc + z" 

Z-z; zb-z" zc-zc zi-4 

\A 

m 

Id) 

FIGURE 8.44 
(a) Parallel coupled filter using open-circuited coupled-line sections; (6> equivalent circuit of 
filter: (c) basic coupled-line section: (d) equivalent circuit of basic section. 

s = 19.9165, and JV12 = 2.8865. The following even- and odd-mode impedances 
are found 

Zj = 70.64 Z] = 29.36 Z2 = 73.95 Z2 = 41.03 

In the equivalent transmission-line circuit shown in Fig. 8.456, the line 
impedances are found to be Z, = Zx

a, Z2 = (Z,f - Z„')/2, Z3 = Z„' + Zf, Z4 <* 
( Z 2 - Z 2 ) / 2 , Z5 = Z3, Z6 = Z2 , and" Z7 = Z,. For this filter it is a 
straightforward transmission-line circuit analysis problem to evaluate the 
impedances Zm = Zt'n at the center of the filter and evaluate the impedance 
mismatch (R,n)

2/\Z,J . In Fig. 8.46 we show the computed filter response 
with that of the Chebyshev filter with power loss ratio I + k2T%{o>') and using 
to' = (u) — u>0)/io0 as the frequency variable. 

The design equations are approximate ones only. Since we are specifying 
a 30 percent bandwidth for a filter using" only two sections, it is not surprising 



6 3 4 FOUNDATIONS FOK MICROWAVE ENGINEERING 

(a) 

Z, = Z , 

(b) 

z7=z, 

Ze = Z , 

FIGURE 8.45 
(a) A two-section parallel cou
pled filter; (6) equivalent trans. 
mission-line circuit. 

that the actual filter performance does not quite meet the specifications. The 
response curve shown in Fig. 8.46 indicates that the actual filter has a 25 
percent bandwidth but a more rapid increase in attenuation than the ideal 
Chebyshev filter has. 

We have also designed a three-section filter with the same passband 
tolerance and bandwidth. The calculated parameters are g, = g3 = 2.5547, 
Kw = KM = 0.62565, K2l = K32 = 0.672, P s in0 , = 0.39776, s = 20.21, Z\ 
= 69.89, Zl„ = 30.11. Ze

2 = Z'f = 57.807, and Zf, = Z0
3 = 30.645. In Fig. 8.47 

we show the computed response of this filter. The agreement is now much 
closer to that of the corresponding three-section Chebyshev filter. The 
difference in the attenuation does not exceed 0.3 dB over the frequency range 
0.7/„ to 1.3 /"„. At the band edges where f= 0.85 f„ and 1.15 f0, the parallel 
coupled filter has an attenuation of 2 dB instead of the theoretical design value 
of 1.761 dB, which is a difference of only 0.24 dB. 

5 

I 
g -10 

-20 
0.7 0.8 0.9 1 1.1 1.2 1.3 

f/fn 

FIGURE 8.46 „ r t he two-^°* 
A comparison of the response oi ^ lde0) 
parallel coupled filter with that ^ fa u« 
Chebyshev filter. The Pa s s b a IT,he a Uals 0.3-
dB and the fractional bandwidth 
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FIGURE 8.47 
Response of a three-section parallel coupled fil
ter. The passband tolerance is 1.76 dB and the 
fractional bandwidth is 0.3. 

Z^L/'.'^Z 

J-
Coupled-line sections 

'JJL S / / / ,CEZ 
FIGURE 8.48 
Shielded suspended microstrip line used 
for constructing parallel coupled Biters. 

The design formulas for parallel coupled filters are based on the 
assumption that the even- and odd-mode phase velocities are equal. Thus, if 
conventional microstrip-line construction is used. it. would be necessary to use 
a dielectric overlay so as to equalize the two phase velocities. The parallel 
coupled filter can also be built using strip-line or shielded suspended microstrip 
line as shown in Fig. 8.48. The suspended microstrip line employs a thin low 
dielectric constant sheet on which the transmission-line sections are printed. 
Since the dielectric sheet is thin, it has about the same effect on the phase 
velocity of both the even and odd modes. 

For parallel coupled strips a ratio ZJZn less than 3 is needed in order to 
avoid very close spacing hetween the strips. For the filters discussed in 
Example 8.3, the largest ratio was 2.4, so that these filters can be built using 
edge-coupled strips. When tighter coupling is required, the adjacent strips can 
be overlapped by printing every other transmission-line section on the opposite 
sides of the supporting dielectric sheet. 

Q U A R T E R - W A V E - C O U P L E D C A V I T Y F I L T E R S 

Quarter-wave-coupled cavity filters a re s imi lar to t h e f i l ter discussed in t h e 
preceding section except t h a t t h e t ransmiss ion- l ine s tubs a re replaced by 
cavities. T h e filter is realized in pract ice by placing d iaphragms in a wave
guide. To u n d e r s t a n d t h e basis for design in t h e na r rowband case, we m u s t 
first consider the equivalent circuit of a section of waveguide loaded with 
two identical d i aph ragms a dis tance lk apar t , as shown in Fig. 8.49. 
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\-jB» -jB, 
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FIGURE 8.49 

I a ) Rectangular waveguide loaded with twr, indu 
tive diaphragms to form a cavity, (6) exact equiva-
lent circuit. (<•) approximate equivalen! circuit. 

For a waveguide, the important frequency variable is not cu but rather 
({3/k0)u> = fie, since waveguide diaphragms have susceptances that vary 
very nearly as /3 or jl~' and the electrical length of a section of guide is 
proportional to fi. The normalized frequency variable to/w0 = A0/A is there
fore replaced by Ag 0/Ag = /3//30, where \g0 is the guide wavelength at 
w = o>0 and Afi is the corresponding value at any w. Consequently, in ail 
design formulas, we replace w by /3c, where c is the velocity of light. 

The exact equivalent circuit for a waveguide loaded with two identical 
inductive diaphragms with normalized susceptance -jBk is shown in Fig. 
8.496. For filter design according to the methods developed in preceding 
sections, we must replace the exact equivalent circuit by an approximate 
shunt circuit. Mumford has shown that an equivalent circuit of the form 
illustrated in Fig. 8.49 c has the same frequency characteristics as the exact 
equivalent circuit has over a narrow band of frequencies around <wu-T *»e 
results obtained by Mumford are presented here without derivation. 1 
derivation is straightforward, and may be found in Mumford's paper. 
The shunt susceptance B is expressed in the form 

B = 

where A/3 = 0 - /30 is small. When a resonant circuit of this 0T* ^ 
connected across a transmission line, it is loaded by a shunt condu 

tW. W. Mumford, Maximally Flat Filters in Waveguides, Bell System Tech. J- v 

684-714, October 1948. 

27. PP 
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normalized value unity on each side. The loaded Q of the circuit is thus 

1 1 fC 
Q , = - ( ^ 0 c ) C = - y - (8.134) 

since /30c = (LC)~' 2. Hence we may express B in terms of the loaded Q: 
thus 

B = 4Qk— (8.135) 

Po 

The value obtained for Qk by Mumford is 

j r - l an - 1 (2 /B t ) Q* = 
2 sin 

(^ + 4lf)1/2 

(B,! + 4B,2) ' ~ 2 
= ^— -+—tan"1^- (8.136) 

4 Bk 

since B / ; is large compared with unity for a narrowband (high-Q) filter. The 
required diaphragm spacing / / ; to give perfect transmission through the 
cavity at <u = w0 is given by 

tmfi0li = - w (8.137) 

The two sections of line with electrical length 0lk in the circuit of Fig. 8.49c 
are to be chosen so that 

/ M A + 2 e u = §A + 20 l f t=TT (8.138) 

at the frequency »- , These additional lengths of line in the equivalent 
circuit of a single cavity are absorbed into and made part of the quarter-wave 
coupling lines in the filter. 

The design of maximally flat and Chebyshev filters with N odd is 
straightforward. If the prototype circuit of Fig. 8.29 is used, it is only 
necessary to make 

1 / C „ , 
Qk = ^\-r^ < 8 - 1 3 9 > 

i<o* 

and to choose Cok, L0k so that C0llL0k = (0 o c)~ 2 and all Jkk , equal 
unity. The section of waveguide between cavity k and k + 1 has an electri
cal length equal to - / 2 . Since this includes ttUl. , and 0lk from the adjacent 
cavities, the physical length of the quarter-wave coupling line between 
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-JS, r^rr 
FIGURE 8.50 
Quarter-wave-coupled waveguide-cavity filter. 

cavities k and k + 1 will be 

1 iir 
_ 0»H ij 

*go I *k + h 1 "1 ' * + ' * + , A4'0 

2 - ' 2 2 / 2 4 T (8.140) 

upon using (8.138). A schematic illustration of the filter is given in Fig. 8.50. 
Formulas for the required diaphragm dimensions to yield the specified value 
of B,. are given in Sec. 5.8. The power loss ratio for the filter is obtained by 
replacing io/(oa by /3 / /V For a Chebyshev filter it is given by [see (8.104) 
and (8.109)] 

i.u = 1 + k 2 T 2 Po P_ 00 
(8.141) 

.A -ft 
where fi2 and /3, are the values of /3 at the edges of the passband. If /3, and 
13., are specified, then 

It should also be noted that for the waveguide filter, w0, W], and a)> m tl 
design formulas (8.111) and (8.112) must be replaced by / V - Pic< a n d &'£' 
where c is the velocity of light; i.e.. replace k0 = co/c by /3. To illustrate 11 
procedure, we shall evaluate the required susceptance —jB} for tne 
cavity in the filter shown in Fig. 8.50. . ^ 

Assume that a f ive-element f i l ter will be needed. The response i s ^ 
of the Chebyshev type with a passband tolerance k2 = 0.0233. T ne ^ 
guide to be used has a width of a = 0.9 in. The passband is to exten ^ 
A = 10,000 MHz to f2 = 10,400 MHz. The corresponding values o 
to/c are 2.1 and 2.18 rad/cm. The values of 0, and /32 are thus 

fix = (2.1) - | -
a 

«.*«*'* 
= ( 4 . 4 - 1 . 8 9 ) l / 2 = l - 5 9 

0 a = [ ( 2 . 1 8 ) 2 - 1.89] 
i -

= 1.7 
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The center of the band occurs at p0 = (j6,/32) I /2 = 1.64, which gives /",, = 
10,200 MHz. From Table 8.2 we find gx = 1.1468. Using (8.1126) gives 

' 02 - ft /V 02 - 0, fi0C 

Since J , 0 is to equal unity and RL = i ? 0 / = 1, we have C„, = CJ from 
(8.118a). Using (8.139), we obtain 

For the feth resonator we should obtain 

Q-Jk-4L (8.143) 

For Q, we obtain 8.56. and from this result we can determine B, by using 
(8.136). For SA. large, we can replace tan~,(2/Bk) by 2/Bk, and we then 
find that 

B , = 2 ( Q f - l ) ' " (8.144) 

Thus we find that B, = 17. The required diaphragm dimensions can now be 
determined, and also the cavity length from (8.137). The above procedure 
has to be repeated for each cavity in the filter chain. 

D I R E C T - C O U P L E D CAVITY F I L T E R S 

Direct-coupled cavity filters have the advantage that the physical structure 
is more compact than the corresponding quarter-wave-coupled cavity filter. 
A design procedure for direct-coupled cavity filters that is accurate for 
bandwidths up to 20 percent has been developed by Cohn.t Cohn's design 
method is based on the use of the network in Fig. 8.28 as a prototype. The 
design formulas will be presented here without the detailed derivation. 

The waveguide cavity and its equivalent circuit shown in Figs. 8.49a 
and b may also be represented by a II network shunted with inductive 
susceptances at each end, as in Fig. 8.51. The two shunt susceptances 
B = -cot(0, . /2) may be neglected^ compared with By. since Bk will be large, 
and 0^ is nearly equal to -r; so B is small compared with unity. The series 
arm X is thus used as the series resonant circuit in the prototype filter. 

For impedance inverters Cohn uses the shunt inductive reactance plus 
two short sections of waveguide (equivalent transmission lines), as shown in 

t S . B. Cohn, Direct Coupled Resonator Filters, Proc. IRE. vol, 45. pp. 187-196. February. 
1957. 
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X = sin <?. 

la) 

FIGURE 8.51 
A waveguide cavity and its equivalent circuit. 

Fig. 8.52. For this circuit the impedance inverting properties are obtained "r 

(8.145a) 
1 i 2 

k = - - t a n ^ 1 •=-
2 B„ 

B, K (8.1456) 

where K is the characteristic impedance of the quarter-wave impedance 
inverter. With 0U and Bk determined at a frequency w0, it is found that the 
inverter does not depart appreciably from its ideal characteristics over a 20 
percent band. 

In the vicinity of to = to0, where 8,. = v, the series reactance X 
behaves as 

X = sin 9k = sin(fl, ~ tr + TT) 

= - ( 0 , - 7 7 ) = - ( p - 0 o ) / = 
ft,-/? rr( 0 

' ' " " a l A 
where /30 / = IT. This frequency behavior is similar (apart from the sign, 
which Js immaterial) to that for a series resonant circuit for which X 
= jL/C(a>/u>0 - « „ / « ) = 2{L/C(a> - to0)/to0 if « i / » 0 is replaced by H 
new frequency variable /3//30. ah. 

When the negative line lengths of the impedance inverters are ^ 
sorbed as part of the cavity length, the physical length of the ktti i 
becomes 

i - A*° + ^ r « +e ^ <8-l46) 

FIGURE 8.52 
An impedance inverter. 
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f ^ H - S M 

h« -M -0i, 

FIGURE 8.53 
A direct-coupled waveguide-cavity filter. 

In the prototype circuit of Fig. 8.28, we must choose all ^Lok/C0/l equal to 
7r/2 to obtain a correspondence with the type of series resonant circuit 
employed here. In addition, we choose 

^Ok^Ok ~ ( $ 0 C ) 
- 2 (8.147) 

The impedance-inverter parameters as given by (8.115) thus become known 
in terms of the Ck and Lk, which are related to the glt in the low-pass 
prototype. From the known values of the Zt^.l A.,the shunt susceptances Bk 

may be found. The filter is illustrated schematically in Fig. 8.53. The design 
formulas obtained as outlined above are 

_ _ 1 - w/gl 

1 yWtf i 

l 
B2=-

w 

2 \ 

* - » ' * - yJSkSk-i 
gkSk-\ 

- 1 - wR/gs-\ 
N = — F = = = = = ^ 

•/U'R/gN-l 

R = 1 for N even 

(8.148a) 

(8.1486) 

(8.147c) 

(8.148rf) 

where 

W = 2 
•* P-i-Px 

da 

and the g* are the element values from the low-pass prototype filter. Note 
that R = 1 for N even, and also for N odd in the case of maximally flat 
filters; otherwise R is given by (8.98). The length of the Ath cavity at /3 = 0o 
is 

-go "go i _, 

* 2 4TT I B 
* + i 

2 
+ t a n - ' •=- (8.149) 
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The power loss ratio is given by substituting 

P0 

P, - Pi Po P 

for w' in the low-pass prototype filter response.! Note also that 8a -

8 .23 O T H E R T Y P E S O F F I L T E R S 

0ifl2. 

In the preceding sections we have discussed only a few specific fib 
order to illustrate the insertion loss method of filter design. In add'r 
the maximally fiat and Chebyshev-type filters, there exist two other to ' 
that have the feature that, in addition to producing equal-ripple respon 
the passband, they produce a number of attenuation poles outside th* 
passband. These filters are the elliptic filters and the generalized Chebyshe* 
response filters. By producing attenuation poles, i.e., frequencies at which 
the attenuation is infinite, the skirts of the filter response curve are much 
steeper so the attenuation will increase much faster outside the passband It 
is much more difficult to find microwave circuit components that can be 
used to implement elliptic-type filters so these filters are not very commonly 
used. 

Another important filter topic that we have not addressed in the phase 
response of a filter. In order that the filter should not produce a distortion 
of the signal transmitted through it, the amplitude response should be 
independent of frequency and the phase response should be a linear func
tion of u> so that the group delay will be a constant. If we express the 
transmission coefficient of the filter in the form A(w)e""'""", then the time 
delay experienced by a signal propagating through the filter is given by 
d<b/dw as shown in Sec. 3.19. Thus <!> should be a linear function of u> so as 
to give the same time delay for each frequency component of the signal. R 
filters only satisfy this criterion in an approximate way. For critical apphca 
tions, especially when broadband signals are involved, it may be necesss 
to insert a phase equalization circuit in series with the filter. 

The reader is referred to the references at the end of this chapter tor^ 
discussion of a number of filter topics that we could not include becai 
space limitations. 

P R O B L E M S 

8.1. Find the ../. rf^'S* matrix for_the following networks: (a I a s h u n ' , S y „ series 
jB. (b) a series reactance jX, (c) a shunt reactance jXx followed . 
reactance jX2. 

tCohn uses a somewhat different frequency variable, which, however, 
considered, is essentially the same as we have used. 

(or the b:i" d*i 
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8.2. 

8.3. 

8.4. 

8.5. 

8.6. 

8.7. 

Derive the relations (8.14) and (8.15). 
Consider a T network terminated in a load Z. Evaluate the input impedance 
Zm and show that the condition that Z transforms into Z,„, that is. Zm = Z. 
leads to the characteristic values Z§ for the periodic structure. 

Show that the eigenvalue equation for the propagation constant of a Bloch 
wave on a transmission line loaded at intervals d with a series reactance jX 

is cosh yd = cos kud - (X/2)sin kQd. 

Show that (8.21) may be expressed in the form 

COS(/> 
cosh yd = —— 

l*»12l 

where <b is the phase angle of S1 2 , and Sr, is the scattering-matrix off-diag
onal element for the unit cell (Sec. 4.8). 

Express \'B in terms of the Au by noting the similarity between (8.20) and 
(8.6) and that between I"e and ZB'. 

Show that the wave-amplitude transmission matrix for a shunt susceptance 
jB is 

[ A ] ' 

2+jB 

B 

-j2 

B 

4 + B2 

2(2 +jB) 

8.8. A load ZL on an ordinary transmission line gives a reflection coefficient 
1 = <Z, - \)/(ZL + 1). Show that (8.30), giving VL fw a Bloch wave, may 
be expressed as 

r, -
i •*- rj f'a-n 

8.9. 

8.10. 

i + J* i l - r» 

where rB" are the characteristic reflection coefficients of the component 
waves making up the Bloch wave. 

For Bloch waves in the capacitively loaded coaxial line, show that the TEM 
voltage waves between any two consecutive diaphragms are given by 

V = y - e - . / * ( i U - » r f > + y ejk„iz~nd) _ y-t-g 7*n<* "d) + p i y - g y * « l . - "<*> 

for the Block wave propagating in the +2 direction, and 

V = fy«-J**f »<*• + VLI V,; ejk"u"d' 

for the Bloch wave propagating in the — z direction. The zeroth terminal 
plane has been chosen as 2 = 0 and VB = V*(l + V,', ), VB = V„'(l + Tfi ). 

Consider an infinite transmission line loaded with shunt capacitive suscep-
tances jB at z = nd, n = —cc to *. Show that the current and voltage waves 
that make up a Bloch wave are given by 

VB = V¥e~jk"! + V-ejh°s 

1B = I'e Jk"' + l^ejk"- = V*e~jk"* - V eJk°* 
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where V = - V ( l - e J 
^ " ) / ( l - e**-""*) and 0 = k0d. Let V 

Vp(z)e J<" and expand Vp(z) into an infinite series of spatial harm • * 
that the relation between V* and K~ may be obtained by using xh^^' ? 

that V„(z = d) = e •»>dV„lO) and that /? is given by (8.10a). c o ndit i 0 n 

8.11. For the sheath helix show that the eigenvalue equation for the nth 

I ' i V + nfia cot * ) * K";,(/ia)/;(/ta) 
mode is 

(k„ka2cot i!/)" Kn{ha)l„(ha) 

8.12. Consider an N-section filter made up of a capacitively loaded coaxial li 
unit cells. The filter is terminated in a resistive load R equal to th ' 
impedance at zero frequency, i.e., equal to 1. The generator at the input 1 
an internal resistance equal to R. Show that the power delivered to the load 
given by 

V2 

p= - "- .ReZin 
I* + Z-J 

where V is the generator voltage and Z in is given by 

_R + Z, tanh yNd 
in ' Z{ + R tanh yNd 

and Z,, yd are the image parameters at any frequency. In the passband where 
Z, is real and tanh yd =j tan pd, verity that 

V*ZfR{\ + t2) V2(l+t2) 

4R%2 + (R2 i Zf)t~ _l R2-Z2 
t = tan Npd 

Thus show that the power loss ratio becomes 

Pun-
V2/4R 

= 1 
R2 - Zf " 

2RZ, 
sin Npd 

Plot P, R as a function of «. in the passband for the case where .3 - ^ 
R = 1, and N = 4. See (8.10a) and (8.16) for expressions giving Z, - ** 
lid. Verify that in the stopband the power loss ratio is given by 

* L R = 1 + 7 

R 

R 
sinh2 N n d 

8.13. (a ) For the two circuits shown in Fig. PS.13a show that the 
mismatch is the same. . . . n £ hes8 B i e 

(6) Similarly, show that the two circuits shown in Fig. P8.136 h 
mismatch, 

Thus in a filter the insertion loss does not change when an 
K = Z,, or J = Yt is inserted at either end of the filter. 
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fl- Zm - ^in + /*ir zm 
R' (flm-yxj 

M M 
la) 

6 Y,„ = G,n+jB,r € (Gin-/S|n) 

M 

FIGURE P8.13 

M 
(*»> 

8.14. Design a two-section lumped-element bandpass filter similar to that in Exam
ple 8.1. Assume that k2 = 1 and that the bandwidth equals 0.1 f„. The 
terminating resistances equal 1,000 il and f0 = 1 MHz. Verify that the 
coupling coefficient defined in Example 8.1 equals (1 + </2 )/Q, where Q is the 
loaded resonator Q. 

8.15. Design a three-section lumped-element filter of the form shown in Fig. P8.15. 
Assume a passband tolerance k'~ = 0.5, a bandwidth equal to 0.1 /*„, terminat
ing resistances of 1,000 ft, and a center frequency of 455 kHz. Plot the filter 
response using P, R = 1 + k2T$(ut'), where u> is given by (8.109). 

FIGURE P8.15 

8.16. Design a two-section half-wave filter with a 5 percent bandwidth and a 
passband tolerance k2 = 0.2. The frequency of operation is 5 GHz. The filter 
uses 50-ft transmission lines. Specify the three required gap capacitances. 

8.17. Design a three-section half-wave filter with the same specifications as in Prob. 
8.16. Specify the required gap capacitances. 

8.18. Design a two-section parallel coupled filter with a bandwidth of 0.1 f0 and a 
passband tolerance k'z = 0.2. Specify the required even- and odd-mode charac
teristic impedances for each section. Assume that Zr = 50 ft-
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8.19. Verily the parameter values given for the three-section parallel p 
discussed in Example 8.3. c°upled fill 

8.20. Design a three-section parallel coupled filter with a bandwidth en i 
and a passband tolerance k'2 = 0.1. Specify all even- and odd-mode h° ° ' 2 

istic impedances. Assume Zc = 50 II c"aract» 

8.21. Design a three-cavity quarter-wave-coupled filter with the followm 
tions: waveguide width a = 0.9 in, band edges at f1 = 10,000 M H ^ ' * " 
10,400 MHz. passband tolerance It2 = 0.0233. Chebyshev response Ind % 
diaphragms with circular holes are to be used. Determine the hole rad""* 
diaphragm spacings. 

8.22. Design a four-cavity direct-coupled cavity filter having Chebyshev response 
The passband tolerance is k2 = 0.0233, band edges occur at f1 = 9 500 MU. 
f2 = 10,500 MHz, and the guide width is 0.9 in. Specify the diaphragin 
dimensions and spacing. Use any convenient inductive diaphragm. 

8.23. Design a four-cavity direct-coupled maximally flat waveguide filter with the 
specifications given in Prob. 8.22. Note that the maximally flat filter designed 
from the low-pass prototype has a passband tolerance of 1. To obtain a 
passband tolerance of It'2 between 0, and 02 , the design must be carried out 
for a wider bandwidth, say 0', to 0'2. Thus we should have 

flo [ 0 0» 
02 - 0'i \ 0o 0 

= 1 for0=0'„02 

Also 0',02 = li2. Determine 02 and 0j so that 

00 

02-0', 1.0 
= k2 when 0 = 0, and 02 

If the design is carried out using these values of 0", and 0'2, the requ 
passband tolerance of k2 wjj) be maintained in the passband between 0, an 
0 2 . Show that, in general, 0',0'2 = 0 , 0 2 = 0« and 0'2 - 0\ = (0a _ 0 i , f t 

8.24. For the circuits in Figs. 8.496 and c show that the normalized it 
impedances are given by 

- \ , / 2 

'2sm28u+cos2Bu^B\ 
2sin20j* + cos20u + BI 

(l-B2~2B„cotek) 
1/2 

and 

When w = ioQ, B = 0, show that Bk must be related to 0k by l ° - 1 ' c i r c U 

Z, equal to unity. Show that the image phase constants <b for the 
are given by 

cos <t> = cos Qk Bk sin flk and cos«i = c o S 2 ^ - Y S i n 2 " ' * 

and will be equal at w0 if 0A + 20u = IT. 
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CHAPTER 

9 
MICROWAVE TUBES 

9.1 I N T R O D U C T I O N 

Microwave tubes are the prime signal sources in high-power radar systems. 
The magnetron is the tube most frequently used and can provide many 
kilowatts of continuous-wave (CW) output power and a megawatt or more of 
peak power with pulsed operation. Magnetrons are also used for industrial 
heating applications and in microwave ovens for consumer use. The travel
ing-wave-tube amplifier with power outputs up to 10 W or more is the 
workhorse in satellite communications. The klystron tube can function as 
an oscillator or as an amplifier. It can be designed for either low or high 
output power applications. In low-power applications the klystron was once 
widely used as the local oscillator in microwave receivers but has now been 
replaced by solid-state oscillators. Solid-state oscillators are replacing n 
crowave tubes in many low-power transmitter applications also. Even thoug 
many of the applications for microwave tubes have been taken over 
solid-state devices, the requirements for high power can only be me 
microwave tubes, so they are an essential device for many systems. 

Conventional low-frequency tubes, such as triodes, fail to °Pe[\ w 

microwave frequencies because the electron transit time from the cat 
the grid becomes an appreciable fraction of the period of the sinu ^ 
signal to be amplified. In other words, propagation times becomes S 'B" . ^ 

cant, and the same limitations that are inherent in low-frequency c ^ 
are present in low-frequency tubes also. Microwave tubes must be 
to utilize the wave-propagation phenomena to best advantage. . ^ 

Broadly speaking, there are two basic types of microwave tubes,^ ^ 
that employ electromagnetic cavities (klystrons and some magnetr 

fi48 
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those that employ slow-wave circuits (traveiing-wave tubes). Both types of 
tubes utilize an electron beam on which space-charge waves and cyclotron 
waves can be excited. The space-charge waves are primarily longitudinal 
oscillations of the electrons and interact with the electromagnetic fields in 
cavities and slow-wave circuits to give amplification. The properties of 
cavities and slow-wave circuits have already been discussed. What remains 
to be done is to examine the propagation of space-charge waves on electron 
beams and then to consider the interactions that take place between elec
tron beams and the fields in cavities and slow-wave circuits. 

The purpose of this chapter is to examine the nature of electron beams 
and the space-charge waves that they can support. In addition, the interac
tion of the beam with a microwave cavity or slow-wave circuit is to be 
studied in order to explain the operating principles of a number of different 
microwave tubes. Space does not permit a detailed treatment of the many 
different varieties of microwave tubes in existence. We shall concentrate on 
fundamentals that form, more or less, the basic operating principles of all 
microwave tubes. 

Two approaches may be used in analyzing the dynamic behavior of the 
electron beam. The earliest approach used was the ballistic, or lagrangian, 
approach. In this method the motion of an individual electron is studied in 
detail, and it is assumed that all other electrons behave in a similar way. 
The ballistic approach has the advantage of permitting certain nonlinear, or 
large-signal, effects to be treated fairly easily. 

The other approach is the field approach, sometimes called the euler-
ian, or hydrodynamical, approach. In this method the electron beam is 
essentially treated as a charged fluid. Field variables that describe the 
velocity, charge density, ac current, etc., at an arbitrary point as a function 
of time are introduced. However, no attempt is made to follow the motion of 
a single electron. The field approach, which loads to the space-charge waves, 
is more unifying and lends itself to the treatment of all different types of 
microwave tubes within the same general mathematical framework. There
fore only the field approach is used in this text. 

An exact analysis of a microwave tube would be very difficult and 
laborious to carry out. As in any other physical problem, it is necessary to 
introduce a number of simplifying assumptions in order to arrive at a 
mathematical model that can be analyzed without too many complications. 
The success of a simplified theory must then be judged by the extent to 
which it predicts and agrees with experimental results. 

The first few sections of this chapter discuss a number of models used 
for the electron beam and the propagation of space-charge waves on these 
beams. The governing equations are Maxwell's equations and Newton's 
laws, together with the Lorentz force equation. The equation of motion for a 
charge element is a nonlinear equation, but may be linearized by assuming 
small-signal conditions; i.e., all ac quantities are small compared with dc 
quantities. We shall consider only the small-signal situation since this will 
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suffice to develop the operating principles of microwave tubes I 
analysis is a great deal more difficult, and the theory, in general • ^e"si^n9l 
developed. ' s n o t fii 

After treating the dynamics of the electron beam, the klvst 
traveling-wave tube are examined in detail. A number of other t ^ 
also discussed, but in a more qualitative way. 

9.2 E L E C T R O N B E A M S WITH d c C O N D I T I O N S 

By means of a suitable electron gun consisting of a cathode, accele 
electrodes, and focusing electrodes, a beam of electrons with essenti U^ 
uniform velocity v0 can be produced.! Figure 9.1 is a schematic illustratk)3 

of a cylindrical electron beam with a radius a. If the potential differen 
through which the electron is accelerated is V, the velocity u0 is given bv 

2Ve\in 

= 5.93 x 10 5 V 1 / 2 m / s ( 9 - 1 ) 

where -e is the electron charge and m is the mass of the electron. For 
V = 1,000 V, vQ = 1.87 X 107 m / s = 0.0625c. The beam perveance is de
fined by the quantity TV~' 2, where / is the total beam current. 

The coulomb repulsive force, or dc space-charge force, will tend to 
cause the electron beam to disperse, i.e., cause outward radial motion of the 
electrons. The space-charge force will be proportional to the density of the 
beam, i.e., to the number of electrons per unit volume. For the usual density 
of beams employed in microwave tubes (1012 to 10 l o electrons per cubic 
meter), the dispersion of the beam due to space-charge forces is negligible if 
the drift space is short (d is small in Fig. 9.1). This condition exists in many 
klystrons, but in traveiing-wave tubes the beam must travel over distances 
which are so long that considerable dispersion may take place unless some 
means of keeping the beam together or focused is employed. The means by 
which the dc space-charge forces are counteracted leads to three common 
used beam models. These models are discussed below. 

Ion-Neutralized Beam 
Even with the high vacuum employed in a microwave tube, a gre£ >*>^ 
neutral gas particles are still present. Many of these gas molecules ^e 

ionized by means of collisions with the relatively high energy electro 

tThe design of electron guns is not treated in this text. For a discussion of these ^ _y i 
J. R. Pierce. "Theory and Design of Electron Beams," D. Van Nostrand ° 

Prince-ton, N.J., 3950. . tg4s. 
K. R. Spangenberg, -Vacuum Tubes," McGraw-Hill Book Company. New Yo 



MICROWAVE TUBES 6 5 1 

Electron 
gun 

Ccthode 

4 H H — 
FIGURE 9.1 
A cylindrical electron beam. 

presence of positive ions will tend to neutralize the negative space charge of 
the electron beam. The positive ions, however, need not be considered in the 
interaction of a high-frequency electromagnetic field with the beam because 
their mass is at least 1,800 times greater than the electron's mass, and 
hence the ac motion of the ions is negligible by comparison with that of the 
electrons. 

Although all electron beams are ion-neutralized to some extent, com
plete electron space-charge neutralization is rarely achieved. However, for 
the purpose of mathematical analysis, a completely ion-neutralized electron 
beam is sometimes postulated as a model. Beam spreading due to space-
charge forces is discussed in Spangenberg's book. 

with Axially Confined Flow 

If a very large static magnetic field B0 in the direction of the beam velocity 
is applied, the effect is to constrain the electrons from moving in the radial 
direction. The space-charge forces tend to impart a radial velocity to the 
electron. The magnetic field B„ produces a force - e v , X B 0 , which causes 
the electrons to execute circular motion about the magnetic field lines and 
thus prevents the beam from dispersing in the radial direction. 

In the magnetically focused beam the field B„ has its flux lines 
threading through the cathode surface, as in Fig. 9.2a. Some electron 
diffusion across the magnetic field lines will occur, but if B„ is made large 
enough, the amount of beam dispersion can be kept small. 

For the purpose of mathematical analysis, it is convenient to assume 
that B0 is made infinite since in this case no electron motion in a transverse-
direction can take place. The analysis of the behavior of the beam under ac 
conditions is thereby greatly simplified since electron motion can now occur 
only in the axial direction (one-dimensional motion). The axially confined 
flow model is commonly used in the treatment of traveling-wave tubes. 

Beam J 
ic Anode or 

collector 
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Solenoid (mognct) 

Cothode 

Anode 

FIGURE 9.2 
(a) Magnetic focusing for axially confined flow; (6) magnetic focusing for Brillouin 

Brillouin Flow 

In Brillouin flow (to be described), the axial magnetic field B0 is not 
permitted to thread through the cathode surface. Since the field lines are 
continuous, they must move away from the beam region in the radial 
direction near the cathode, as shown in Fig. 9.26. When the beam enters the 
magnetic field region, it is given a uniform rotation at the Larmor frequency 
w, = eB0/2m by the magnetic field. In cyclindrical coordinates, r,4>,2 

equation of motion for an electron, 

dv 
m dt 

= - e ( E + v X B) 

may be written in component form as 

d2r 

'dt1 

d26 

"dF 

dt 
I dd> \2 e | _ dd> 

dr dtf> e dr 
+ 2* ~d7~~^B°~di 

(9.2o) 

(9.2b) 

(9.2c) 

in the region where B = B0a, and is uniform. It is assumed t ^^fc 
E = 0. The radial electric field may be found by using Gauss' law-

d*2 

lie = o 
dz 

~dt 
= Un 
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charge density of the beam is - p 0 , then 2—rDr = -7 r r 2 p 0 , or E,. = 
- r p 0 / 2 e 0 . The radial space-charge force on an electron is thus -eEr = 
r ep 0 /2e 0 . If d2d>/dt* = 0, we find from (9.26) that 

" * — ' ~ t e (9'3) 

If this solution is to satisfy (9.2o) and also make d'2r/dt2 vanish, we 
require 

rwf e 

m 

[ rPo + rSa • • • • ' , • 

• f - 2m e0 2 

where «_ = ( ep 0 / / ne o ) 1 / 2 is called the plasma frequency. Typical values of 
o)p for beams used in microwave tubes range from 10r to 109. If the focusing 
field B0 is chosen to satisfy (9.4), there will be no radial acceleration of the 
electrons. The equilibrium condition in the radial direction is actually a 
balance of outward radial forces — eE, due to space charge and mwjr due to 
centrifugal acceleration against the inward magnetic radial force ew/rB,,. 
Electron-beam flow under these conditions is referred to as Brillouin How. 

Although we have given the conditions for steady-state Briiiouin flow 
within the uniform B„ field region, we did not show that a beam leaving a 
cathode with a velocity v0a, will assume Brillouin-flow characteristics as it 
enters into the uniform B„ field region through the nonuniform field region 
in front of the cathode. To show this requires demonstrating that the 
change in angular momentum of the beam from an initial value of zero to 
its final value for Brillouin flow is equal to the time integral of the torque 
ev0Bar produced by the radial magnetic field component in the nonuniform 
region. The reader is referred to Brillouin's original paper for the deriva
tion. t 

The conditions required for Brillouin flow can be achieved in practice. 
Even if the beam is partially ion-neutralized, as long as p0 is not zero, a 
value for Bu such that (9.4) holds can be found. However, the behavior of a 
beam with Brillouin flow under ac conditions is more difficult to treat since 
transverse motion of the electrons is permitted. For this reason the ideal 
axially confined flow model is more commonly used. 

ff.. Brillouin, A Theorem of Larmor and Its Importance for Electrons in Magnetic Fields. Phys. 
Rev., vol. 67, p. 260. 1945. 

W. G. Dow, Nonuniform D.C. Electron Flow in Magnetically Focused Cylindrical Beams, 
Advan. Electron. Electron Phys., vol. 10. 1958. 

Pierce, op. ai. 
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In the magnetron-type (M-type) travehng-wave tube, a r 
beam is used. For this type of beam an analogous flow, referred t ^ S n e e l 

Brillouin flow, can take place. The properties of sheet beams are HS-P ' a n a r 

in Sec. 9.11, dealing with M-type traveling-wave tubes, and henc 1SCUSsed 

covered in this section. a r e not 

9 .3 S P A C E - C H A R G E WAVES O N B E A M S 
WITH C O N F I N E D F L O W 

This section is devoted to an analysis of space-charge waves on an a • 
confined electron beam inside a cylindrical waveguide of radius h TK^ 
radius of the beam is a, as in Fig. 9.3. Small-signal conditions are assumed8 

The beam is considered to be uniform in density in a cross-sectional 
plane. The dc charge density is —p0, and the axial velocity is u0. The d 
current density in the z direction is J„ = -p0v0. The dc parameters p v 

and Ja are independent of space and time coordinates. Under ac conditions' 
with time dependence e •""', there will be ac components of charge density 
velocity, and current that vary with time and the spatial coordinates. These 
ac components are denoted by p, v, and J. The ac fluctuation in electron 
density from the dc value N will be denoted by n, 

The electromagnetic field satisfies the equations 

V X E = ~jwfj.uH 

V X H =./we0E + J 

V - E = ^ 

V - B = 0 

V • J = ~j(t>p 

(9.5a) 

(9.56) 

(9.5c) 

(9.5c/) 

(9.5c) 

A unit volume of the beam with charge density -p0+ P and charge-mass 
ratio n equal to that for electrons, that is, TJ = e/m, has a motion govern 
by the equation 

(N + n)m~ = (p - p 0 ) ( E + v, XB + v, X B„) 
(if. 

where N + n is the number of electrons per unit volume and v, = vo ^ 
the total velocity. For small-signal conditions, (Bl « |B 0 | ; so the ioi 

24 

B0 

* F IGURE 9.3 w avecu'd e-
Electron beam inside a cylindrical 
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v( X B can be neglected compared with v, X B„. In addition, since B = 
/x0H = /j-0Yf,E = E/c, we see that |v, X B| is smaller than |E| by a factor 
v,/c. Hence ac magnetic forces are negligible. The total velocity v, is a 
function of x, y, 2, and t. In addition, the position x,y, z of a charge 
element is a [unction of time. Consequently, 

d\, dv, dv, dx dv, dv dv, dz dv, 

^ - " + ^ d r ^ + ^7d7 = ^ + (v'-V)v' ( 9 - 6> 
since v, = ax dx/dt + aydy/dt + a.dz/dt. Thus expansion of d\,/dt 
leads to a nonlinear term <v, • V)v,, depending on of. However, for an ac 
velocity v that is small compared with the dc velocity v„, we have 

[(v + v 0 ) • V](v + v0) = (v + v0) • Vv = (v0 • V)v (9.7) 

since v0 is constant and the second-order term (v • V)v is negligible and 
may be dropped. Thus we obtain 

(AT + n)m T7 + (v„- V)v 
PC 

= ( p - , > 0 ) ( E + v X B 0 ) 

But the terms involving n and p are products of two ac quantities and may 
be dropped for small-signal conditions. Hence the first-order linearized 
equation of motion becomes 

dv 
— + ( v 0 - V ) v = - i j ( E + v x B „ ) (9.8) 
<</ 

since Ne = p0 and e/m = 77. 
For the cylindrical beam under consideration, we also have v0 = a,v0 

and a time dependence e•""'. If we let Bn approach infinity, the transverse 
components of v must vanish, so that the term v X B„ in (9.8) will vanish. 
Thus v has a component in the z direction only, and (9.8) gives 

Hu 
jwv + u0— = -7)E, (9.9) 

dz 

When v has only a z component, the ac current density J has only a z 
component since the total current is 

J0 + J = ( -f,0 + p ) (v 0 + v) = -p„VQ + (pV„ - />0v) + pv 

= - P 0 v „ + ( p v 0 - p 0 v ) (9.10) 

after dropping the second-order term pv, which is the product of two small 
ac quantities. The dc and ac currents are thus 

J o = -P0V0 ( 9 - H a ) 
J = p v 0 - P o v (9.116) 
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From the continuity equation (9.5e) we obtain 

dj 

Hz = -Jwp 

Equations (9.9), (9.116), and (9.12) permit us to express J as a fun r 
Ez. Maxwell's equations (9.5a) and (9.56) may then be solved in th^ ' ° n 

manner to obtain wave solutions. 
Since we are looking for wave solutions, we may assume that li 

quantities have a z dependence e~jpz. In this case (9.9) and (9.12) eiVP 

(j« -JPv0)v = -TJE, 

jpj = jwp 

(9.13a) 

(9.136) 

For convenience, o>/v0 will be denoted by f30, which may be interpreted as 
the dc propagation constant for the beam. Using (9.116) and (9.13), we find 
that 

J - ~j 
Pl^Es 

» (Po-P)' 
(9.14) 

where iop = p0v/eo 's the plasma frequency squared, and — p0 is the 
electron charge density of the beam. 

To solve Maxwell's equations for the beam inside a cylindrical guide, it 
will be convenient to introduce the vector potential. For a mode havir 
azimuthal symmetry (no 4> dependence), all boundary conditions can be 
satisfied by a vector potential having only a z component Az(r, z) = 
i//(r)e ~Jfiz. The equation satisfied by A, is 

VzAe + k\Az = -n0J 

From A, we obtain 

Ez = -j<oAz + 
VV - A , 

JV(t0
€0 

i\ + d2Az/dz2 k2
0-p

2 

/a¥*o*o Ji»Hoeo 
A> 

Using (9.14) to express Elr in terms of J gives 

»*"-i-i) ®TtW* 
The Helmholtz equation for Az now becomes 

V*At + p2Az = 0 0 <r £a 

V/A, - h2Az = 0 a <r sb 

(9-1 

(9.l6 f l 

( 9 - 1 ^ 
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where we have replaced V2 by V,2 - p2 and put 

p>_ _£•+*«+ l - f 111 

2 p 
Pi 

2 - k2 

" 0 

- - ( * * - * « 1 -

( 0 o - 0 ) * 

0«-l8 

/i2 = /32 - fe 

(9.17a) 

(9.176) 

after using (9.15) to express J in terms of A,. 
The analysis, when completed, will show that the space-charge waves 

are slow waves, with 0 ~ p0 ~» k0, and hence p and h will be real. With no 
4> variation, (9.16) reduces to 

dH 1 d<l> 

dr' r dr -h'< 
ill = 0 (9.18) 

where Az = ili(r)e -"3j. The equation for i/< is Bessel's equation of order 
zero, and the solutions are J0(pr), Yu(pr), J0(jhr), and Y{)(jhr). Instead of 
using the Bessel functions with imaginary argument, we use the modified 
Bessel functions I0(hr), K0(hr). In the region 0 < r < a we cannot use Y0 

since it becomes infinite. Therefore we let 

i/»(r) = C|J„(p/-) 0 < r < a 

i/»( r) = C.2I0( hr) + C3K0( hr) a s r < 6 

where Cv C2, C3 are arbitrary constants. The axial electric field must vanish 
at r = 6 and must be continuous at r = a. These conditions hold for Az, 
and hence for i// also. Thus 

C{J0(pa) = C2I0(ha) + C3K0(ha) (9 .19a) 

0 = C2I0(hb) + C3K0(hb) (9.196) 

Besides Ez, the only other field components present are Er and Htll. These 
are given in terms of ^4. by 

p M a Pc M , 

Hj.= 

wii0e0 <>r 

1 dA, k, 

k0 dr 

Mo dr 

Continuity of H^ at r = a requires 

•Y0Er 

ClpJ,
n(pa) = C2hl'a(ha) + C3hK'0{ha) (9.20) 

where the prime denotes differentiation with respect to the argument pa or 
ha. In order for (9.19) and (9.20) to have a nontrivial solution for Cv C2, 
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W e f i»d that 
and C3, the determinant of the coefficients must vanish. Thus 

J»(pa) m K0{ M>)l0{ ha) - K'„l ha)I{)(kb) 
J»{pa) # o( H>) 70( ha) - K0{ ha) I~JJb) (9.2l) 

This transcendental equation, together with the relations (9 17» L-
' 'i which 

p2= -k2 + 
2J .2 

to 

alh 
(p0 - //12 + ktf 

give 

(9.22) 

determines the propagation constant fi. 
Two special cases are now examined. First consider the 

and a are made very large. Then, since 

/<,(*) -

case where 6 

V^ - . V 
]>2ie~X 

for large x, we find that (9.21) gives p tan(pa - TT/4) = h. But since we are 
letting a go to infinity, the only possible solution independent of a is 
p = h = 0. From (9.17) we then obtain the following solutions for (i: 

P = ±k0 (9.23a) 

0 = / 3 o ( l ± ^ j (9.236) 

But with p = h = 0, (i = ±kQ, all field components vanish as reference to 
the equations given earlier for E,, H,lt, and Er shows. Thus this is a trivial 
solution. The other solutions /3 = /30(1 + wp/to) correspond to the space-
charge waves. The wave velocities are 

1 1 ± <ou/co 
-. - wp 

since top <K to for conditions that are typical in microwave tubes. The wave 
velocities are slightly greater and slightly smaller than the dc beam velocity 
v0. The two waves are called the fast and slow space-charge waves. For 
p = 0, both Er and H* vanish but E, remains finite. The space-chai| 
waves may thus be viewed as a longitudinal oscillation of the electro 
the beam. When to = top, one solution corresponds to /3 = 0, that is, 
propagation. Thus it is seen that the plasma frequency is a nat

 eTse 

quency of oscillation for electrons in an infinite beam. Since the trap ^ 
fields are zero, the space-charge waves are not changed even if &a u 

as long as the beam has infinite radius. beam 
As a second special case consider the situation 6 = a so that ^ 

fills the waveguide. From (9.21) we now see that the T i ^ j ( p a ) ^ 
becomes infinite since the denominator vanishes. Thus we require " u]ar 
0. Hence pa takes on values typical ot those for TM0„, modes in a e r 3] 
guide. The lowest-order solution is (Sec. 3.18) pa = 2.405, or m &* 
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pa = p0m, where the p0m are given in Table 3.5. Using (9.22), we now find 
that 

Po, = -K' 1 - Pi 

= ( *2 " / 3 2 ) 1 

(ft, ~ yfh2 + kl) 

Pi 
w I (Po-P) 

(9-24) 

For the field waves we expect j3 to be approximately equal to k0. Then, 
since wp « w and P0 » &0, an approximate solution of (9.24) is 

F = k% -
Po, 

(9.25) 

This is the unperturbed propagation constant for TM„„, modes in a cylin
drical guide. A correction to /3 may be obtained by using the solution given 
by (9.25) in the term multiplied by w2 in (9.24). 

Of greater interest are the space-charge waves for which ji ~ p0. For 
these k'l « /32; so (9.24) may be approximated by 

Po,. 
= -&' 1 - A 

<•> ' (Po-P) 

which is a quadratic equation in /32. To obtain an approximate solution, let 
P = p0(l + 8), where <5 will be small. Then we obtain 

Po,, 
= ~Pl 

CO 

which gives 

and hence 

5 = 
±(w /M)PC 

/30
2 + (Pom/<*)T 

P=Po 
(O 

• i1+rf 
PW 

1/2 

(9.26) 

Note that 5 is small, which justifies the approximations made. We may 
express (9.26) in the same form as (9.236) by introducing an effective 
plasma frequency u>q given by 

2 \ " l / 2 

(9.27) », =«„ 1 2„2 Pi* 
= Ftor 
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FIGURE 9.4 
Space-charge reduction factor for a 

cylindrical electron beam of radius a, 
velocity v„. inside a circular guide of 
radius b. The data apply to the domi
nant TE„, space-charge mode. 

where F is called the space-charge reduction factor; for example, w* = 
F2p{-,r\/ea\ so the effective space charge is F2p0 . Hence we can write 

/3 = /30 l i 
ft) 

(9.28) 

For the beam completely filling the guide, there are again a slow and a fast 
space-charge wave, with velocities slightly greater and slightly smaller than 
the beam velocity v0. However, the effective plasma frequency is reduced 
because of transverse variations in the field. Nevertheless, the space-charge 
waves have very small transverse field components Er, H,y Only the axis 
electric field Ez is large. - , 

In the general case, when a ¥= b, the solution for /3 is tedious. The 
results may be expressed in the form (9.28) for the space-charge w j ^ J , 
introducing the effective plasma frequency or the space-charge redu ^ 
factor. Some typical results computed from curves given by Branc 
Mihran are shown in Fig. 9.4.t , j ^ n 

The space-charge-wave theory was f irst developed by Hahn an ^ . ^ 
in 1939. Since that time space-charge waves under a variety o l , c o " r wiU 
have been studied. The references cited at the end of this chap 

tG. M. Branch and T. G. Mihran, Plasma Frequency Reduction Factors in Electn 
[HE Trans., vol. ED-2, pp, 3-11, 1955. 
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provide an introduction to the literature on this topic. For the analysis of 
the ordinary, or O-type, traveling-wave tube, the model discussed above is 
accurate enough to describe the main operating characteristics. 

4 S P A C E - C H A R G E W A V E S ON U N F O C U S E D B E A M S 

Many low-power klystrons employ electron beams without, magnetic field 
focusing when the distance (drift-space length) the beam must travel is 
short. The propagation of space-charge waves on this type of beam is 
therefore of interest. We shall consider a beam of radius a and with dc 
parameters -p0,v0az. For space-charge waves with axial symmetry, the 
only field components present are Er, Ee, and HA. The governing equations 
are Maxwell's equations (9.5) and the force equation (9.8), with B0 equated 
to zero.t 

For space-charge waves we may assume a z dependence e "i~. In 
component form (9.5a) to (9.5c) and (9.8) are 

9JL 
JPEr + ~=jwp.QHA (9.29a) 

JtiHi!,=jlo€nEr + Jr (9.296) 

i a 
r or 

(9.29c) 

Id p 
- r E r - m ^ -

r »r e0 

(9.29d) 

JvEr 

w - pv0 
(9.29e) 

JvEz 
v = (9.29/-) 

In addition, we have the relation 

J =pv0 - p0v 

which gives 

<f* - -Pn»r "" "Br (9.30a) 

Jz = ~PoVz + Pv0 = <rE
z + PV0 

(9.306) 

where (9.29e) and (9.29 f) have been used, and the effective conductivity <r 

tStatic space-charge forces are assumed lo be negligible, which is a valid assumption for a 
low-density beam and a short drift space. Alternatively, the beam may be assumed to be 
ion-neutralized. 
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has been introduced as follows: 

a = 
-JVPo -Jeo*>l 

u> - /3u0 w ~ fivQ (9.3i) 

When we make use of (9.30), the continuity equation V • J = 
found to give 

1 <> 
aI ~ j;rEr ~ JPEt | - J&HP = -Je>P 

If (9.29d) is used to replace the term in parentheses, we obtain 

jpv0 + Jo\P = 0 

If the ac charge density p does not vanish, we must have 

o-
JPva +ju) = 0 

J<op is 

(9.32) 

This requires that ji be given by 

<i) ± <i> 

V„ \ ft) 

The corresponding wave solutions are the space-charge waves in an infinite 
beam for which Er = H^ = 0. For a beam with finite radius the bounc 
conditions at r = a cannot be satisfied with these values of 0. Conse
quently, the space-charge waves that we are looking for must have 
different value of p and, in addition, must have a zero ac space-charge 
density p, so that (9.32) will hold. For these waves, (9,30) now gives 
J = crE, or 

J = J w e o — -E 
J<°eo 

Maxwell's curl equation for H becomes 

V X H =jioe0E + J =jioe0 I + 
a 

jwe 0 

E = . / W E 

where the effective permittivity e of the beam is given by 
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By using the effective permittivity e, the beam may be treated as a 
dielectric cylinder. The equation satisfied by E, is thus 

V 2 ^ + k2Et = V?Et + (k2 - p-)Ez - 0 (9.34) 

t S—1 
<o(w - pu0) 

For space-charge waves we anticipate slow waves, for which /S » k(). Hence 
a suitable solution for Ez is 

E, = CJn(pr) 0<r<a (9.35a) 

Es = C2K0(hr) r>a (9.356) 

where p = (/32 - * 2 ) l / z , ft = (/32 - A2)1 '2 , and C „ C 2 are amplitude con
stants to be determined. 

The boundary conditions at r = a are different from those for a beam 
with confined flow, for the following reasons.t The electrons have a radial ac 
velocity, and hence the boundary of the beam does not remain at its dc 
position r = a since electrons will oscillate back and forth about the dc 
boundary. The resultant boundary thus becomes rippled, as shown in Fig. 
9.5a. The positive charge shown in this figure represents a deficit of 
negative charge. The effect of the rippled boundary on the radial electric 
field under small-signal conditions may be accounted for by replacing the 
rippled boundary by a layer of surface charge. This is, of course, exactly 
what is done in the case of a dielectric boundary in which polarization 
charge oscillates back and forth about a mean boundary surface. The 
surface charge is given in terms of the dielectric polarization P by P • n = 
(D - e0E) • n. For the electron beam the corresponding surface-charge 
density ps arises from two causes, namely, charge flowing toward the 
boundary because of the radial current Jr and charge carried to a given 
point z owing to surface charge moving with the beam. That is, the rate of 
increase of surface charge is (Fig. 9.5b) 

— =j(oPs = Jr- t ' ( ) — = Jr +JpvIJps 

The term -1>0 Hpx/dz arises as follows: Let the surface charge density at a 
point z be ps. Then at the point z - dz the charge density is approximately 
Ps ~ (<>ps/(iz)dz. The rate at which charge is carried away from the point z 
on the boundary is v0fis, and the rate at which charge from the adjacent 

tSee also W. C. Hahn, Small Signal Theory of Velocity Modulated Electron Beams, Gen. Elec. 
Rev., vol. 42, pp. 258-270. 1939. 

where k* = io2p0e = kl 
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(a) 

^-Unperturbed 
r boundary 

•"o 

Rippled 
boundary 

-o<A-£*' 

\b\ 

c 

FIGURE 9.5 
Boundary conditions at the surface of a rippled beam. 

point z - dz flows toward z is v0[Ps - Opjdz) dz}. The net rate of accumu
lation of charge in an interval dz, due to the finite beam velocity u0, i s i 
-v0Vps/dz)dz =JI3voPsdz, since the z dependence is e• ' '. ' *e c ^ 
density is obtained by dividing by dz. Our final expression tor tne equ 
surface charge density is 

(9.36) crE. 
Ps = 

-VP0Er 

j(to - pv0) ~ j(o> -&v0) (<o-pv0Y 

The amount of charge which has crossed the unperturbed *°unjg 
-p0r, where r is the ac displacement of a unit volume of charg • 

-£ = vr = -^ + (v0 • V)r = j(a> ~ Pv0)r 
at at 
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we see that 

= ~ P o r = j(co-l3v0) j(<o - Pva) 

which is an alternative derivation of (9.36). 
The boundary condition to be applied to the radial electric field is 

E2r ~Elr=~ = — —3 = p~—rA (9.37) 
e0 €„(w- /3U 0 ) (to - flv0) 

where the subscripts 1 and 2 refer to the fields in the regions r < a and 
r > a, respectively. The above boundary condition may also be expressed in 
the form 

^0E2r = 
a 

° jlv-fa) K 

This latter result is similar to that which holds at the boundary of a 
dielectric cylinder except that <u is replaced by w - fiv0 because of the 
uniform motion of the cylinder, in the z direction, with velocity i>(). 

Associated with the equivalent surface charge is an equivalent surface 
current of density Js = Jsa_„. To obtain an expression for J s , consider Fig. 
9.5c. The total rate at which charge flows into a small region of length dz 
on the boundary is 

W-
Jrdz dz 

dz 

and must equal the rate of increase Jaips dz of surface charge density in an 
interval dz. Consequently, 

- — =jNs =jfp, - Jr =JfioDp9 

dz 

or J, = ftB, (9.38) 
after replacing Jr by j(io — fiv0)ps from (9.36). For w » wp, the total 
surface current is usually much larger than the total volume current, and it 
is therefore very important to include it. 

The boundary condition to be applied to H^ is 

#2* - #u = ^ = Ps"o (9-39) 

When Hlt, satisfies this discontinuity relation, the boundary condition on 
the radial electric field is also satisfied. With the above boundary conditions 
we are now able to complete the solution to our beam problem. 
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When we combine (9.29a) and (9.296), we obtain 

ja>e0 + a <)EZ jwe dE 
H* " p2 - k2

0 + ja>p0cr 77 "= fi2-k2 77 

Referring to (9.35), we thus find that 

j(oe jioe ] 
H* = Hh> = ~yCir»ipr) = —CJi{pr) r < a ( 9 . 4 0 o ) 

/we„ /we,, 
H„ = H2iil = -^C.K^hr) = -^CK^hr) r > „ (9 m) 

We require Ez to be continuous at r = a and H,4 to satisfy the condition 
(9.39). Therefore 

CM Pa) = C,K0(ha) (9 Ala) 

/we,, /we (TVn 

-—CMka) - —CJl{Pa) =ps„0 = ^ - _ f L _ % 

From (9.296) we find Elr(y"we0 + a-) = jpHVtU, and hence the second bound
ary condition becomes 

C.,Kx(ha) _ Cj^pa) 

h p 

Dividing (9.416) by (9.41a) gives 

7,(pa) 

w r 

/>/„( pa) 
1 -

(w - pv0y 

(to - pv0y 

Kx(ha) 

hK0(ha) 

(9.416) 

(9.42) 

The propagation constant p is determined by a solution of this equation, 
together with the relation 

02 = p2 + k2 = p2 + k-Z 1 *S - t f + Aj (9-43) 
w(w - pv0) 

For space-charge waves, p » k0, so that h and p can be replaced by P' 
approximation that may be used to simplify (9.42) and (9.43). . -n 

The results obtained by solving (9.42) and (9.43) may be express 
the form (9.28): 

At microwave frequencies, w /w is usually in the range 0.01 to u- > ' 
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0.2- FIGURE 9.6 
Plasma-frequency reduction factor F for an un
focused cylindrical electron beam as a function 

~&a of Ha. 

differs from p„ by only a few percent or less. In Fig. 9.6 the plasma-frequency 
reduction factor F = wq/u>p is plotted as a function of fia. If p and h are 
replaced by j3 in (9.42), that equation may be put into the form 

/3a = /3na 

from which it is seen that 

1 + 
CO 

KJ0 

K0Ix 

- 1 / 2 

K0(130)1,(130) 

- 1 /2 

(9.44) 

This expression was evaluated to obtain F, as given in Fig. 9.6. The data in 
Fig. 9.6 may be used to solve for the corresponding values of /3na; that is, 

/30a = 
fia 

l±F(cop/co) 
(9.45) 

In a beam with confined flow only axial ac convection currents are 
permitted. For this reason an ac charge density p exists since the current J2 

is a function of z and must have associated with it space-charge-density 
fluctuations. For the unfocused beam, ac radial convection currents are also 
present, and this makes it possible for the total current J +jwenE to be 
solenoidal, i.e., to form continuous closed flow lines without terminating in 
ac space charge. 

a c P O W E R R E L A T I O N S 

The ac power associated with the space-charge waves on an electron beam is 
of importance for understanding the gain mechanism of traveling-wave 
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are 

is 

Lubes and, of course, for power calculations. The small-signal DO 
rem for beams with confined flow was first derived by Chu f p" l 

extensions have been made by Haus and Bobroff? and Kluver.§ Th ? r t.^ t ' r 

tion is straightforward, but the interpretation of the various te ^ 
enter in is not always clear, depending on the type of beam irmri , ' \ t h a l 

considered. 0 d e I **«* 
Maxwell's equations for the fields associated with the beam 

V X E = ->>MoH V XH =_/We0E + J 

where the small-signal ac current density is given by (the surface current" 
included for generality) 

J = - n 0 v + pv„ + ps\Q 

In addition, we have the equation of motion 

jcov + (v0 • V)v = - T J ( E + v x B 0 ) 

Expanding the following expression and using the above equations, we 
obtain 

V • (E x H*) = H* • V x E - E • V X H* 

= -jioii0H • H* + j<oe0E • E* - E • J* (9.46) 

The continuity equation in the interior of the beam may be written as 

v„V • J = -jwpv0 = -jai( pv 0 - p0v) - jwp0v 

= -ja)J-jojp0v 

If we multiply the complex conjugate of this equation by v / i j , we obtain 

v - vn 
J* = — v 

V 
J* + V • V* 

v f ] n ^ ^ ^ ^ ^ ^ 

Multiplying the equation of motion by J * / i j gives 

> J * 
J * • E + J* • v X B 0 = v - J * (v0 • V)v 

V V 

Since the transverse components of J and v are in the same direction, 
term 

J * • v X B„ = J* X v • B( l = 0 

the 

J. Appl- phys" 

tL. J. Chu, A Kinetic Power Theorem, paper presented at the IRE-PGED Electrc 
Research Conference, Durham. N.H.. June. 1951. 

tH. A. Haus and D. Bobroff, Small Signal Power Theorem for Electron Beams, 
vol. 28, pp. 694-703, June, 1957. 
SJ. W. Kliiver, Small Signal Power Conservation Theorem for Irrotational Electro 
J. Appl. Phys.. vol. 29, pp. 618-622, April, 1958. 

Tub* 
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The addition of the above two equations thus gives 

j * . E _ ^ v . v * = - ^ r . j * - * 
'7 *J 1) 

If we introduce the term V • (v - v0 J* ) = v • v„V • J* + J* • V(v • v0), we 
obtain for the right-hand side 

-V -
v • v„ 

1 
- r [ J * 7)v - «r* - vv • v0] 

By expanding the bracketed term in rectangular coordinates, it is found to 
reduce to 

— a , X J s • V X v 

when v0 = v0az. Hence we have 

J * - E 
v 

v • v* = - v" v • v„ 

V 
a. X J* • V X v (9.47) 

The ac kinetic-power theorem is obtained by adding (9.47) to (9.46) to 
obtain 

T - E X H * 
v • vn . Po 

-J* = ~/OJ/J..,H • H* - jto—v • v:i 

'7 / >7 

+ jwe0E - E* + — a . X J* • V X v (9.48) 

n 
The term (p(,/2n)v • V* is the ac kinetic-energy density in the beam since 
PO/TJ = ((>Q/e)m is the mass density per unit volume. 

Let us now specialize to the case of a beam with confined flow for 
which J = a, J, and the last term on the right-hand side of (9.48) vanishes. 
The real part of the above equation then gives 

ReV • E X H * - v • v., = 0 (9.49) 

The volume integral over a volume enclosing the beam between cross 
sections S, and S2 as in Fig. 9.7 may be converted into a surface integral 

5c 

S, 

-rfs 

Sc 
FIGURE 9.7 
A section of an electron beam. 



6 7 0 FOUNDATIONS FOR MICROWAVE ENGINEERING 

over the surface S, + S2 + Sc. Thus the following power-co 
rem is obtained: 

'i R e < 2 > - E x H * • dS = - Re J" 
s., 2?7 

+ Re f 
2T, 

a . r f S 

a , d S 

ion 

'9.50 

= Vh has the dimensions of a volt The term ( - v • V„)/TJ = -im/e)v • v„ 
age, and is called the kinetic voltage. It is the term that gives the conversi' 
of kinetic energy of the beam into electromagnetic energy. In order that"1 

net amount of electromagnetic energy may flow out of the surface S 
quantity 

must be negative. 
A fuller appreciation of the above relations may be obtained by consid

ering the application to space-charge waves in an axiaJly confined infinite 
cross-section electron beam. For the slow and fast space-charge waves, the 
ac kinetic power may be obtained by using (9.13a), (9.14), and (9.49). It is 
found that 

Be\-VkfJf\ Re 
-vQvfJf wo)pe0 

Re 
1 

= / . * = -

2n 

tow2
pec 

2vl(f}f-p0) 
m. :r 

2 u S ( 0 , - / 3 o ) 
E l 

Since ps > p0 > fif, the slow space-charge wave has a negative ac kine 
power, whereas the fast space-charge wave has a positive ac kinetic power 
If the beam is excited, with only the slow space-charge wave, the signifi
cance of the negative ac kinetic power is that some of the dc flow e n e / ^ , 
the beam has been extracted and converted into negative ac energy > 
excitation process. The negative ac kinetic energy must in turn be conv 
into electromagnetic energy flow in order to maintain power consei 
In the discussion of the traveling-wave tube, it will be seen that the 
space-charge wave is the one that produces amplification. 

V E L O C I T Y M O D U L A T I O N 

The preceding sections have established the existence of space-charg^ ^ 
on electron beams. We must now examine the problem of exci , j^ 

__ - ..»__• . •. L . I . I ; __ ii.„ u^om In «°y= waves, i.e., producing an ac velocity modulation on the beam, j 
tubes velocity modulation is commonly produced by passing the 
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Ac inpul 

Cylindrical Duncher 
cawi'> cross section 

FIGURE 9.8 
Velocity modulation of an electron beam. 

through two closely spaced grids located at the center of a cylindrical 
reentrant cavity, as in Fig. 9.8. The particular form of cavity used is chosen 
in order to satisfy the requirement of high ac electric field strength across 
the grids (which requires small grid spacing) and yet maintain a high cavity 
Q. The latter requires a large volume-surface area ratio. If we let 
Re( Ege•""') = Eg cos wt be the cavity electric field across the gap (often 
referred to as the buncher gap), those electrons entering the gap when 
Eg cos wt is directed in the negative z direction will be accelerated and will 
leave with a velocity greater than <.'„. Electrons entering the gap region 
when Eg cos i»t is directed in the positive z direction are slowed down and 
will leave with a velocity less than B0. It is apparent, then, that an applied ac 
electric field between two parallel grids will velocity-modulate an electron 
beam. The analytical details of the modulation process are discussed below.t 

We shall consider an unfocused electron beam of the type discussed in 
Sec. 9.4. Let the cavity field in the gap region be Efi cos wt. Electrons will 
traverse the gap with essentially the entrance velocity v„. If the time at 
which a particular electron passes the midplane z = -d/1 is /!,, then the 
field in the cavity at time / when this electron is at a position z = -d/1 + 
v0(t - <[)is 

(D 

E cos mt = E cos — 2 + — + f0/i 

The work done by the cavity field on the electron during its transit through 

TThis analysis is based on a ballistic formulation, and not on a field approach, since the former 
is more straightforward. 
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the gap is 

W = -C ~ eEg ° O S Po\Z + ~2 + °°'>) dz 

sin(/3„d/2) 

(9. 

where @0 = ai/v0 is the dc propagation constant for the beam Th hoo 
coupling parameter M is denned to be e beam-

sin(fl,rf/2) 
/3 0 d/2 (9.52) 

For an electron passing the midplane at time t, the work done on th 
electron is clearly given by 

- eEg dM cos cot 

The work done on an electron results in an increase in its kinetic energy If 
the exit velocity from the buncher cavity is i>0 + v2, we have 

jm(v0 + vzf - \mvl = |m(2u 0 i ; 2 + vf) = mv0ut = -eEgdMcoswt 

(9.53) 

since for small-signal conditions, vz « v0. In complex form (9.53) may be 
written as 

v,eJ"' = EgdMeJ"" 

(9.54) 

Thus the axial ac beam velocity at the exit grid has a value 

v2 = ^-M{Egd) 

The foregoing first-order analysis predicts that there will be zero 
average work done in bunching the electron beam since the average of (9.51 
over one period from f, to C, + l/f is zero. This result is not correct, and in 
actual fact, a net amount of average work is required to velocity-modula 
the beam. To determine the average work done, a second-order analys 
must be performed.! The principal effect of requiring a finite amount o^ 
work to velocity-modulate the beam can be represented by an eqwv 
shunt conductance loading the buncher cavity (beam loading of the bun ^ 
cavity). The magnitude of this shunt conductance is typically such a 

tK. R. Spangenberg, "Vacuum Tubes," chap. 17, McGraw-Hill Book Company. 
New * 

1948. 
M. Chodorow and C. Suskind, "Fundamentals of Microwave Electronics, 

Hill Book Company. New York, 1964. 

i c - d - P - S . * * -
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reduce the unloaded Q of the buncher cavity by a factor of 2 or so. However, 
even though the first-order analysis given above is not sufficiently accurate 
to give the beam-loading equivalent conductance, it does give a satisfactory 
answer for the velocity modulation of the beam, which was the information 
we were interested in obtaining from the analysis. 

Since we now know the velocity modulation of the beam at the exit 
grid of the buncher cavity, we are in a position to evaluate the amplitudes of 
the space-charge waves that will be excited on the beam in the drift space 
beyond the buncher cavity. We shall treat the case of an unfocused beam in 
detail. The case of a beam with confined flow is somewhat easier to analyze 
and is the model usually assumed in the analysis of the klystron, even 
though it is not the type of beam used in most klystrons. However, it turns 
out that the results for the unfocused beam and the beam with confined 
flow are essentially equivalent, the main difference being that, for the 
unfocused beam, the major contribution to the ac current comes from the 
equivalent surface current on the beam, whereas for the beam with confined 
flow, the ac current is a volume current distributed over the cross section of 
the beam. During the course of the analysis, the results for the case of the 
beam with confined flow will be given for comparative purposes. 

In the drift space z > 0, space-charge waves will be launched because 
of the ac velocity modulation of the entering beam. At the plane of the exit 
grid, the radial electric field of the space-charge waves is short-circuited and 
must be zero. This condition can be met by a suitable combination of the 
fast and slow space-charge waves. If we let £ r , and Erf be the radial 
electric field of the slow and fast space-charge waves, we require Ers = -Erf 

at 2 = 0. But Ers and Erf depend on r according to the first-order modified 
Bessel function Ix(pr), where p is different for the fast and slow waves. 
However, for typical beams, p ~ (5 = /?„; so the radial dependence can be 
taken as lx(fi0r) with negligible error, in which case the boundary condi
tions at z = 0 can be satisfied without introducing higher-order space-charge 
modes. 

The required boundary conditions on Er can be met if we choose the 
two space-charge waves to have the same amplitude and to combine in 
phase for the ac velocity vx at z = 0. Thus let ots and v,t be the amplitudes 
of the slow and fast space-charge-wave axial velocities, so that we may write 

Vg = vzse~ip'z + vzfe~^'z = uzf(e-J"r~' + « r * * ) 

where ps = /30il + o^/co) and pf = /30(1 - o>q/o>), and ioe/ is the effective 
plasma frequency equal to Fwp. Introducing these expressions gives 

vz = 2vzfcospqze J»»-' (9.55) 

where f3q = (30wg/oi = (oq/vn. Note that va, is a function of r according to 
I0(P„r). However, /30a is small, so that vzf is almost constant. Thus we may 
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equate 2vzf at r = 0 to vz as given by (9.54) to obtain 

v2 = —-MVg cos pqzl0( p0r)e-J*» 
(9.56) 

we 

for the ac axial velocity at any point in the drift space z > 0. In (9 -c 
have put VR for the exciting gap voltage Egd. 

For the unfocused beam the ac space charge density p is 2 e r_ 
from (9.306) we find J, = -p0u2. Consequently, the ac axial current de'nsT 
in the drift space is 

«/ .= VPo MVgco8pqzI0(P0r)e-J"9* 
(9.57) 

The surface current Js will be evaluated later, and will turn out to be more 
important than the volume current. 

To find Et, we use (9.29/") to obtain 

E,= 

E*f = 

* - ftPe 
in 

U) - PfU0 

<o, 

Jl JV 

D*r = 

Hence the axial electric field is given by 

»*/ 

E2 = -Av;f(e *P - e~«*) = '^-vzfe-JPoZsm pqz 
2w 

v.Ae &C-<>-*»*) = 

JT) V 

Introducing the earlier expression for v-t* gives 

Et= -pqMVgI0(p0r)sinpqze-^ 

Note that Ez vanishes at the exit grid, where 2 = 0. 
From (9.29tO we have 

(9.58) 

~rBn-jfi.B„- -(P0 +Pq)j».f" ' ^ ^ 

--rErr=JPfE!f= (ft, - fiq)-±v„~—W.f 

l a w„ 

since /30 » /3„. The boundary conditions on £ r are consequently s a t , S
Q f t h e 

a very good degree of approximation. If desired, a small adjustmen ^ ^ j , 
amplitudes of the two space-charge waves could make Ers + rf 
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exactly at a particular value of r. However, since we have already approxi
mated It(pr) by J£(£0 /0 for both waves, the present approximation of 
dropping pq relative to 0O is consistent with our earlier assumptions. 

If we examine the expressions for Jz and vz, we see that, because of 
the beating or interference between the two space-charge waves, the ac 
current and velocity vary according to cos fiqz in the drift space. Maximum 
volume current density occurs when 

2 = "Y (9.59) 

where Xq = 2v/pq is the space-charge wavelength and n is an integer. 
If we had considered a beam with confined flow as discussed in Sect. 

9.3, we should have 

J, = — • 
w - pv0 

by using (9.116) and (9.12). In this case 

If v: varies according to cos/3,,2, then J. will vary as sin (iqz for a beam 
with confined flow. The different behavior of the two beam models arises 
because of the zero ac volume space charge density in the unfocused beam, a 
condition that can exist because radial ac motion of the electrons is permit
ted. The axial current for the two beam models is given by 

Jz = -N°t + Pu0 Jz = -Pffiz 

The space charge p changes the relationship between J. and v. from 
Jz = —pQvz to Jz = -p0v2to/((i> — pv0), which in turn produces the differ
ence in z variation of the current amplitude. In some klystrons where a 
high power and long drift spaces are used, magnetic focusing is employed. In 
this case the confined-flow-beam model would be the appropriate one to uste. 
For the beam with confined flow, the axial current density at r = 0 would 
be found to be 

IVPn to 

J, = — MV, sin /Jaze-•"'"' (9.60) 
vo % " 

The peak current density is a factor co/co greater than the maximum 
current density for the unfocused beam as given by (9.57). This suggests 
that the confined-flow beam is superior. This is usually not the case because 
the surface current Js for the unfocused beam may contribute in a very 
substantial way to the total ac axial current, as the following analysis will 
show. 
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space 
The surface current density is given by (9.36) and (9.38) pn 
^-charge waves, we obtain - — o r t h e t w o 

_ _ _ W > o JL--^St*L 

When we combine (9.29a) and (9.296), we find 

7/3 3JS. 7/3 

where CsI0(pr) = Ez. Consequently, 

J. = - / , ( j8 0 a) (C I / c->^* + C1 Je-^.*) 

Now E ; s = -(oiq/jr,)vzf and E^ = (wq/jr})vzf; so we have C l s = 
-Uoq/jv)v!r, Clf=(<oq/J7])vzr, where 2uz/-= -(ij/i/0)Jlf\^. The final ex
pression for Ja becomes 

J = ^ / . ( / S o o j s i n ^ e e - ^ (9.61) 

We shall now compare the relative contributions to the total axial 
current. The total surface current is given by 

/5 = 2ira—MVgI1(l30a)Bmpqze-J** (9.62a) 

and the total volume current flowing in the axial direction is 

7, = ira—-MVgI^0a)cosPqze-^ 
Povo 

where we have used the result 

,a 2ira 
I0{fi0r)27rrdr = - ^ - I ^ a ) 

-'n fit 
The ratio of the peak amplitudes is 

(4). 
(h), 

0) 

(9.62b) 

(9.63) 

This gives the very interesting result that the total surface c u r r e ^ ' v 0 ] U [ne 
case of an unfocused beam is a factor oj/a>q larger than the total ^e 

current. In fact, the total surface current given by (9.62a) is e q u a i ^ 
total volume current in a small-radius confined-flow beam, that is, ira 
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FIGURE 9.9 
Electric field lines associated with ac space-charge bunching in (a) a beam with confined (low, 
(b) an unfocused beam. 

where J, as given by (9.60) for confined flow has a peak amplitude equal to 
that of 7S if we replace 7,(£„a) by /3 na/2. We therefore conclude that both 
types of beams are about equally efficient, at least for short drift spaces, 
where beam spreading would not be important. It is apparent that ac 
space-charge bunching is an important mechanism in the production of 
high-density ac currents in the velocity-modulated beam. For confined flow 
the ac space-charge bunches are formed within the beam, and for the 
unfocused beam the ac space-charge bunches appear on the beam surface in 
the form of a rippled boundary. A sketch of the electric field associated with 
the two beam models is given in Fig. 9.9. The positive charge shown is only 
an equivalent charge that accounts for a net migration of electrons out of 
the region, leaving a net negative charge density less than p0 , which can be 
viewed as a superposition of a small positive charge density on the constant 
dc background density ~p0. 

In judging the relative amplitudes of the volume current and surface 
current in an unfocused beam, the ratio to /u> must be known. Usually (oq 

does not differ by more than a factor of £ or so from the plasma radian 
frequency wp. In Fig. 9.10, fp = <np/2ir is plotted as a function of the beam 
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FIGURE 9.10 
Plasma frequency as a function of 
beam current density. 

current density J0 in milliamperes per square centimeter for several values 
of beam-accelerating voltage V. Note that fp is proportional to JQ/2/V1/4. 

7 T W O - C A V I T Y K L Y S T R O N 

A schematic illustration of a typical two-cavity klystron amplifier is shown 
in Fig. 9.11. The first cavity is excited by the input signal, which can be 
coupled to the cavity by a coaxial-line loop or a waveguide aperture. The 
first cavity acts as the buncher and velocity-modulates the beam. The 

Input siqnol Output signol 

Electron 
gun 

, |l l„_, Buncher 
covity 

Catcher 
cavity 

node 
Cathode 

• " • 

--z---Th t TTS •=-=-T 

• " • 

--z--- •=-=-T 

FIGURE 9.11 
The two-cavity klystron amplifier. 
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second cavity is separated from the buncher by a drift space of length /, 
which should ideally be chosen so that the ac current at the second 
(sometimes called the catcher) cavity is a maximum. The second cavity is 
thus excited by the ac signal impressed on the beam in the form of a velocity 
modulation with a resultant production of an ac current. The ac current on 
the beam is such that the level of excitation of the second cavity is much 
greater than that in the buncher cavity, and hence amplification takes place. 
The output signal is taken from the second cavity. If desired, a portion of 
the amplified output can be fed back to the buncher cavity in a regenerative 
manner to obtain self-sustained oscillations. 

One form of klystron analysis begins with an assumed lumped-parame
ter equivalent circuit for the output cavity and evaluates the current flowing 
in this equivalent circuit from an electron beam passing through the cavity 
by calculating the rate of change with time of the charge induced on the 
grids at the center of the cavity. This analysis gives a correct picture of 
klystron behavior, but it fails to illustrate the mechanism of the electromag
netic field interaction with the beam as it actually takes place within the 
cavity. A more satisfactory approach is to begin with a field analysis that 
will eventually lead to an equivalent Circuit and the basis for a circuit-type 
analysis of the problem. This is the approach presented below. We first 
evaluate the field set up in a cavity by the passage of an ac current through 
the cavity. This leads to an equivalent circuit for the cavity in the vicinity of 
one of the resonant frequencies. The next step is to evaluate the response of 
the cavity (or its equivalent circuit) to the passage of a velocity-modulated 
electron beam on which the ac current is in the form of a propagating 
current wave, This leads to a definition of the beam coupling coefficient, 
which is a measure of how effective the modulated electron beam is in 
exciting a response in the cavity. The third step, which we have presented in 
Sec. 9.6, is the evaluation of the ac current produced on an initially 
unmodulated electron beam when it passes through a cavity in which an 
oscillating electric field exists. These three phases of the analysis substan
tially provide the complete picture of the operation of a klystron. 

of a Cylindrical Cavity 

In a klystron cavity it is desirable to have a small grid spacing in order to 
make the beam coupling parameter M = [sin([iud/2))/(p(ld/2) close to 
unity. The transit angle fiQd = wd/v0 should be kept small. In addition, a 
high cavity Q is desired, and this leads to the use of a reentrant cavity. The 
analysis of the modes in a cavity of this configuration is difficult, and 
therefore we shall consider instead an ordinary cylindrical cavity. The 
principal features involved in the excitation of the latter type of cavity by a 
modulated electron beam are the same as for the reentrant-type cavity. 

The cylindrical cavity to be studied is illustrated in Fig. 9.12. The 
cavity radius is b, and the cavity length is d. Two small cylindrical holes are 
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8FIGURE 9.12 
Cylindrical cavity excited by an axial current. 

cut in the center and replaced by grids to allow an electron beam to pass 
through. The beam radius is a, and is considered very small compared with 
the cavity radius ft. We shall first study the excitation of this cavity by an 
axial ac current of the form 

Jz = JeJml 0 < r s a (9.64) 

Later on we shall consider a traveling-wave current JeJU,'~-ip,>z of the type 
existing on a velocity-modulated beam and shall find that, for the latter, the 
cavity response is modified by the beam coupling parameter M. 

In view of the uniformity of the current in the z direction and the axial 
symmetry, only TM I l m 0 modes are excited. These have Er, E^, Hr, and H. 
equal to zero. It is convenient to introduce the vector potential Az, which is 
a solution of 

V2A. + kU, = O^z 
(9.65) -H0J 0 < r < a 

,0 r> a 

At /• = b we have A2 = 0, so that Ez will vanish on the boundary. From i 
we obtain 

(9.66) 
Et = -ju)Az 

1 0A, 

tiQ dr 

(9.666) 

since there is no z or <£ variation. 
The natural modes of the cavity are solutions of the equation 

where kQm0 = a.0„,o<Mo*o>1/2 and <o0m0 is the resonant frequency 
T M 0 m 0 mode. With no z or <t> variation, Vz becomes 

(9.67) 

of the 
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and the solutions to (9.67) are Bessel functions. That is, 

A2.0mo = CmJo(^jf) (9.68) 

where p0„, is chosen so that =/0(p0m) = 0, Cm is an arbitrary constant, and 
for no axial variation k0m0 = p0m/b (Sec. 7.4). 

For a solution to (9.65) we may choose] 

. v /-. r t Pomr \ 
A;= L C m J 0 ( — ) (9.69) 

since the Bessel functions are analogous to the sine and cosine functions 
and may be used as such in a Fourier series expansion of the vector 
potential. When we substitute (9.69) into (9.65), we obtain 

£ Cn,(k
2
0m0 - * g ) j 0 ( ^ j = M o J 0 < r < a (9.70) 

since (9.69) is a solution of (9.67). 
The following orthogonality property holds: 

n ¥= m 

n = m 
(9.71) 

Thus, if we multiply both sides of (9.70) by rJ0(p0mr/b) and integrate, we 
obtain 

r
 2 ^ o f° ,, IPnmr\ 

JM¥) - * 
2uoJaJt(Poma/b)c2  

Pom W 0 m 0 ~^~ O) 
(9.72) 

after replacing k0 by w/c, and similarly for kQm0. This equation holds for 
all values of m. We see immediately from this expression that only for those 
modes for which w = w 0 m 0 will the excitation amplitude be large. In addi
tion, we see that, if co = w 0 m 0 for a particular value of m, C,n becomes 
infinite. An infinite response occurs because the cavity is ideal and is driven 
at one of its natural resonant frequencies. A practical cavity has a finite Q 
and will not respond with an infinite amplitude. As shown in Chap. 7, the 
effect of a finite Q is to replace the resonant frequency by 

1 + 2 Q 0 m 0 ) 

where Q 0 m 0 is the Q of the T M 0 m 0 mode. The unloaded cavity Q is given 
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by (7.57) as 

Q = P°n'C 

c„, = -

(1 + b/d)w0m08, (9.73) 

Thus the excitation amplitudes for a cavity with finite Q are given h 

2Mo<fc/cV>(p0mq/6)  

PamM?(p0m)(<o0m0 + w)(w - w 0 m 0 - > ( ^ / 2 Q ^ ) ' ( 9 7 4 ) 

If we choose to = to0i0, then C, will be large and all the other C win k_ 
small. In this case 

, n i l P ' n r \ 2 >oO '^ 3 J r
1 ( / J 0 1 a /6 )Q / p 0 I r x 

A . = C,J 0 ( — J - 6 V f ( p o i ) w 3 ^ o ( - ^ - ) (9.75) 

where w and Q now refer to the TM0 1 0 mode. Note that Az is proportional 
to the Q, and hence a high Q is desirable. If the cavity is coupled to an 
external load, we must replace Q by the loaded Q, Q,. 

The total ac current is 7 = wa2J. Also, since a « 6, we can replace 
J\(Pa\a/b) by p01a/2b. In the vicinity of the resonant frequency w010, that 
is, for to = w010 + A to, we find that the electric field E, is given by 

* - -J**. = o ., f / J " ( P ° i r / 6 ) — (9.76) 
' 27r6 2 6 0 J , 2 (p O I ) (Ato-yto 0 1 0 /2Q) 

If we introduce an equivalent voltage V0 as the line integral of Ez across the 
cavity gap at r = 0, that is, Vn = -E,d, we may define an admittance Ye for 
the cavity as follows: 

y.-v.-^'^AJ^w) (9") 

For a lumped-parameter LCG0 circuit with resonant frequency w010 = 
( L C ) ~ 1 / 2 as in Fig. 9.13, we have 

/ 2Aa> 
y„, = Gn + 2jC\co = G0\l+j Q\ 

where Q = o>u l0C/G0 . Comparison with (9.77) shows that the equivalen 
cavity conductance G0 is given by (note that e0 = Y0/c) 

, » „ r 2 , «oio (9.78) 
G0 = Trb2Y0J{(p01)-^ 

FIGURE 9.13 . j ^ , 
Equivalent circuit of excited cavity with no to < 
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The above equivalent circuit thus seems a possible circuit to represent 
the cavity in the vicinity of the resonant frequency w0]„ of the TM01„ mode. 
However, we must show that it correctly accounts for the properties of the 
cavity even in the absence of the beam current /. 

For the TM0U, mode, the energy- stored in the electric field is given by 
[we assume E, = Ju(p0ir/b)] 

4 -"n Ai -'M 
—— /• dr d<b dz = —7-b'2 dJ'f (p01) 

4 •'o -'o •'o 

The corresponding voltage across the cavity at r = 0 is V = Etd = d. Since 
Q = 2aiWt,/Pl, the power Joss in the cavity is given by 

2»K 
Pi-

Q 

If we define a conductance G so that Pt = \V'~G, we find that 

G = 
2P, 4 ^ . Tre0b

zo>mJ?{pas) 

V2 = = G, 
V'Q dQ 

since <o = w010. Thus the two definitions for the cavity conductance lead to 
consistent results. 

If required, C and L are given by tonwC = GG„ and to'fIU)LC = 1. 
Thus L and C can be found from the known values of Q and G„. 

Cavity Excitation by a Velocity-Modulated Beam 

In a velocity-modulated unfocused beam the ac current is predominantly the 
ac beam surface current, Is = 2traJs, where Ja is given by (9.61) since 
co :» ioq for typical beams. The z dependence of the current is sin (i^ze '""J 

when 2 is measured from the output grid of the buncher cavity. The output 
cavity should be located a distance / = (n + ,jXA,;/2) from the input cavity 
so that sin f}qz will equal unity and Is will have a maximum. Because 

fiq •« /3„, we have fi d <K 1 and the ac current variation with z can be 
taken as e^'^'e'"^ in the output cavity, where we have replaced z by 
/ + z, so that the new origin is at the center of the output cavity. Thus the 
cavity is excited by a traveling-wave current. 

When the ac current has a z dependence, all the TM l )m„ modes are 
excited. The solutions for At are thus of the form 

G„,„t/,) 
/ Pi>, 

We then have 

E E c„ Po„ tlTT 

~d~ 
-k] 

cos 
riirz 

~d~ 

Jo 
Pu. n-z 

cos—— = ftnJ2(r, z) 

(9.79) 
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in place of (9.70). However, if OJ = <"0I0, only the m = l , 7 , = Q 
mode is excited with a large amplitude. To find CU), we multiply (Q 7 0l° 
rJ0(p0mr/b)cos(n7rz/d) with m = 2, n = 0 and integrate over r anY 
obtain and 

£-10 
2M 0 

(ki10-ki)by?(Poi)J0 
/ Jt(r)rJ0 dr ~e-jB, 

J-d/2d 
dz 

This latter result shows that the excitation amplitude is modified bv 
factor 

/ : 
d/2 ~e^dz~ 
d/za 

sin(p0d/2) 

p0d/2 
M 

which is the beam coupling factor. The integral over r may be replace 
by aJs without the factor e 
J„(p{na/b) ~ 1 for a •«: 6. Hence, for w = <DOU 

r = 0, 

jM(jIx)e-^' 

~jPi,z since J2 = 0 except at r = a 
\a>, we obtain for E„ 

E = 
2 - 6 % j ; - i ( p 0 1 ) ( A w - . / W o i o / 2 Q ) 

where 7, is obtained from (9.62a) and is 

7, = 27ta — M / ^ / V * ) ^ TT-a^e, 
<0% 

'doMVe 

(9.80) 

(9.81) 

since for /30a «1 we have /,(/30a> = /3 0a/2 and are assuming that an 
optimum length / of drift space is employed so that sin Pql equals unity. If 
we compare (9.80) with (9.76), we find that the only change in E, is 
replacing the current / by 7, and multiplying by the beam coupling 
coefficient M and an irrelevant phase factor e~JI>"'. 

The voltage developed across the cavity is modified by the factor M-
Consequently, the effective current that flows in the equivalent circuit I 
product the voltage V is 

I,. MI, <M»J 
from which it is seen that the term beam coupling coefficient is c l J ^ 
appropriate. For good coupling between the beam and the cavity « 
transit time [i0d is required. . can be 

When an external load is coupled to the output cavity., 1 T h e 

represented by an additional conductance GL in shunt ^t "where 
equivalent circuit of the output cavity is shown in Fig. 9- - er 

7f = M7, is the equivalent current that flows in the circuit. 
supplied to the external load GL is 

(9.83) 
Po= o 

\IXG, 

2 (G0 + G,y 
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fe = MI, 

la) 1*1 

FIGURE 9.14 
(a) Equivalent circuit of output cavity: (6) equivalent circuit of input cavity. 

A similar equivalent circuit may be assumed for the input cavity, as in 
Fig. 9.146. For identical cavities the cavity conductance is G0 for both. If we 
assume that the beam produces negligible loading on the input cavity, the 
total conductance in the equivalent circuit of the input cavity is G0 + G 
where Gg is the equivalent conductance of the signal source.! 

The input power to the buncher cavity at resonance is 

1 H/G0 

P i n " o ' » .2 (9-84) 

which results in a voltage 

2(Gg + G„y 

L i IP 
1/2 

developed across G0. This is also the velocity-modulating voltage. We can 
now evaluate the power gain, or amplification, of the klystron. Combining 
(9.81), (9.83), and (9.85), we obtain 

A= £o = \I/GL(G0 + G^ 

Pin \IJ2G0 \ G0 + GL 

.'. Tra%p0*>l ' MAGL 

G0(G0 + GLf 

a>p o>p V2 M4GL 

C «J GQ(G0 + GL)' 
7ra2Y0p0-^ -J- | n i n \ , (9.86) 

tThe conductance representing the beam loading on the input cavity is given by G* = 
l / 2 ( I0/V)M[M - cos(fS„d/2)] and is easily taken into account by adding it to G„ + GM when 
it is not negligible Note that /„ is the dc beam current and V the dc accelerating voltage. See 
Spangenberg, op. cit., chap. 17. 
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As an example consider G, = G„ and a beam radius a = ( 
also assume a beam current density of 100 mA/cm 2 and an ^ ^ *"* 
voltage of 1,000 V, we find, from Fig. 9.10. that w = i 02?wvP , t i f t 8 
/•= 10'", a. = 6.28 x 10"> and /3() = w / c 0 = 33.6 rad/cm. 'Hence * F ° r 

6.72. Since u>p <e w, we have jia - /iaa, and Fig. 9.6 then sho 
ajq * 0.1OJP. Using these data, the power amplification A is foiinlT t h a t 

0.094(y i )/G„)aM4 . To evaluate G0, we make use of (9.78) and '9 7 s l ° ^ 
have p 0 l = 2.405, and since p n i = &0106, we get ' ™e 

2.405c 
6 = 6 . 2 8 X 1 0 ' ° = 1 1 5 c m 

To keep p0d small, we must choose d very small. If we take c/ = 0 05 
find = 1.68 and M'1 = 0.62. It would be desirable to make d even small'" 
but then the Q, and hence G0, become small for the type of cavitv we ar ' 
considering. For a copper cavity we find from (9.73) that Q = 785, which is 
not very large. If a reentrant-type cavity were used, a Q about 10 times 
larger could be obtained. Using (9.78) gives G0 = 0.06Vo. The power ampli
fication is thus 16.2, or 12 dB. Considerably higher gain would be obtained 
by using a reentrant-type cavity since d could then be made smaller and 
still a high unloaded Q maintained. However, even with the nonoptimum 
cavity that we have considered, the gain is quite good. For the particular 
example we have evaluated, the beam loading conductance Gh is very small 
compared with the cavity conductance G0. For a more efficient cavity with a 
much higher unloaded Q, the cavity conductance G0 would be much 
smaller and the beam loading conductance Gh might not then be negligible. 

In order to obtain greater power gain than can be obtained from a 
two-cavity klystron, multicavity tubes are used. The gain increases exponen
tially with the number of cavities employed. In the multicavity klystron the 
first cavity is again used to provide the initial velocity modulation of the 
beam. The last cavity in the chain is used as the output cavity. ' 
intermediate cavities are kept unloaded by any external circuits and used t 
increase the modulation and hence the ac current on the beam. Power g 
of 50 to 60 dB can be achieved with multicavity klystrons. 

9.8 R E F L E X K L Y S T R O N 

The reflex klystron is an oscillator tube with a built-in feedback m e c h a
£ " J ^ f 

It uses the same cavity for bunching and for the output cavity. A ske c ^ 
the reflex klystron is given in Fig. 9.15. The operation is as follo,*"Vu,aied 
assume an initial ac field in the cavity, the beam will be v e l o c l t y " / n < T e a m is 
as it passes through the cavity. Upon entering the drift space, the ^e 

decelerated and reversed (reflected) by the large dc field set up - j e t0 

repeUer or reflector electrode at potential - Vr. Thus the beam is ^ 
pass through the. cavity again, but in the opposite direction. .v ^e 
choice of the reflector voltage Vr, the beam can be made to pass tnr 
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FIGURE 9.15 
The reflex klystron. 

cavity on its return flight when the ac current phase angle is such that the 
fieid excited in the cavity by the returning beam adds in phase with the 
initial modulating field. The feedback is then positive, and oscillations will 
build up in amplitude until the system losses and nonlinear effects prevent 
further buildup. 

When the velocity-modulated beam enters the drift space, it is sub
jected to a constant decelerating field V,./s, where s is the cavity output 
grid-reflector spacing. As a result, the beam propagation constant /30 = <o/v0 

is gradually reduced to zero, and then increased back up to - / 3 0 . The total 
phase change undergone by the ac current on the beam will be given by 

B = 2f",p0(z)dz 

where zm is the maximum distance an electron can penetrate into the drift 
space. We can evaluate I) in terms of the transit time T for an electron to 
return to the cavity. We have, in the drift space, 

dva( z) 

dt 
= --q~ 

s 

which integrates to v0(z) = w0 — T\tVr/s. Hence 

Vr T 
vQ(zm) =vo-r> — ^ =0 

which gives T / 2 = v0s/r)Vr. The return time is equal to T/2 also, so that 

6 = wT = 
2v0sw 

(9.87) 

If we let Vg be the accelerating-gap ac voltage, the ac beam current 
reflected back through the cavity is given by (9.62a) when fi0z is replaced 
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by 0 and /3,2 by Pq0/Po = taHd/u. Thus 

JTra'^PoPoMV wO 
/, = - sin -JL-e~J" 

m i to 

where we have approximated /,(/30a) by (S0a/2. In a reflex klystro 
usually quite small, so that sin<w(/0/W may be replaced by u> 0/°° Tk8 

effective current for excitation of the cavity is /e = 7,Af, and is give ^K 

Bo 

'oV„ 
given by 

f>e^-=-fM^sine+jcose) (9.88) 

, 2 where 7„ is the total dc beam current Tra2p0u0 and Va is the acceleratin 
voltage from which v% = 2nV0. 

The ac electronic admittance of the beam is denned by 

Y. = — = -~6(siti0+jcos0) (9.89) 

The equivalent circuit of the reflex klystron consists of the electronic 
admittance Yc in shunt with the equivalent circuit of the loaded cavity, as in 
Fig. 9.16. Oscillations can take place when the net conductance is less than 
zero, or more specifically when 

/ 2 Aw 
ye + (G L + G0) 1 + 7 QL\ =0 

\ w 010 
(9.90) 

where QL is the loaded Q of the cavity. Since 0 is a function of the reflector 
voltage, as given by (9.87), oscillations depend on an appropriate choice of 

FIGURE 9.16 
Equivalent circuit for a reflex klystron. 

Oscillations 

-Y 

FIGURE 9.17 ^ 
4^mi».or,ro Aitumm for a re 
Admittance diagram 
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n = \ 

'iA A # w i c ^ v r 

Vr 

FIGURE 9.18 
Reflex-klystron tuning curves. 

Vr. In Fig. 9.17 we have plotted the admittance Y in polar form as a 
function of 6. Note that \Ye\ increases with 6. On the same plane we have 
plotted the negative cavity admittance 

/ 2 Aw 
- F = -(G0 + GL)\l+j QL 

which is a straight line parallel to the jB axis at G = - ( G 0 + GL). provided 
we assume Ga,GL,QL independent of w in the vicinity of the resonant 
frequency w010. The construction shows that oscillations are possible for 6 
in the vicinity of 3 i r /2 , 7ir /2, etc., since in this region Gc + G0 + GL < 0. 
In addition, oscillations will take place for a range of values of Vr about the 
points that make 6 = 3TT/2 + 2nir. Each value of n gives a mode of 
oscillation. In typical klystrons as many as seven or more modes of oscilla
tion can be obtained. For stable oscillations Yc + Y = 0, and consequently 
the frequency of oscillation varies as Vr is varied to tune across a given 
mode. Typical tuning curves giving power output and frequency as a 
function of reflector voltage are shown in Fig. 9.18. Physically, the various 
modes arise because of the increased transmit time for electrons into the 
drift space when Vr is reduced. Oscillations occur when the transit time T 
equals (| + n)f ' or \ + n ac periods since the ac current has the proper 
phase under these conditions. 

Commercially available reflex klystrons range from small-size units 
producing 100 mW of power up to units capable of delivering several watts 
of power under continuous operation. Klystron amplifiers employing two or 
more cavities are available in a size range from units capable of handling a 
few hundred milliwatts up to several hundred kilowatts of amplified output 
power. 
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9.9 M A G N E T R O N 

This section is devoted to a qualitative description of the magnetror 
tor. The basic structure of a magnetron is a number of identical reson 
arranged in a cylindrical pattern around a cylindrical cathode, as show, °*' 
Fig. 9.19. A permanent magnet is used to produce a strong magnetic fi T 
normal to the cross section. The anode is kept at a high positive voltap v 
relative to the cathode. Electrons emitted from the cathode are accelerator 
toward the anode block, but the presence of the magnetic field BQ produ 
a force ~evrB„ in the azimuthal direction which causes the electr 
trajectory to be deflected in the same direction. If the cathode radius is a 
and the anode radius is 6, the potential at any radius r is V(r) = 
V0Un(r/a)]/lln(b/a)]. The velocity of an electron at this radius is given by 

v(r) = \2vV(r)) 1/2 

The electron can execute circular motion, at the radius r, about the cathode 
if the outward centrifugal force mv%/r and the radial electric field force 
-eEr = eVa/[r ln(6/a)] are exactly balanced by the inward magnetic force 
ev(r)B0. For circular motion at radius r, we therefore have 

mv2 eVa 

+ —-—; r = evBn 

r rln(b/a) 

or since v = (oer, where oe is the electron's angular velocity, 

vVa 

We ~ VBQUe + r2\n(b/a) 
= 0 

(9.91a) 

(9.916) 

For later reference, we solve (9.91) for the cathode-anode acceleratin 

Coouo 
l ine 
output 

Anode block ot 
potentiol Va 

Interaction 
space 

Cathode Heduced side view 

F IGURE 9.19 
A multicavicy magnetron. 
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voltage VQ: 

/ . b \ I w. S 
(9.92) 

/ „ M / w,. 
va = kr*fa- * o " 

\ a / \ »J 
This value of V*a will permit an electron to execute circular motion at a 
radius r and with an angular frequency a»e. If now there is present an ac 
electromagnetic field that propagates in the azimuthal direction with a 
phase velocity equal to the electron velocity wt.r, strong interaction between 
the field and the circulating electron cloud can take place. The possibility of 
this type of electromagnetic field being present is discussed below. 

The multicavity magnetron is a periodic structure in the azimuthal, or 
<l>, direction. If there are N cavities, the period in </> is 2—/N. According to 
Floquet's theorem, each field component can be expanded in the form 

n = —x 

= L $„Lr)e~JM'-Jnm (9.93) 
n = — x 

where the period p ~ 2—/N. But since the structure closes on itself, 
(Mr, 2TT) = i/>(r, 0). The only possible values of (i that will make [i'2- equal a 
multiple of 2-rr are 

fr» = m m = 0, ± I , ± 2 , . . . (9.94) 

With the value of /3 specified, a corresponding frequency w becomes speci
fied, say iom, which is the resonant frequency for the mth mode. In other 
words, when w = mm, we obtain a value m for p"m. Thus a typical field 
component will have the form 

x 

<l>in(r,<t>)ej"-"'= L ^ ( r )«-.*«+<«*»+*.' 
n - « 

The phase velocity in the azimuthal direction 4> for the nth spatial har
monic of the mth resonant mode is 

o> ,„ r 

{3„in m + nN 
(9.95) 

at the radius r; that is, angular phase velocity is wm//3,„„. 
The usual mode employed in a magnetron oscillator is the TT mode, 

where the phase change between adjacent cavities is TT rad, or 180°. Each 
cavity with its input gap acts as a short-circuited transmission line a quarter 
wavelength long, and hence has a maximum electric field across the gap. For 
the TT mode the field is oppositely directed at adjacent cavities. A sketch of 
the electric field lines in two cavities is given in Fig. 9.19. For the TT mode, 
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Pm4> = mt{> must equal -n for a change in <}> equal to one 1 
Hence m = N/2, and the phase velocity for the rcth spatial h 2~/N-
becomes hai"'nonic 

p.nN/2 N(l + 2n) (9.96) 
In order to obtain interaction between the electron cloud and 

the spatial harmonics at a particular radius r, we must choose V 
w„r = v(r) = v p.nN/2 or 

'.v 2 

AT(1 + 2n 

v- So that 

(9.97) 

The required voltage Va to obtain synchronism between the electron cloud 
and the ac field may be found from (9.92). If we choose a value of r midway 
between the cathode and anode., that is, r = (b + a)/2, and note that in 
typical magnetrons b/a is small enough so that ln (6 /a ) = 2(6 - a)/ 
(6 + a) , we obtain 

V = 
62 - os 

m nN 
B0- m + nN 

in general, and 

K = 
2w N/2 6 2 - a 2 

N(l + 2n) 
B0-

2(0 N/2 

nN(l + 2ra) 

(9.98a; 

(9.98ft) 

for the - mode, where m = N/2. 
From a physical viewpoint the synchronism between the electron cloud 

and the rath spatial harmonic and the ac field implies that those electrons 
located in the field where £,,, acts to slow down the electrons will give up 
energy to the field. As the electrons slow down they move radially outward 
[see (9.91)], and eventually are intercepted by the anode. Electrons that are 
accelerated by the ac field move in toward the cathode until they get into a 
proper phase relationship such as to give up energy to the field. When 
latter happens, they begin to slow down and spiral out toward the m^°^ 
Thus the only electrons that are lost from the interaction space are too; 
that have given up a net amount of energy to the ac field. g 

The ac power may be coupled out from one of the cavities 
coaxial-line loop as shown in Fig. 9.19 or by means of a waveguide. 

9.10 O-TYPE TRAVELING-WAVE T U B E 

The ordinary, or O-type, traveling-wave-tube employs a m a g " e ' s s e d 
cused electron beam and a slow-wave structure such as a helix, disc ^ ^ 
Chap. 8. The electron-beam velocity is adjusted to be approximately 
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the phase velocity for an electromagnetic wave propagating along the helix. 
Under these conditions a strong interaction between the beam and the field 
can take place. From another viewpoint we can consider the presence of the 
slow-wave circuit to modify the space-charge wave-propagation constant in 
such a manner that it becomes complex and represents a growing wave. We 
shall present a more satisfactory picture of the gain mechanism after we 
have analyzed a particular tube configuration in detail. A full appreciation 
of the physical principles involved is somewhat difficult to obtain without a 
detailed study. 

For simplicity we shall use the sheath-helix model discussed in Sec. 
8.10 and an axialiy confined flow beam model (S„ infinite) of the type 
treated in Sec. 9.3. In addition, we shall assume that the beam completely 
fills the region interior to the helix. This assumption is not true in practice, 
but we make it, nevertheless, in order to simplify the analysis. The basic 
principle of operation of the tube is not changed by this assumption. The 
traveling-wave tube is operated in an axialiy symmetric mode; so all field 
quantities will be independent of the angle <f>. 

Figure 9.20 illustrates the construction of a typical traveling-wave 
tube. The main components are an electron gun, a helix, a solenoid to 
produce the focusing field B„, and suitable input and output ac coupling to 
the helix. The helix is taken to have a radius a and a pitch angle \l>. It is 
approximated by a cylindrical sheath with infinite conductivity along the 
direction oi the winding and zero conductivity in the perpendicular direc
tion. 

In Sec. 8.10 it was shown that both TM and TE modes were required 
in order to satisfy the boundary conditions at r = a. However, for a beam 
with axialiy confined Row, where only a z component of ac velocity is 
permitted, the TE modes are not affected by the beam since these have 
Ez = 0. Hence the field components for the TE mode for n = 0 are those 
given by (8.72) in Sec. 8.10. Similarly, for r > a, that is, outside the helix, 
the field components for the TM mode are those given by (8.72) in Sec. 8.10. 

Cooxiol-line 

F IGURE 9.20 
O-type traveling-wave tube. 
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Inside the helix region the TM field in the presence of the beam is that av 

in Sec. 9.3. However, the pertinent equations are repeated here for C O n^n 

nience. The vector potential A, is a solution of (9.16a), 

Vt
2A, + p2A, - 0 

where 

* » - ( « - * • ) 1 -
0o 

to I \Po-P 
(9.99) 

For the present problem p2 will turn out to be negative; so we shall replace 
p2 by -g2. The solution for Az is then proportional to I0(gr). Since E is 
proportional to A., we can choose 

K = a0IQ(gr)e-J,i* 

where a„ is an amplitude constant. The field components Er and Hit, are 
readily found from Maxwell's equations; i.e., 

j/i !>E: k0 
E-=~2 U^~ Hi.-~^YoEr r p2 - K •»• P 

Thus we can write the following expressions for the fields in the two 
regions for the n = 0, or axially symmetric, case: 

For TE modes, 

H 2 = c 0 J 0 O ) e - ; * 

Mr=~cQUhr)e -jez r <a 

E„,= -J-^c0ll(hr)e-^ 

Bz~dQKa(kr)e -jfiz 

Hr= -j±d0Kx(hr)e-^ r>a 

E.-J-^dnKl(hr)e->» 

file:///Po-P
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For the TM mode, 

Ez = a0I0(gr)e-^ 

JPg 
h 

Er=
J-^-a0I1(gr)e-^ r <a 

E,_ = bnK0(hr)e ~&* 

E r = -^b0Ki(hr)e-^ j- > a 

H„= -J—±bliKi(hr)e^ 

where h2 = p2 - k2. 
The boundary conditions at r = a for the sheath helix are given by 

(8.69). For the present problem they yield 

-juv-u 

h 
c0 / , ( / ia)cos tli + a0Ia(ga)sin ip = 0 

d0K1(ha)cos \\i + b0KQ( ha)sin tli = 0 

and 

/"'Mo 
a0h(§a )cos I/I + ——cu/,( ha )sin 0 

= bnK0( ha)cos i/» : — d 0 / f [(/ia)sin i/< 

JW£ 0 g 
c0I0( ha.) sinib + 2 anI{(ga )cos i/> 

= d 0 K 0 ( Aa)sin iA —&„/?,(/m)cosi/r 

If we solve for c0 and c/0 from the first two equations and substitute into 
the latter two equations, we obtain two homogeneous equations for a0 and 
b0. For a nontrivial solution the determinant must vanish. Equating the 
determinant to zero gives 

8 
Ii(ga) /iatan2<// 

I0(ga) ko 

Ip(ha) K0(ha) 

It(ha) + K,(ha) 
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For most traveling-wave tubes the parameters are such th 
ha are large. In this case the ratio of the Bessel functions *' 1 
approaches unity, and we obtain m ^100 ) 

h3 

( 9 - I O I Q ) 

h3 

g - 2 - 2 tan2 *-h 
"o 

From (9.99) we have 

g2 = h2 1 - ^ 
in 

Po 
Po~P 

and hence 

1 - - S 
Po 

*> I \Po-p 

211/2 
h2 

= 2~tan2tlt- 1 (9.1016) 

where h2 = fi2 - k\. The above is a sixth-degree equation in p, and cannot 
be solved exactly. 

Since we are dealing with a slow-wave system, /32 will be large 
compared with k2, and h2 = fl2. In addition, we can equate k0cotili to 0„ 
since the phase velocity of the helix in the absence of a beam is chosen equal 
to the beam velocity v0. That is, k0 esc 4i is the propagation constant for the 
helix, and for t// small, sin iji can be replaced by tan iji. We thus obtain 

to 

Po 
Po-P 

2p2 

~PJ 
- 1 

We now assume that /3 = y30(l + 8), where 8 is small. With this substit 
tion we get 

^ = 82(1 + 48 + 282f 

= 4<56 + 165 s + 20S4 + 8 5 3 + 8s (9.102) 

of 5-
For 8 small, we can drop all but the term involving the lowest power 
This is the cubic term, and thus 

The three solutions for 8 are \(w„/<o)2/3 multiplied by the cube 
of 

file:///Po-p
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- 1, which are - 1 and (1 ±7'v/3 ) /2 . Hence 

* " I 
% > 2 ' 

1 / 01. \ 2 / 3 

(9.103a) 

(9.1036) 

(9.103c) 

Since top/co is small, the assumption that 5 was small is justified. The 
corresponding propagation constants are 

JPt =JPo 

JP±=JPu 

JP3=.)P0 

1 ">„ 2/31 
1 - - - * 

2 w ' 

1 W n 
,2/3 

1 + - £ 
) < . 4 w ) < 

—
i W n 

,2/3 
1 + - P_ 

) < 4 CO ) < 

^ (W73) 

i +7 fVf) 

(9.104a) 

[9.1046] 

(9.104c] 

The first solution corresponds to a wave with a phase velocity slightly 
greater than the beam velocity. The other solutions have phase velocities 
slightly less than the beam velocity, and in addition jfS2 corresponds to a 
decaying wave, whereas ,//33 corresponds to a growing wave. The growth 
constant ag is 

V3 
« , - * - T - — 

wr 
2 / 3 

(9.105) 

If all three waves are present at the input, only the latter wave will 
predominate at the output. 

There are additional solutions to the eigenvalue equation (9.1016). 
We should expect a wave propagating in the -z direction, with (i ~ 
— kQ csc >li ~ — 0O, which is not significantly perturbed by the beam. We 
therefore assume that fi = -jG„(l + 5) and consider 8 small. Substituting 
into (9.1016) and retaining the smallest power term in d give 

5 = -
1 

32 CO 

Hence a fourth solution is 

JPA = -JPo 1 -
1 / 

32 = -JPo (9.106) 

The remaining two solutions of (9.1016) give values for /3 approximately 
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equal to ±k0. However, the eigenvalue equation (9.1016) is a 
tion to the true eigenvalue equation (9.100), obtained by assumi °xinia-
and ha are large and that fi is large compared with k„. Therefore h Sa 

solutions p = ±k0 to the sixth-degree equation (9.1016) are not , t w ° 
of (9.100) and do not correspond to physical waves. o lu tions 

The ac current and velocity are given by (9.14) and ( 9 . 1 3 Q ) a<? 

u0(Po-P) f9"207) 

» (fio-P)*° ' ( 9 1 0 8 ) 

v = 

J = -J- —snE 

These equations show that v and J are negligible for the three waves for 
which p is significantly different from pn. Thus v and J arise from the first 
three slow waves discussed. The fourth wave can be excited by reflection at 
the output end of the tube. If it is reflected at the input end also, it will be 
amplified and, with continued reflection and amplification, will result in 
oscillations. To avoid this undesirable feature, an attenuating resistive vane 
or an integral ferrite isolator is built into the traveling-wave tube. 

At the input end we must have the total ac current and velocity 
associated with the three forward slow waves vanish. Thus the initial 
conditions at the input z = 0 are 

t/[ + J2 + J3 = 0 vl + v.2 + v3 = 0 

When we assume that 

Ez = I0(p0r){Cie-'^ + Ctf-J*" + C3e--"^) 

and make use of (9.108) and the initial conditions, we find that 

2
 = g/Zir /3 _* _ e - j 2 - / 3 

Consequently, all three waves at the input have equal magnitudes; i.e., « 
find that Gj = C2 = C3. The growing wave will have an amplitude equal ^ 
one-third that of the input signal. Therefore the amplitude gain c 
traveling-wave tube is 

E0 1 , - = - e « e ' 
E, 3 

where ae is given by (9.105) and / is the tube length. The power gau 
g 

decibels is 
A = 20logO.333 + 20a / l o g e 

= - 9 . 5 4 + 3.75/V 
UJ 2/3 9 l 0 9 ) 
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With the aid of the preceding results we can now describe the physical 
mechanism of the gain. We note that the growing wave has a phase velocity 
slightly less than the beam velocity. This growing wave is the perturbed 
slow space-charge wave. The ac kinetic-power density of the fast and slow 
space-charge waves are [see (9.49), (9.13a), and (9.14)] 

The slow space-charge wave has fis > 0O and hence has a negative ac 
kinetic-power density, whereas the fast space-charge wave has a positive ac 
kinetic-power density. Since the slow wave grows, it therefore loses energy, 
and the conservation theorem (9.49) then requires that the electromagnetic 
power increase. The ac current of the slow wave will have a phase angle 
relative to E, such that Re(E.,.J*) is negative and the current continually 
gives up energy to the field. This may be verified by substituting /33 for /3 in 
(9.14) to obtain 

-f) fel£,/ 
As a further aid to the understanding of the traveling-wave tube, it may be 
noted that it can be viewed as a large number of closely spaced cavity gaps 
operating as a multicavity klystron. The adjacent turns of the helix are then 
considered as constituting a gap. 

The main advantage of the traveling-wave tube over the klystron is its 
relatively broad frequency band of operation. Typical units provide gains of 
30 to 50 dB over an octave or more in frequency. Power-handling capability 
ranges from milliwatts to megawatts. 

M-TYPE TRAVELING-WAVE T U B E 

The magnetron-type (M-type) traveling-wave tube is a linear version of the 
cylindrical magnetron. Figure 9.21 is a schematic illustration of an M-type 
tube using a corrugated, or comblike, slow-wave circuit. The electron beam 
is much wider than it is thick and approximates a sheet beam. A potential Va 

is applied between the sole and the anode block. A large static magnetic 
field is applied in a direction perpendicular to the beam velocity vna,, and 
the static electric field - £ „ a v arises from the anode to sole potential Va. 
The electrons moving upward from the cathode at potential Ve are deflected 
by the magnetic field into a beam moving in the positive z direction. The 
desired type of flow is the one where there is only a z-directed velocity 
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FIGURE 9.21 
M-type traveling-wave tube. 

Collector 

f 

va(y), which in general is a function of v. Electron flow takes place in a 
crossed E and B field, which is typical of magnetron-type tubes. 

For stable flow, v0(.y)a^ does not vary with z. If we denote by V(y) the 
potential at an arbitrary value of y between the sole and anode block, we 
must have a balance between the magnetic force 

-ev0(y)a, x a , B 0 = -eB0u0(y)ay 

and the electric field force aye<)V/dy. Thus 

nv 

ay 
= v0(y)Bc 

(9.110) 

(9.11D 

The velocity o0(y) may be found from the energy equation 

imv2
0(y)=e(V-Vr) 

The derivative with respect to y gives 

The potential Viy) arises from the applied potential V„ and from ^^ 
space charge within the beam. Under equilibrium c o n d l t 1 0 " ' o f this 
- e ( E + v X B 0 ) acting on an electron is zero. The divergence 
equation thus gives 

(9.112) 
V E 

Pos dvf 
V X B 0 = 0 = - - — + B 0 — 

• negative 
since v = v0a, and B0 = Boa , . In this equation -p0 & the n e g a t i v e 

space charge density and s is a factor giving the fraction o - t i v e j„ns 
space charge which is not neutralized by positive ions. For no y ^ ^ B 
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present, S = 1. If we assume thai S = 1, the set of relations (9.110) to 
(9.112) can hold only if 

2 n S B 2 = I'"11 2 
Or = T »(> = Up 

or me = w;, (9.113) 

as can be determined by eliminating 8V/9y and 9va/9y. When this condition 
holds, the flow is referred to as planar Brillouin flow. 

With the above model for the beam, it is possible to solve for space-
charge waves that can propagate on the beam. In the presence of a slow-wave 
structure, the propagation constants become perturbed and a growing wave 
is produced similar to that in the O-type tube. For a detailed analysis the 
reader is referred to the citations given at the end of this chapter. The 
principles involved are not sufficiently different from those already dis
cussed to warrant inclusion in this text. 

12 G Y R O T R O N S 

Magnetrons and klystrons require resonant cavities to support the electro
magnetic field that interacts with the electron beam. The traveling-wave 
tube requires a slow-wave structure. These structures have dimensions 
linearly proportional to the operating wavelength and become very small at 
millimeter wavelengths. The consequence of having to reduce the dimen
sions as the frequency increases is thai the available area for the electron 
beam decreases and the power output that can be achieved decreases 
rapidly, approximately proportional to l//~2. Thus, at frequencies of 100 
GHz and above, conventional microwave tubes are not capable of producing 
power outputs in the kilowatt range. A relatively new tube, the gyrotron, 
has been developed in more recent years and does not rely on the use of 
resonant cavities or slow-wave structures. In the gyrotron the electromag
netic field interacts with the cyclotron motion of the electrons in a strong 
static magnetic field. When an electron is acted upon by the force of a steady 
magnetic field, its motion in the plane perpendicular to the magnetic field is 
a circular- one. By using a sufficiently strong magnetic field, the frequency of 
rotation, called the cyclotron frequency, can be in the frequency range 
corresponding to millimeter waves. The interaction of a microwave field 
having the same frequency as the cyclotron frequency of the electrons 
results in growing waves. Thus the waveguide through which the electron 
beam passes and which supports the electromagnetic field is not restricted 
in diameter by the need to provide either a resonant structure or a slow-wave 
structure. As a result the fundamental size restrictions of conventional 
microwave tubes are not present in the gyrotron. 

There are three common forms of gyrotron tubes. These are the 
gyromonotron oscillator; the gyro-TWT, a traveling-wave amplifier tube: 
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and the gyroklystron, another amplifier tube. Simplified drawings of the 
three gyrotron tubes are shown in Fig. 9.22. Each tube has a magnetron-type 
electron gun which imparts a high radial velocity to the electrons before 
they enter the high magnetic field region. The large static magnetic field is 
provided by either a liquid cooled solenoid or a superconducting solenoid. In 
the gyromonotron shown in Fig. 9.22a. the interaction region is an enlarged 
circular waveguide that can support many different propagating modes. The 
output is taken from an output waveguide through a transparent window 
which is also used as a vacuum seal for the tube. In the gyro-TWT amplifier 
the input signal is coupled into the input of the interaction region through a 
waveguide as shown in Fig. 9.22/). The input microwave signal provides the 
initial bunching of the electrons in the beam. The input signal is amplified 
in the circular waveguide whose dimensions are large enough to support 
many possible propagating modes. The electron beam is in the form of a 
hollow beam with a radius such that it interacts strongly with only one, or 
at most only a few, of the circular waveguide modes. The gyroklystron uses 
an input and output cavity as shown in Fig. 9.22c. The signal to be 
amplified is coupled into the input cavity. The output signal is taken from 
the output cavity. 

Gyrotron amplifiers that provide power gains of as much as 24 dB and 
output powers as high as 50 kW at 5 GHz have been built. Ferguson, Valier, 
and Symons describe a 5.2-GHz gyrotron tube producing 128 kW of output 
power.t This tube uses an 8-A-65 kV electron beam. Pulsed power outputs 
from gyrotron oscillators have been produced at levels of several hundred 
megawatts. It has been reported that 28-GHz gyrotrons with 200 kW of 
continuous-wave output power are in operation at Oak Ridge National 
Laboratory.? The high power capability of gyrotrons has been amply demon
strated; so these tubes will become more important for millimeter-wave 
systems in the future. 

Particle Interaction in a Gyrotron 

In a gyrotron electron beams having a very large azimuthal velocity are 
used, so that the relativistic increase in the mass of the electron must be 
taken into account. The electron gun injects the beam into the high mag
netic field region with the electrons initially having a large radial velocity 
component. The v(l X B„ force then causes the electrons to follow a helical 
path with a velocity v„ = vlhla,., + v0ja: with vlllt, being several times larger 
than u„,. If we treat the electrons as a charged fluid, then under the action 

t P . E. Ferguson. G. Valier. and R. S. Symons, Gyrotron-TWT Operating Characteristics, IEEE 
Trans., vol. MTT-29. pp. 794-799. 1981. 
+J T. Coleman, "Microwave Devices," Reston Publishing Company, Inc.. Reston. Va. 1982. 
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of a microwave field the velocity of a differential volume elemp 
charged fluid will have an ac component v in addition to the dc co '^ 
v0; so the total velocity field will be v, = v0 + v. The effective m a s ^ T 6 

electron will be my = mil - vf/c2r*/2, where y is the relativists c ° -
tion. The momentum is myut. The particle density is N + n, wher° 
the ac variation in the number density from the average value r ) 
particles per unit volume. The charge density is given by -e(AT +° ^ _ 
- p 0 •+ p. If E and B represent the microwave field and B0 is the stai~ 
magnetic field, then the equation of motion for a volume element of th° 
electron fluid is [see (9.5/")] 

N + n) m 
dt 

= (p - P o ) ( E + V/ XB + v, X B 0 ) (9.114) 

When there is no ac field present, the steady-state motion is a drift with a 
constant velocity v0s along the direction of B 0 , which we take as the z axis, 
and rotation about Bn at the cyclotron frequency il given by 

n = 
PpBo 

Nmyf) 

eB, 

my, 
(9.115) 

where y0 = (1 - V'Q/C'Z)
 l / 2 . By using a very large magnetic field, fl can be 

in the microwave or millimeter-wave range of frequencies. For example, 
v0/c = 0.8 and B0 = 3 W / m 2 (30 kG), we get fl = 8.8 X 1011, wh 
corresponds to a frequency of 140 GHz. A magnetic field as large as 3 
requires the use of superconducting solenoids. A gyrotron can operate 
harmonics of the cyclotron frequency. The advantage of operating at 
harmonic of the cyclotron frequency is that a smaller static magnetic field 
required, but this is accompanied by a lower efficiency for power generatio 

The possibility of field interaction with the beam at a harmonic of th 
cyclotron frequency is readily demonstrated by considering the curren 
associated with a circulating electron. Consider an electron with azimuthal 
velocity v04l and located at 4> = 4>u r = rn, at time t = 0. The current is in 
the form of an impulse J+ = -ev^Slr - r0)S(z)<5(</> - <£,), where the delta 
functions localize the current element at the position r0, z = 0, </> - d>\-
can make a Fourier series expansion of J^ in terms of the angle 4>; tnu 

J„ = S(r-r0)S(z) I I„e">< (9.11 

where the /„ are given by 

Li. 2TT 
e " J ' " * ( - e » 0 # ) j ( * - * i ) ^ 

-fit,-**, 
2v 

[9.H 
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Hence we have, at t = 0, 

J*= -^Hr-r^Siz) £ «#•«*-** (9.118) 

At a later time the position of the electron will be at <t> = <£, + ill. A Fourier 
series expansion of the current at time t may also be carried out and gives 

• W = -^r-8(r-r0)8{z) £ e'""-'^"iU (9.119) 

upon replacing rf>, by c6x + fit This expansion shows that the current 
associated with a single rotating electron is composed of an infinite number 
of equal-amplitude harmonics of the cyclotron frequency, a result due to the 
impulsive nature of the current. 

Consider now a very large number N of electrons spaced at random 
around the orbit. Each electron contributes a current given by (9.119) but 
with <6, replaced by <£, for the ; t h electron. The total current is obtained by 
averaging over all electrons and will involve the average of the following 
quantity over all phase angles 4>,: 

ev 
A 

'*»-—7^S(r - r0)5(z) £ e ' — " I > 

For large N the average will be zero except for the n = 0 term which gives 
a factor N. Thus the current becomes 

**»=—^-S{r-r0)Hz) (9.120) 
LIT 

which is a dc current. These results show that, in order to obtain an ac 
current at the cyclotron frequency or its harmonics, the electron distribu
tion around the orbit must be nonuniform. We require bunching of the 
electrons around the orbit. If electron bunching occurs, then we will obtain 
an ac current with which the microwave field can interact. We will show 
next that the dependence of the electron mass on the velocity provides a 
mechanism that will cause electron bunching to occur. 

If we take a scalar product of the equation of motion with v,, we obtain 

d 
(N+n)mVl -\— y v , | = ( p - p 0 ) v , - E (9.121) 

We now note that 

d dy dv, 
v,--yv, = v , . v , - + v v , - — 

2dy 1 duf 
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since d(v, • \,)/dt = 2v, • dv,/dt. We also have 

dy d 

dt dt\ 

By using these results we find that 

dy y dvf 

' dt 2 dt 

dy 
so — 

dt 

2 . i n 

1 - T [ 

- • ^ r - K + 

i 

2c1 
, . * * 

A 

/» _ /'n 

m ( N + n ') c 2 " / 

c2\d 

B - — 

2 ^ 
= C"1 -dt 

mc 
2 * ' E (9.122) 

This equation tells us that when v, • E is positive y will decrease and whe 
v, • E is negative y will increase. From (9.115) we see that when y de
creases the cyclotron frequency will increase and when y increases the 
cyclotron frequency will decrease. Consequently, those electrons that have a 
phase angle greater than + 90° relative to the electric field will have then-
cyclotron frequency reduced, whereas those with phase angles less than 
± 90° relative to that of the electric field will have an increased cyclotron 
frequency. This process results in bunching of the electrons in the az-
imuthaJ direction in a manner similar to the longitudinal bunching that 
occurs in a klystron. When the electric field adds energy to the electron, its 
azimuthal velocity increases. Paradoxically, this increases the value of y hut 
reduces the cyclotron frequency. What happens is that the radius of the 
orbit increases so that even though the azimuthal velocity has increased it 
takes longer for an electron to execute one circuit around the orbit so the 
cyclotron frequency is lower. 

Gyrotrons generally use hollow cylindrical beams as shown in Fig. 
9.23. In Fig. 9.23a we show a conventional beam in which the electrons 
revolve around individual magnetic field lines and do not have a common 
center of rotation (guiding center). This type of beam is best suited for field 
interaction at the cyclotron frequency. The beam shown in Fig. 9.23o is 
used in large-orbit gyrotrons. All of the electrons in this beam have 
common center of rotation. As a typical example a beam with a cyclotn 
frequency of 10 GHz and an azimuthal velocity of 0.8c will have an orbital 
radius equal to vM/i\ = 2.4 x 1 0 1 1 / ( 2 T T X 1010) = 3.82 mm. This beam * 
large enough to provide good field interaction with microwave fields 
various harmonics of the cyclotron frequency, . * 

The small-signal analysis of a gyrotron can be based on the linear^ =*• 
equation of motion. If only terms linear in the ac quantities are retain 
(9.114), the equation of motion, we obtain 

yoNm\~ v + 4 -
-pQE - p0(v0 xB + v X B 0 ) + / > v o x B ( , (9 

123) 
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FIGURE 9.23 
(a) Cross section of a solid electron beam with each electron having its own guiding center. (6) 
Cross section of a cylindrical sheath beam in which all electrons have a common guiding center. 

In addition, the current J is given by 

and the continuity equation 

Pov + />vo 

dp 
V • J = -

m 

(9.124) 

(9.125) 

must hold. The above equations can be solved For J and p in terms of the ac 
fields E and B. Maxwell's equations must then be solved in the circular (or 
other) waveguide, both within the beam region and outside, including the 
source terms. The results will show that growing waves are produced. All ac 
quantities can be assumed to have the form 

•x 

where C„ is an expansion coefficient for the quantity of interest. Since the 
equations are linear, the solution can be carried out for the nth term by 
itself. The electromagnetic field in the circular waveguide can be described 
in terms of left and right circularly polarized waves. Only those fields that 
rotate in synchronism with the electrons will interact with the beam ac 
currents. 

For large power applications nonlinear effects must be included. The 
commonly used approach is to solve for the perturbed orbits of the electrons 
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and then evaluate the field interaction that take place. It is necessa 
numerical methods in order to solve the nonlinear equations. Typicaf ' 
obtained by this method are given in the papers cited at the end J"tSU'ts 

chapter. o f th i~ 

9.13 O T H E R T Y P E S O F MICROWAVE T U B E S 

In addition to the main types of microwave tubes already discussed th 
are a variety of others as well. In one form of traveling-wave tube th' 
resistance-wall amplifier, the helix is replaced by a circular guide lined with 
a resistive material. The resistive lining enables a slow wave to propagate in 
the guide, a wave that is highly attenuated in the absence of a beam If an 
electron beam is present, amplification takes place with a growth constant 
aB large enough to offset the attenuation due to the resistive lining. Thus a 
net overall amplification is obtained, 

In another form of traveling-wave tube, the double-stream amplifier. 
two parallel electron beams are used. In this tube one of the beams provides 
the slow-wave structure, or circuit, for the other beam. 

It is also possible to amplify the space-charge waves directly by passing 
the beam through a succession of accelerating and decelerating regions. 
This type of tube is called a velocity-jump amplifier because the beam 
velocity v{l is periodically changed, or jumped, to new values. 

For both the O-type and M-type traveling-wave tubes, it is possible to 
adjust the beam velocity so that it is equal to the phase velocity of any one 
of the spatial harmonics making up the Bloch wave that can propagate 
along the periodic structure used for the slow-wave circuit. In particular, 
interaction between the beam and one of the backward-propagating spatial 
harmonics is possible. Consider a Bloch wave propagating in the —z direc
tion. For this wave, E, has the expansion 

where p is the period of the periodic structure in the z direction. If we w 
interaction between the beam and the n = -1 spatial harmonic, it is 
necessary to choose 

u<> = v„ = P - i ft -( / 3 - 2 i r / P ) 2ir/p~P 

If the period p is small enough, the n = - 1 spatial harmonic has a P 
velocity directed in the +z direction and its group velocity is in t i a i 
direction. If the » = -1 spatial harmonic is amplified, all the other s 
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harmonics a r e also amplified, since they m u s t all be present wi th very 
definite ampl i tudes in order t h a t the b o u n d a r y condit ions may be satisfied. 
T h e amplification of t h e non in t e r ac t ing spatial harmonics comes about 
because of the increas ing surface c u r r e n t and charge induced on the metal
lic bounda r i e s by t h e amplified spat ia l h a r m o n i c t h a t i n t e rac t s wi th t h e 
beam. T u b e s employing in terac t ion with a backward spatial harmonic a re 
usually used as oscillators and a re called backward-wave oscillators, or 
carc inot rons . They have the i r ou tpu t coupling a t t h e cathode end. 

T h e r e a re still o ther forms of microwave tubes , and no doubt more will 
be developed. Fo r more extensive discussion the cited references at t he end 
of this chap te r should be consulted. 

9 .1 . Consider an electron beam of radius a, velocity u„, and space charge density 
fin. The dc current density is then JQ = p«O0. Show that a magnetic field 

H.,. 

rp.0v0 

a2p0v0 

2r 

0 < r < a 

r > a 

is produced. Verily that the compression force - e v „ X B,,, is much smaller 
than the radial outward force due to the space-charge electric field and may 
therefore be neglected. 

9.2. Show that an electron with velocity v perpendicular to B„ executes circular 
motion at the cyclotron frequency o>,. = e B 0 / m = TJZ?„ by equating the cen
trifugal force to the — ev X Bu force. 

9.3. An electron beam has a radius of 0.2 cm. The accelerating voltage is 1,000 V. 
The total beam current is 0.03 A. Calculate the beam perveance, the space 
charge density p* and velocity v„, the number of electrons per cubic meter, 
and the radial electric field due to space charge. Estimate the radial displace
ment of an electron located at the beam boundary during the time it takes the 
beam to move a distance d = 5 cm. Use the equation m d'lr/dtl = -eE,., and 
assume E,. to be constant and equal to its value at the beam boundary. Is the 
beam dispersion significant in this case if d is kept less than 5 cm? 

9.4. Consider an electron beam with dc parameters />„, v0 = v„a , immersed in a 
field B0 = a;Dn. Assume a time dependence eJ'"' and a z dependence e •"'"' 
and solve the linearized equation of motion (9.8) for v, = vxax + Lvav + t ' .a , 
to obtain 

= —n 

j{w-pu0)/^ - a v / A 0 E, 

co,/A j(<o-pv0)/± 0 Ey 

0 0 l/j(a, - livlt) A', 

where A = co2 — (co — fivo)2-
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From the continuity equation (9.5e) and (9.116), show that 

J = 
v„V • J 

J = 
-jio P o v 

' • -
u0V - J 

-ju> " Po«. 

J , = ~PoV, 

V • J = -jpj; - Pcft • v< 

./ - JJ&t • v - Wp0Vt 

u> - fiun 

9.5. Using the i-esults of Prob, 9.4, obtain solutions for p for waves in an infinite 
electron beam when all ac quantities are independent of x and y. Note that 
for space-charge waves, Ex = Ey = 0 but E. is finite. For the field waves' 
E: = 0. 

Hint: Note that V X JH = -y'/?a_, X H, T X E = -y ,8a ; X E, which leads 
to the equation .Up2 - k'^E, = w/i„J, = -co/*0/>0v,. 

Answer: For field waves, p is a solution of 

(1)(0 

(«-/»«„>—r -(0*-4§)A = ± — <o..u>to~ 

where A is given in Prob. 9.4. Note that two solutions are given by w - f}va = 
±01,.. These are the cyclotron waves. For p == k0, so that w » /3f0, four other 

approximate solutions are 

P - ±*o 1 -
O)((0 ± ft),.) 

9.6. Compute the gain of a klystron amplifier of the type considered in the text 
where the following data apply: Beam radius = 0.3 cm, beam current density 
= 100 niA/cm2 . Accelerating voltage = 1,000 V, frequency = 3,000 MHz. GL 

= G0, cavity width d = 0.2 cm, cavity conductivity = 5.8 X 107 S/m. Com
pute the gain for d = 0.3 cm also, and compare with the earlier calculation. 

9.7. Consider a reflex klystron employing a cylindrical cavity of the form shown in 
Fig. 9.12. The data of Prob. 9.6 apply, with d = 0.2 cm. The external loading 
GL = G0. The cavity grid-reflector spacing s is equal to 1 cm. Calculate an^ 
plot the electronic admittance spiral as a function of reflector voltage r a 
frequency of 3.000 MHz. Plot also the negative cavity admittance - Y on 

same susceptance plane. Determine the reflector-voltage variation o ^ 
across the n = 2 and n = 3 modes. Evaluate the change in oscillation 
quency as the modes are tuned across. . , 

9.8. Consider a cylindrical waveguide of radius a lined by a resistance shee so 
the boundary conditions at /• = a are Ez = -Z„,HA, where Z,„ = ' J"' aVe 
is the surface impedance of the wall. Analyze this structure as a trave 
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tube when an electron beam (axially confined flow) with velocity i '„a. com
pletely fills the guide. Determine an appropriate value of Zm in order to obtain 
amplification. Find the optimum value of Z,„ to give a maximum gain. 

Answer: fi is a solution of 

g I^ga) (P-1$ 

For ga large, so that i 0 / 7 , = 1, ji •= (1 - <S)£„ with 5 small. Sa is given by 

g2 = .2kURm/Zlt)-(o,p/w) 
J lil+.j2kl(Rm/Z{)y 

where Z,„ = ( l + . / ) / ? , „ . 

9.9. Consider a cylindrical waveguide of radius a uniformly filled with a stationary 
plasma (an ionized gas with an equal number of electrons and ions per unit 
volume). At high frequencies the motion of the ions may be neglected because 
their mass is much greater than that of the electrons. Thus the guide will have 
the same properties as one filled with an electron beam with zero axial dc 
velocity. Use (9.33) to show that the guide may be considered as filled with a 
dielectric medium with permittivity e = e„(l atg/to ), where iu„ is the plasma 
frequency for the plasma. Find a solution for the lowest-order circularly 
symmetric E mode and show that for w < w0 such thai « is negative the wave 
impedance is inductive. 

9.10. The results of Prob. 9.9 may be used to analyze the beam-plasma amplifier. 
Consider an electron beam passing through the plasma-filled guide. Use a 
confined-flow model to describe the beam and show that for a beam completely 
filling the guide the equations of Sec. 9.3 are valid provided e„ is replaced by 
£ = eu(l - WQ/IU2) throughout, where <«,, is the plasma frequency for the 
plasma. In particular, (9.24) to (9.26) hold. Thus in (9.26), if u>;, = 
(epo/me, , ) ' ' 2 is replaced by (ep^/me)1'2 = (epa/me0 )'-(<.)/< «* - <o'i)'/2h it 
is seen that /3 becomes complex for <o < w0 and a growing and decaying pair of 
waves are obtained. Show that the gain constant is given by 

Re 0O 
ph 

epe \ a-flf, (V-<4) 

and is very large when w is close to <u0. Note also that for a finite-radius beam 
with unconfined flow passing through an unbounded plasma medium the 
equations of Sec. 9.4 apply with e0 again replaced by e. For this model of the 
beam-plasma amplifier (9.45) may be used in place of (9.26) and will predict a 
gain constant of the same order of magnitude as does the confined-flow model. 

9.11. Show that when both the plasma electrons and the beam electrons are 
subjected to the confined-flow condition the only change which occurs in the 
result given in Prob. 9.W is the replacement of w0 by Fu„. where F = (1 + 
Pom/Poa2) " / a ' s l n e plasma-frequency reduction factor. 
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CHAPTER 

10 
SOLID-STATE AMPLIFIERS 

The first solid-state amplifiers for microwave applications were negative-
resistance diodes such as the tunnel diode. This was followed by the devel
opment of parametric amplifiers that used a variable-capacitance diode 
(varactor) and an oscillator (pump source) to vary the junction capacitance 
at the pump frequency. An outstanding feature of parametric amplifiers was 
the low noise that could be achieved by cooling the diode to liquid-nitrogen 
temperatures. The theory and design of parametric amplifiers is described 
in Chap. 11. 

Parametric amplifiers became the prominent and most widely used 
solid-state amplifiers during the period 1958 to about 1970. By 1970, 
improvements in materials preparation and processing technology had re
sulted in development of npn silicon bipolar transistors with a maximum 
frequency of oscillation greater than 10 GHz. During the next two decades 
further progress in the design and manufacture of high-frequency mi
crowave bipolar transistors and field-effect transistors was dramatic. The 
key to successful microwave transistor design is miniaturization which is a 
necessity in order to reduce device and package parasitic capacitances and 
lead inductances and to overcome the finite transit time of the charge 
carriers. An appreciation for the need to reduce parasitic capacitance and 
inductance can be obtained by referring to Table 10.1 where representative 
values of reactances are given at several frequencies. For example, an 
inductance of 0.1 nH at 10 GHz represents a reactance of 6.28 (1 which is 
not a negligible value in a 50-11 system. A capacitance of 0.1 pP at 10 GHz 
has a reactance of 159 fl and would be a significant shunt reactance across 
a 50-il transmission line. 

Transit times are dependent on the electron mobility and saturation 
velocity in the semiconductor material. In this regard gallium arsenide 

713 
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TABLE 10.1 
Reactance as a function of frequency 

F r e q u e n c y K ; H Z I I 10 100 

Reactance 
/. - 0.1 nH 0.628 6.28 62.8 
L = 1 nil 6.28 62.8 628 
C = 0 - l p F 1592 159 15.9 
C = 1 pF 159 15.9 1.6 

(GaAs) is significantly better than silicon for high-frequency devices Bv 
1980, the design and fabrication of metal-semiconductor field-effect transis 
tors (MESFETs) were well established. In the frequency range above 5 GH7 
MF.SFET devices are widely used. 

In order to achieve the high-frequency performance in transistors it 
was necessary to develop the technology that would enable key device 
dimensions to be less than 1 ,w.m, e.g., gate lengths with submicron dimen
sions. By means of molecular beam epitaxy (MBE), it has been possible to 
grow high-quality epitaxial layers and controlled doping profiles in highly 
localized regions. MBE techniques also led to the development of het-
erostructures which, in turn, led to the development of the high-electron-
mobility transistor (HEMT) which can operate at frequencies as high as 
100 GHz. 

Microwave amplifiers are usually constructed either as hybrid micro
wave integrated circuits (MIC) or as monolithic microwave integrated cir
cuits (MMIC). In hybrid construction the transmission lines and matching 
networks are usually realized as microstrip circuit elements on a suitable 
substrate material and then the discrete components such as chip capaci
tors, resistors, and transistors are connected in place by soldering or using 
wire-bonding techniques. Discrete devices are available with beam leads for 
easy insertion into the hybrid circuit. 

The word monolithic is derived from the two Greek words monos 
meaning single and lithos meaning stone. Thus a monolithic microwave 
integrated circuit is a circuit where all active devices, e.g., transistors, an 
passive circuit elements such as transmission lines, capacitors, resistors, 
and spiral inductors are fabricated on a single semiconductor crystal. 
substrate material used has typically been gallium arsenide because ot 1 s 
high resistivity in the undoped state and because of its superiority ° 
high-frequency field-effect device construction. A number of processes su 
as ion implantation for active devices, metal deposition and evaporat ion^ 
form ohmie contacts, electrode pads, and transmission lines, via hole e 
ing and plating, dielectric deposition, etc., is involved in monolithic c 
construction. The overall design and mask making is facilitated by t 
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of computer-aided design (CAD) programs. Electron-beam lithography and 
plasma-enhanced etching and deposition techniques are used for fabrication 
of submicron device elements. 

The cost of a monolithic microwave integrated circuit is related di
rectly to how many circuits can be built on a single wafer since the 
processing of a single wafer is generally a fixed-cost operation. Conse
quently, in the frequency range below 10 GHz, where distributed circuit 
elements are relatively large, the hybrid form of construction is often less 
costly than monolithic construction. However, in the frequency range of 0.1 
to 10 GHz, the ability to produce miniature inductors and capacitors has led 
to the development and production of many MMIC systems using lumped 
circuit elements instead of distributed circuit elements. In the millimeter-
wavelength band monolithic microwave integrated circuit construction 
promises to be more cost effective and to yield circuits with greater reliabil
ity and uniformity. 

In this chapter we are primarily concerned with the design of mi
crowave amplifiers from the engineer's point of view. That is. starting from 
the measured or manufacturer's given two-port parameters of the device. 
we want to design an amplifier that meets a set of given system require
ments such as gain, noise figure, bandwidth, and input and output VSWR. 
For this reason we only give a short discussion of the main characteristics of 
bipolar and field-effect transistors. Bias requirements and some typical bias 
circuits are also described. 

The design methodology7 that we will develop is based on the use of the 
scattering-matrix parameters for the device. At. high frequencies a transistor 
will have some intrinsic feedback from the output to the input, usually 
caused by a finite capacitance from collector to base and emitter lead 
inductance or in an FET the capacitance from drain to gate. Thus the device 
may be potentially unstable, and unless the amplifier is properly designed, it 
may oscillate, in which case it would not be useful as an amplifier. Thus, 
after the basic equations for amplifier gain have been derived, we examine 
the conditions under which the device is unconditionally stable or poten
tially unstable. If it is potentially unstable we will find that only for a 
certain range of values for the source and load impedances will the amplifier 
be stable. The available source and load impedances are easily displayed by 
constructing the source and load stability circles on a Smith chart. The 
equations for these stability circles will be derived and their interpretation 
and use will be examined. 

The Smith chart is an indispensable aid in the visualization of the 
different constraints that the engineer must take into account in the design 
of a microwave amplifier. In addition to the input and output port stability 
circles already mentioned, there are a number of other useful circles that 
aid the design process and can be plotted on the Smith chart. The most 
important of these are circles of constant gain, circles of constant noise 
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figure, and circles of constant input and output mismatch. ' 
for these other circles will be derived and their interpretation ^ u a t ' ° l s 
amplifier design will be discussed. U s e in 

The chapter will conclude with the description of a design strat 
ingle- and two-stage amplifiers that are subjected to various <jv«egy f ° r 

si.»s.c- a. l u U«.U-,-M,«6C ampiiiio.o niaL me suujecieu to various systi 
quirements. A semi interactive computer program that implements th" 

f.»lf>crv w i l l Allan hp r t a ^ r r i h o r i TVi ie nrtrr».-.%iffvi. . - , „ . . ._ 

re-
e-sign strategy will also be described. This computer program ren 

drudgery of carrying out all the computations that are required and wifl • 
the user valuable experience in a design process where a number of ^V 

straints are imposed and tradeoffs among conflicting requirements musi'T 
made. 

Most of the relationships involved in amplifier design are of the for 
of a bilinear transformation from one complex variable to another complex 
variable. If Z and W are two complex variables, then an equation of the 
form 

W = 
AZ + B 

CZ + D 

where A, B, C, and D are complex constants, is a bilinear transformation 
of Z into W. This transformation has the property that circles in the Z 
plane will map into circles in the W plane, with straight lines as limiting 
forms of circles, with infinite radii, and some points as circles with zero 
radius. The relationship between impedance and reflection coefficient, 
namely. 

_ 1 + T 

is a bilinear transformation. For this transformation the straight 1 
R = constant and X = constant in the Z plane map into circles in the 
plane. These mapped circles make up the Smith chart. Since the bilinea 
transformation occurs over and over again in amplifier design, we discuss its 
circle-mapping properties before we take up the design theory. This will 
provide results that enable us to readily identify circle mappings, in particu 
lar. the center and radii of mapped circles, from the particular bilm 
transformation involved. 

10.1 B I P O L A R T R A N S I S T O R S 

The basic principle of operation of a bipolar transistor designed for 
crowave applications is the same as that of low-frequency transistors. 
device must be biased to set the operating point. In a c o m r n o n . e n l j t a £ 
amplifier circuit, an input network must be designed so that a sign ^ 
can be applied to the base. A suitable load impedance must be c 0 " n e c

 T h e 

the collector and the output signal is developed across this m i P n , - c e r at 
main difference in the analysis of the operation of a transistor amp 
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microwave frequencies relative to low-frequency operation is due to the fact 
that the intrinsic device, along with package parasitic capacitances, resis
tances, and lead inductances, requires a much more complex equivalent-cir
cuit model. In addition, there is often sufficient capacitive feedback from the 
collector to the base so that the device is potentially unstable and will be 
prone to oscillate unless the input and output circuits are designed to 
prevent oscillations from occurring. 

In the frequency range below 5 GHz, silicon bipolar transistors are 
generally preferred over GaAs FETs except for very low noise amplifier 
designs. Silicon bipolar technology is more mature and manufacturing costs 
are less. The gain obtained from a bipolar transistor is inherently greater 
than that from a field-effect transistor because of a much higher transcon-
ductance gm. Bipolar transistors are suitable for oscillator and power 
amplifier applications in addition to small-signal amplifiers. Power gains of 
15 to 20 dB can be obtained at 2 GHz with noise figures of around 2 dB. At 
10 GHz the power gain for many presently available bipolar transistors is 
around 5 dB and the GaAs FET is then a better alternative. It is expected 
that, by perfecting the technology for making the critical dimensions of the 
emitter structure smaller, silicon bipolar transistors with a maximum 
frequency of oscillation approaching 100 GHz can be achieved. In recent 
years the heterojunction technology, originally applied to the construction 
of field-effect transistors, has also been used to improve the high-frequency 
performance of bipolar transistors. These transistors are called heterojunc
tion bipolar transistors (HBTs) and exhibit very low base resistance, high 
current gain, and a speed increase by a factor of 2 to 3. An AlGaAs/GaAs 
HBT with a cutoff frequency of 105 GHz and maximum frequency of 
oscillation of 175 GHz has been reported.! Thus the future application of 
bipolar transistors can be expected to extend well into the millimeter-wave
length region. 

The basic construction used in a microwave bipolar transistor involves 
a multifinger interdigitated emitter-base construction. A simplified drawing 
of the cross section and top view of a bipolar transistor is shown in Fig. 
10.1. The use of this particular design is for the purpose of overcoming 
transit-time limitations and yet maintain a sufficient emitter area. An 
equivalent-circuit model of the intrinsic bipolar transistor and the addi
tional parasitic elements added by the package is shown in Fig. 10.2. A 
drawing of a packaged microwave transistor with beam leads is shown in 
Fig. 10.3. 

tN. H. Sheng, el al.. High Power GaAIAs/GaAs HBT's for Microwave Applications, 1987 IEEE 
Int. Electron Devices Meeting Digest, pp. 619-622, 1987. 

C. 11. Liechti, High Speed Transitors: Directions for the 1990's Microwave pp. 165-177, 
September, 1989. 
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FIGURE 10.1 
(a) Cross section of a microwave silicon bipolar transistor; (b) top view showing interdigitated 
emitter-base construction. 
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FIGURE 10.2 
Equivalent-circuit model of a silicon bipolar transistor. 

F IGURE 10.3 
A packaged transistor with beam leads. 
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The equivalent-circuit model shown in Fig. 10.2 is based on that given 
by Vendelin, Pavio, and Rohde.t In this circuit model the various circuit 
elements are identified as follows: 

Cbp—base bond pad capacitance 
Cep—emitter bond pad capacitance 
Rbl.—base contact resistance 
Rm—emitter contact resistance 
/?,, R2, R3—base distributed resistance 
Cv C2, C;j—collector-base distributed capacitance 
Re—dynamic emitter-base diode resistance 

Ce—emitter-base diode junction capacitance 
Rc—collector resistance 

Lh, Lt.—base and emitter bond wire inductances 

For an Avantek AT-60500 silicon bipolar transistor operated with a 
collector current of 2 mA and a collector-emitter voltage of 8 V, typical 
values for these parameters are: 

Cb p + C3 = 0.055 pF C, = 0.01 pF C2 = 0.039 pF 

C^ « 0.026 pF C, = 0 .75pF 

R^ + Ra = 4 .2(2. R„ = 0.66 1>, /?, = 7.5 12 

R2 = 10.3 12 Re - 12.9 n Rr = 5 12 

L6 = 0 .5nH L t = 0 .2nH 

This transistor has a base cutoff frequency of 22.7 GHz. The common base 
current gain is given by 

1 +jf/fh 

where fh is the base cutoff frequency and 7d is the collector depletion 
region delay time (6.9 ps). 

The only device parameters that can be easily measured at microwave 
frequencies are the scattering-matrix parameters Su, Sl2, S.n, and S22. 
These can be measured by embedding the transistor in a 50-12 microstrip 
transmission line and using a network analyzer for the measurements. It is 
also possible to measure the StJ parameters with on-wafer probes. By 
measuring the Su parameters over a range of frequencies, the equivalent-

fG. D. Vendeiin. A. M. Pavio. and U. L. Rohde, "Microwave Circuit Design Using Linear and 
Nonlinear Techniques." chap. 3, John Wiley and Sons. Inc.. New York. 1990. 
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circuit parameters can be adjusted, by using a computer program 
they produce a circuit model with calculated scattering parameter tk 
correlate with the measured ones. The equivalent-circuit model Drov'H 
better physical understanding of the various circuit parameters that ^n 
affect the operation of the transistor. However, for amplifier design > ' 
easier to use the scattering-matrix parameters instead of the equivalent- "^ 
cuit model. 

Transistor Biasing 

There are two main considerations involved in the design of a bia 
circuit: (1) The biasing circuit must provide a stable operating point that is 
insensitive to variations in the device parameters and temperature changes 
and (2) the biasing circuit must be isolated from the high-frequency circuit 
so that high-frequency signal currents do not flow in the dc biasing circuit. 
The first requirement is met by incorporating dc feedback in the biasing 
circuit. The second requirement is met by inserting high-impedance high-
frequency circuit elements in series with the dc components and by using 
low-impedance capacitive bypass circuits to shunt high-frequency currents 
around the dc circuit elements. The overall bias circuit and RF matching 
circuits must provide stable terminations for each active device outside the 
frequency band of interest in order to ensure that oscillations do not occur 
at any frequency. 

The bias circuit shown in Fig. 10.4a provides a stable operating point. 
It is commonly used in low-frequency electronic circuits and can also be 
used in microwave amplifier circuits but with more difficulty because of 
parasitic inductance associated with the capacitor leads. The bias circuit is 
shown isolated from the transistor by incorporating series inductors (RF 
chokes) between the device terminals and the bias-circuit resistors. The 

R* 
r' 

•Q 

Q 

-> V,. 

RFC 

RFC 
0.-

W 

FIGURE 10.4 , 
(a) A passive bias circuit, 
an active bias circuit. 
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emitter terminal is maintained at RF ground by means of the bypass 
capacitor C. 

An active bias circuit is shown in Fig. 10.46. In this circuit the 
collector current in transistor Qt is established by means of the resistors 
Ry, r?2, and i?3 . The base current in the microwave transistor Q., is the 
collector current of Q t . Since the bias circuit for Q, is a stable one, the 
collector current of Qu and hence the base current of Q.2, is maintained at a 
value that is essentially independent of the transistor parameters. This 
circuit has the advantages that it consumes less dc power and requires only 
two RF chokes for isolation as compared with the circuit shown in Fig. 
10.4a which is shown with three RF chokes and a bypass capacitor for 
isolation purposes. 

In a microwave amplifier the RF chokes are often replaced by a 
quarter-wave high-impedance transmission line or a combination of trans
mission-line sections. 

F I E L D - E F F E C T T R A N S I S T O R S 

There are two main characteristics of field-effect transistors that make 
them superior to bipolar transistors in microwave amplifiers. These are the 
lower noise characteristics and the higher frequency of operation. The 
higher operating frequency is due to the higher electron mobility in gallium 
arsenide, which is the material used in field-effect transistors, compared to 
that in silicon, the standard bipolar transistor material. The higher electron 
mobility and the absence of shot noise are important Features that result in 
low noise. The first, microwave field-effecl transistors were metal-semicon
ductor field-effect transistors (MESFETs). High-frequency operation re
quired a very short gate length, typically less than 1 fim. Thus it was only 
after the processing technology had advanced to the stage that submicron 
device features could be reliably made that microwave solid-state device 
development advanced rapidly. Currently produced MESFETs have gate 
lengths of the order 0.3 to 0.5 /im. The frequency at which the short-circuit 
current gain becomes equal to unity is given approximately by the relation
ship fT = us/2-rrLg, where vs is the electron saturation velocity and L/: is 
the gate length. In gallium arsenide (GaAs) the maximum drift velocity is 
about 2 x 107 cm/ s , so that for a gate length of 0.5 nm, fT = 60 GHz. 
Clearly, very short gate lengths are essential for high-frequency operation. 

Beginning around 1980, a new technology involving heterojunctions 
began to find applications in device construction. A heterojunction is a 
junction formed at the interface of say an aluminum-gallium-arsenide 
(AlGaAs) doped alloy and an undoped GaAs layer. The use of a heterojunc
tion enables a channel with a very high electron mobility to be obtained. 
The field-effect transistor which is made using a heterojunction is called a 
high-electron-mobility transistor (HEMT). Since high mobility is achieved 
by doping only the large bandgap material, the name modulation-doped 
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FIGURE 10.5 ^ ^ , 
(a) Cross section of a high-electron-mobility transistor (HEMT); (6) source, drain, and gale 
structure for a low-power FET; (c) interdigitated construction used for a power FET. The 
source metalization passes above the gate structure and is insulated from it. 

field-effect transistor (MODFET) is also used. The HEMT device has a 
higher frequency of operation and a lower noise figure than the standard 
MESFET device. A good discussion of the technology and fabrication of 
HEMT devices and the theory of operation can be found in the books by 
Chang and Pengelly.t . 

Figure 10.5a shows the cross section of a typical HEMT device, while 
Fig. 10.56 shows a top view of the source, drain, and gate structure. I « 
gate width Wg is much greater than the gate length Lg. In a power Fh ^ 
many as 10 source and drain fingers adjacent to gate fingers are use: 
obtain large drain currents and hence large output powers. The interc 

tK. Chang led.). "Handbook of Microwave and Optical Components. Microwave Sob -
Components." vol. 2. John Wiley & Sons Inc.. New York, 1990- . •• .^Dd 

R. S. Pengelly. "Microwave Field-Effect Transistors—Theory, Design and Applications 
ed.. Research Studies Press, l.etchwarth, England. 1986. 



SOLID-STATE AMPLIFIERS 7 2 3 

5W>—« D 

FIGURE 10.6 
Simplified small-signal equivalent-circuit model of a microwave GaAs FET. 

tated construction is shown in Fig. 10.5c. The transconductance gm of the 
FET is increased by using a large gate effective width and this is needed for 
large power output. However, with a larger gate width the input capacitance 
is increased. 

A simplified small-signal equivalent-circuit model of a microwave GaAs 
FET is shown in Fig. 10.6. Typical values for the circuit parameters for a 
device with a l-/i.m gate length and a 300-fj.m gate width are listed below: 

Gate-to-source capacitance C„s = 0.4 pF 

Gate-to-drain capacitance CRd = 0.01 pF 

Channel resistance R ds = 500 ii 

Transconductance gm = 30 mS 

R, = 3il 

Cdl. = 0.015 pF 

The circuit parameters Rg, Rd, Rs, and C^ are extrinsic elements. The 
gate, drain, and source ohmic contact resistances Rg, Rtl, and Rs are 
typically a few ohms. The drain-to-substrate capacitance Cds = 0.07 pF. The 
inductors Lg, L, , and Ld have inductances in the range 0.05 to 0.3 nH. 
The equivalent current source is Vggm, where V̂ , is the signal voltage across 
C„ . The microwave FET can also be described in terms of measured 
scattering-matrix parameters. 

Gallium-arsenide MESFET devices can give a single-stage gain of 8 to 
15 dB at 2 GHz with noise figures below 1 dB. For HEMT devices a 
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FIGURE 10.7 

Output characteristics for a GaAs MESI 
showing suitable operating points P, and p. 
for small- and large-signal inputs. 

single-stage gain of ] 5 dB al 8 GHz and 6 dB at 50 GHz can be achieved 
with corresponding noise figures of 0.4 and 1.8 dB, respectively.! For power 
applications output powers of several watts from a single device can be 
obtained. Several devices may be operated in parallel using power-combin
ing techniques to achieve higher output powers. 

FET Biasing 

The output drain current versus drain-to-source voltage Vds is shown in Fig. 
10.7 as a function of gate-to-source voltage for a typical microwave GaAs 
MESFET. For small-signal application an operating point in the vicinity of 
the point Pl would be suitable. For maximum dynamic range the operating 
point should be placed in the central region of the output characteristics 
which is depicted by point P2. In either case the dc voltage of the gate must 
be negative with respect to that of the source for a depletion mode device. 

This bias condition can be achieved by grounding the gate through an 
RF choke or a high-impedance quarter-wavelength transmission line and 
obtaining the desired bias voltage from the voltage drop across the source 
resistance Rs as shown in Fig. 10.8. The required value of Rs is given by 
Rs = - V ^ / / ^ . The source resistance R„ should be bypassed to ground for 
RF signals by means of a capacitor C„. In small-signal low-noise applica
tions, the best noise figure is obtained for a dc drain current equal to abou 
20 percent of the drain saturation current at zero gate-to-source 
voltage. At low values of drain current, the transconductance is reduced, si 
that gain must be sacrificed to achieve a low noise figure. 

tK. Chang, toe. cit.. p. 465. 
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FIGURE 10.8 
FET bias circuit-

10.3 CIRCLE-MAPPING PROPERTIES 
OF BILINEAR TRANSFORMATIONS 

A circle with center at x0,y0 and with radius R is described by (x — xu)~ + 
(y-y0)

2-R2 = 0oT 

x2+y2- 2*xu - 2yy0 + (x$ 4 y2 - i?2) = 0 

Now let Z = x +jy, Z0 = ,r0 + jy(). The circle equation can be written as 
\Z - Zf - R2 = 0 or (Z - Z^Z* - Z*) - fl2 = 0 which gives 

ZZ* - ZZ% - Z*Z0 + (Z0Zct - ft2) = 0 ; io.i) 

Consider now the bilinear transformation from the complex Z plane to 
the complex W plane given by 

W = 
AZ + B 

CZ + D 

This transformation will map circles in the Z plane into circles in the W 
plane (straight lines are limiting cases). Consider the circle \W\~ = p2 or 
WW* - p2 = 0. Using the transformation, we get 

AZ + B A*Z* + B* 
-p2 = 0 

CZ + D C*Z* + D* 

By expanding this equation we get 

ZZ*(AA* - p2CC*) - Z{p2CD* - AB*) - Z*(p2C*D - A*B) 

+ BB* - p2DD* = 0 (10-2) 

By comparison with (10.1) we see that this is a circle with center at 
(coefficient of - Z * ) 

Z„ = 
P

2C*D - A*B p2C*D - A*B 

AA* - p*CC* " | A | 2 - p 2 | C | 2 
(10.3) 
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The constant term equals [Z0 |2 - R2, so that we can identify the 
as given by 

R - Z0ZQ -
\B\2 - P W 
IA12 - p2 |C|2 

from which we get 

R 
\AD - BC\ 

| ( A [ 2 - p 2 | C | 2 | <10-4) 

If the circle in the W plane is \W - Wa\ = p, then we note that 

AZ + B ( A - CW0)Z + (B-DW0) 
W-Wn 

CZ-t- D 
Wn 

CZ + D 

If we define A = A - CW0, B' = B - DW0, then the above formulas (10.3) 
and (10.4) apply with A, B replaced by A', B'. 

Many of the relationships that occur in amplifier design involve bilin
ear transformations and their circle-mapping properties can easily be identi
fied by comparison with the above equations. 

10.4 MICROWAVE A M P L I F I E R D E S I G N 
U S I N G Su P A R A M E T E R S 

At microwave frequencies impedance and admittance parameters of a tran
sistor cannot be directly measured. The scattering-matrix parameters can be 
measured and therefore a design methodology based on using the S,, 
parameters is widely used. The S parameters are measured by inserting 
the transistor into a test circuit with 50-9. input and output lines, applying 
appropriate bias voltages and currents, and measuring the S,-j parameters. 
In any design using StJ parameters, it should be kept in mind that these 
vary with bias conditions, temperature, and £rom transistor to transistor 
even if it is the same device number. Thus the design should leave some 
margin for S,j variations. 

The following are the usual microwave amplifier design goals: 

1. Maximum power gain. 
2. Minimum noise figure for the first stage. This requires a specific s ° u r ^ 

impedance Zs for the input stage. The optimum Zs giving the low 
noise figure is generally given by the manufacturer of the transistor-

3. Stable gain, i.e., no oscillations. 
4. Input and output VSWR as close to unity as possible. 
5. Adequate gain and uniformity of gain over a specified frequency " 
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6. Phase response that is a linear function of to (no distortion, orly group 
delay). 

7. Insensitivity to nominal changes or variations in the device S,, parame
ters. 

These objectives cannot all be realized at the same time; so the design 
procedure must trade off one objective against another one, e.g., gain must 
be sacrificed for stability. Input VSWR must be sacrificed for a low noise 
figure since the normalized source impedance Zs is fixed for minimum 
noise. 

Designing a microwave amplifier using potentially unstable transistors 
is like designing a bridge using interconnected beams whose lengths can be 
telescoped and with joints that are free to rotate with insufficient external 
constraints to define a rigid structure. It is a "loose-jointed" problem 
without a unique solution. The many design specifications are all interre
lated which makes the problem almost unmanageable without some com
puter optimization strategy. In the next several sections we will examine in 
detail the constraints that are imposed by stability requirements, by the 
need for large power gain, low noise, and low input and output VSWRs. We 
can obtain a good physical understanding of these often conflicting require
ments from a study of the stability circles, the constant power-gain circles, 
the constant impedance-mismatch circles, and the constant noise-figure 
circles plotted on a Smith chart. From the insight obtained from such a 
study, we will be able to formulate a design strategy using some computer 
optimization that will lead to satisfactory designs. The reader will need to 
bear with us as we work our way through the maze of details but will in the 
end be rewarded with the satisfaction of having obtained the necessary 
insight and understanding to be able to implement the theory for practical 
amplifier design. 

All the various low-frequency amplifier circuits such as balanced 
push-pull amplifiers, cascode amplifiers, and traveling-wave amplifiers can 
also be used at microwave frequencies. A device that is potentially unstable 
can be stabilized by resistive loading at the input, output, or both input and 
output, with a resultant reduction in power gain and increase in noise 
figure. Stabilization can also be achieved by using negative feedback. Space 
limitations do not allow a detailed discussion of the variety of amplifier 
circuits and configurations that are used in practice. Many of these circuits 
are described in the book by Pengelly and the one by Vendelin, Pavio, and 
Rohde already cited. The reader is referred to these texts for a detailed 
discussion. In this text we will limit our attention to amplifier design based 
on the use of scattering-matrix parameters and linear two-port design. 

For high-power amplifier design, it is necessary to consider the nonlin
ear characteristics of transistors and to pay more attention to device power 
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dissipation and the design of adequate heat sinks. Small-signal » 
design can often provide a first approximation to the design of lar? • r 

amplifiers, particularly in connection with stability. Thus the linear t Sl**ra^ 
design methodology developed in this chapter will also provide useful' ^^ 
into the large-signal design problem even though we do not cover the 1 t 
topic. ter 

10.5 A M P L I F I E R P O W E R GAIN 

We will begin our discussion by deriving expressions for the power gain of 
an amplifier. There are several definitions used for the gain of an amplifier 
and they are given below. 

Power gain Gp = -

Transducer gain G = 

Available power gain Ga = 

power delivered to load 

input power to amplifier 

power delivered to load 

(10.5a) 

available input power from source ' 

available load power 

available input power from source 
(10.5c) 

If the device is unconditionally stable, then conjugate impedance matching 
can be used at both the input and output. If this is done then Gp = G 
Ga

 = Gmax - maximum gain. For a device that is only conditionally stable, 
conjugate impedance matching at both the input and output cannot be used 
when the stability parameter K < 1. The power gain achieved in this case is 
G . Power gain is the most useful definition in practice since it applies to 
any actual amplifier independent of whether conjugate impedance matching 

is used. 
For the two-stage amplifier shown in Fig. 10.9, the incident power u 

given by 

50O 

FIGURE 10.9 
A two-stage amplifier with matching networks. 
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and the input power is 

pin = (i - inVta 
where Yc is the characteristic admittance of the input line and Y is the 
input reflection coefficient. The power PL delivered to the output 50-J1 line 
is given by GplG2P-,„• Hence the two-stage power gain is 

Gp = -^ = GplGp2 (10.6) 

and the corresponding transducer gain is 

G = -^ = ( l - | l f ) G „ 1 G / , . 2 (10.7) 

For lossless matching networks the impedance mismatch is the same on the 
input side as on the output side as shown in Sec. 5.7. If Mx is the impedance 
mismatch between the first amplifier input and its source impedance Z„ as 
seen looking into the output side of the first matching network, then 

4fl5fl,„ 
M, = — =—: 

iz, + zj2 

where Z i n = Rm + jXin is the amplifier input impedance. On the input line 

4Z.fi 4R 

\ZC + Z)2 |1 + Z\2 

where Z = (1 - D / ( l + D. When we use the relations 

1 + T 1 + V* 
o p 7 i 7 * i uR ~z ' " i - r ' I - r 

and 
2 

1 i 7 and 1 ' " i + r 
we find that 

M= i - rr* = I -\n2 = Mx (io.8) 

upon substituting for R and 1 + Z in terms of 1* and simplifying the 
resultant expression. The input voltage standing-wave ratio is given by 

i + in i + i/i - M 11 i / i - j ^ t 
VSWR, = — = , = , (10.9) 1 1 - HI 1 - vT - M 1 - -fi^Ms 

Thus the degree of mismatch between Zs and the input to stage 1 deter
mines the input VSWR. If we have a constraint on VSWRj in our design and 
we want to use an optimum source impedance Zs for minimum noise, then 
we must terminate stage 1 in a load that will produce an impedanct; 
mismatch Ms that will keep the input VSWR, at the specified value (oi-

4Z.fi
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FIGURE 10.10 
A basic amplifier circuit. 

lower). The required load termination must, of course, not lead to 
unstable (oscillating) amplifier and must also yield good power gain A 
power gain of 10 or more is desirable, since this will make the effect f 
following stages on the noise figure small. Sometimes the input VSWR 
constraint has to be relaxed because it is in conflict with other require
ments. 

• D e r i v a t i o n o f E x p r e s s i o n s f o r G a i n 

Consider the basic amplifier circuit shown in Fig. 10.10. The source and 
load are viewed as connected to the amplifier by means of transmission lines 
with characteristic impedance Zc and having negligible lengths. For this 
circuit the source and load reflection coefficients are given by 

Z, - 1 
'L ?T Z, + 1 

and r = ~— 
s z. + i 

For the amplifier we have 

vf = s „ v r + s12v2 

V2 = S2lV{ + S22Vi 

But v2 = r ;y, so v2- = s2lv; + s22rLv2 or v2 = s2yt/a - s22rLi we 
use this in the first equation to get 

s,2s2lrL vf = vr s n + 
i - s22rL 

and hence 

= r*, 1 - S22TL 

(10.10) 

where A = S U S 2 2 - Sl2S2l. 
In a similar way we find that 

r„.„ = s22 - AI; 

l - s„r . 
(lO.U) 
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The input power to the amplifier is given by 

W/R, 

^ 8 * . * 2IZ. + Z J * 

where |VS| /8RS is the available power from the source. First, we will 
express Ms in terms of l's and l'jn. To do this, we use 

and 2R„ = Zs + Zf 

i - 1 ; 

i + rs i + r* 2(1 - \rf) 

i - i ; i - i r i i - i ; 

since (1 - r„Xl -r*) = \l - l'f. Similarly, we get 

li - r,J2 

Hence we obtain 

M, - -= 
4RmRs 4(i-irj2)(i-\rf) 

\zs + 2J \i - \\f\i - if i + rs 1 + r„ 
+ i - r. I - r„ 

4 ( i - i r , j 2 ) ( i - i r / ) ii - r / l i - rinl 
li - r/nl

2|i - rf |(i + j ; ) ( i - r , j + (l - r j ( i + v,jf 

(i - ir,„l2)(i - wf) 
li - r ,r , j2 

Similarly, at the output 

M , = 
II - i'J'ouJ2 

(10.12a) 

(10.12o) 

The load voltage VL = V2 + Vg = K f d + FL). The load current is 
IL = Yc( V2~ - V£), so that the power delivered to the load is given by 

Now 

so 

pL = |Rev,./* = iy,.iv2i
2(i + r j ( i - vt) 

(i + r t ) ( i - Tt) - 1 - r jT + rE - rr = 1 - |r,. 2Imr, 

^ •= W ( i - i r j 2 ) y r 

file:////f/i
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as expected. We now use the expression for V.2 given above ( in ini 

The input power is i|V,+|2(l - |f i n |2) Yc. Hence 

°btain 

G , " 
( i - i r j 2 ) is 2 1 i 

Pm ( i - i r m i 2 ) u - s 2 2 r L 

The transducer gain is given by 

(10.13) 

G = PL 

Pava W//8R, 

The available power Pava is related to the input power by P = MP = 
MsPava and thus the expression for transducer gain becomes 

2 \ i o |2 
G=ELM = C1 - i r j ' ) ( i - ir.l')is, 

pm " u - s22r,i2|i - r i n r / (10.14) 

We now eliminate rjn from the gain expressions by using (10.10) for rlnI 

that is, 

i - inj2 = i -
l i - s 2 2 r j 2 - i s u - A r j 

ii - s22rj ii - sBiy" 

The elimination of I'in gives us 

(i - irj2)is21l
2 

G " = n - s 2 2 r j 2 - | s H - A r L i 2 

Next we use |1 - S22VL\2 = (1 - S ^ X l - S & I ? ) and similarly 
\Sn - &TL\2 to get for the denominator 

i + s*s&rtr£ - s22i\ - s;2n - s„sf, + s„ A*TL* 

= 1 - |S„|2 + irj2(|S22l2 - |A|2) - 2Rer t(S22 - ASf.) 

Hence 

G„ = 
( i - i r , r ) i s 2 , i io . i 5 ) 

i - is„i2 + irj2(is22i2 - IAI2) - 2Reras 2 2 
ASf,) 
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The same substitution for !"„, reduces the expression for G to 

(i - irj2)(i - ir/)is21i
2 

G = 
DL-««r i-sur f + Ar,rI.r 

(i - irt,i
2)(i - ir,ia)is2)i

a 

| ( i - s , 2 r j ( i - s n r j - s 1 2 s 2 1 r s r j 
(10.16) 

These are the final forms for the power gain and transducer gain. 
When the device (transistor) is absolutely stable, we can use conjugate 

impedance matching, i.e.. choose Zs = Zj*, ZL = Z*ul. In this case Vs = T^, 
VL = r*u[, and Ms = M, = 1. Clearly, when Ms = I, the power gain Q 
equals the transducer gain G. For conjugate impedance matching we re
quire 

i* = r. = 
1 o • i n 

and r = r* = 
1 i , ' ..in 

S* -1*V* J 22 

1-SfiI? 
We can substitute the second equation into the first one and solve for Ys 

which gives 

r. 
Similarly, 

where 

a sM 

' L ~ 'LM ~ 

2B, 
A , + ( ^ - 4 I B . I 2 ) ' 

2 B 2 
A, ± ( A 2

2 - 4 | B a | 2 ) I / 

(10.17a; 

'10.1761 

Ax = 1 + IS„I2 - |S22I2 - |A| 

A.2 = 1 + | S 2 2 | 2 - | S n | 2 - | A | 2 

B, = S | , - AS22 

B2 = S^v - AS,*", 

The minus sign is used when A, > 0 and the plus sign is used when A, < 0 
in order to get |l'sMl < 1 and \VLM\ < 1. We will show in the next section 
that for an absolutely stable device A, > 0 and A2 > 0, so the minus sign is 
the appropriate one to use in (10.17). When A\ < 4 |B 2 | 2 the solution for 
VLM can be expressed as [A.2 ±y(4 |B 2 | 2 - A | ) 1 / 2 ] / 2 B 2 . For this case the 
magnitude of YLM is equal to unity which corresponds to a pure reactive 
load termination and zero power gain. Thus, for an absolutely stable 
transistor, we must have |A2 | > 2|B2 | . It is this condition that leads to the 
choice of sign to use in (10.17). 
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In the next section we will show that a device is absolutely <*t 
stability parameter K is greater than one, i.e., e ' e «f the 

K _ l - )S„ | 2 - }S22)
2 + \A\2 

2 |S 1 2 S 2 , | 

In terms of the parameter K, the power gain for an absolutely stabl H 
using conjugate impedance matching, is given by e V | 

(10.18) 

ce, 

Gp = Gp.max = G = Gmax = 
'21 

'12 
(#-V/r^T) (10.19) 

The parameter IS2 1 /S ! 2I is called the "Figure of Merit" for the transistor 
When K = 1 it gives the maximum stable gain GMSG = \S.n/S I The 
expression for Gmax for an amplifier with conjugate impedance matching 
can be derived following the steps outlined below. By direct expansion we 
can show that 

A | - 4 i 5 / = 4 | S l 2 S 2 1 | 2 ( / i r y - 1 ) 

From the equations for A2 and K, we can show that 

1 - )SU\2 = A., + lAl2 - \S22\
2 = 2K)S,2S2i\ ~ (\A\2 - \S22}

2) 

so by addition and subtraction we get 

1 - IS,,!2 = K\Sl2S2l[ + -^ 

|A|2 - | S 2 / = K\Sl2S21\ - — 

We also take note of the relationship 

2 W S 2 2 - S*XA) = A2±(A%- 4 | 5 . / ) l / 2 

which is a real quantity. By using these expressions the denominator 
(10.15), which is the equation for Gp, can be written as 

A., J A.. K\Sl2S2l)+^ +\h\H~- - K\S]2S2I\) - A2+2\Sl2Sn\JK 

= ( i - i r , / ) 
+2is12s21iv

/^r^T _lA
1_K]Si2s2i 

i - \rtf ^ ^ ^ ^ 
The fast step is to use the solution FLM for TL to get 

i - irJ - ,8"a»hfrI (4 - is.sa.l^1) 
\B.,r \ l 
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With this substitution and a few more algebraic steps, we get 

G is„i' 
P \SV2S2,\(K+ i/K2-l) 

s« 
s„ 

( f f ± V ^ 2 - 1 ) 

There are two possible solutions for Gp which correspond to the two possible 
solutions for VLM. Since Gp should not keep increasing for K » 1. only the 
solution given by (10.19) corresponds to the gain obtained with a passive load. 
We will have a further comment on these two possible solutions at a later 
point. For now we note that the chosen solution corresponds to using the 
minus sign in (10.17/;) which implies that A2 > 0. 

6 A M P L I F I E R STABILITY C R I T E R I A 

When the transistor is potentially unstable, which occurs when the stability 
factor K given by (10.18) is less than one, a stable amplifier can still be 
designed but only for restricted values of source and load impedances. 
Furthermore, it will not be possible to use conjugate impedance matching at 
both the input and output ports. In this section we will derive the expres
sions for the allowed terminating impedances in terms of input and output 
reflection-coefficient stability circles. These stability circles can be plotted on 
a Smith chart and will show what values of source and load impedances can 
be used in order to achieve a stable (nonoscillating) amplifier. 

The conditions for amplifier stability are established by requiring that 
the reflected power from the amplifier ports be smaller than the incident 
power. This means that the reflection coefficients looking into the amplifier 
ports must have a magnitude less than one for all passive source and load 
impedances. If a reflection coefficient has a magnitude greater than unity, 
the amplifier input or output impedance would have a negative real part, 
e.g., if Z ,„= -R + jX then 

IU = 
-R +jX - Zc 

-R +jX + Zc 

(R + Z,.f 4 l ! 

(Z,.-R)2+X2 

1 2 

> 1 

If Zm *= -R„, +jXw then the input current is 

V. 
7 = 

Rs-R,n+j{Xm+Xj 

If Rx = Rm and Xm + Xs = 0 which can occur at some frequency, then / 
becomes infinite. We can set Vs = 0 and thermal noise in the input can 
produce self-sustained oscillations at the frequency where the total loop 
impedance in the input equals zero. Oscillation at any frequency generally 
makes the amplifier unusable. 
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The conditions for stability are 

irj = s„ - AJ\ < i 

< I 

f o r a l l | r t | < l 

f o r a l l i r j < l 

1 - s22rL 

s22 - AI; 

< i 

< I 

f o r a l l | r t | < l 

f o r a l l i r j < l i - s u i ; 

< i 

< I 

f o r a l l | r t | < l 

f o r a l l i r j < l 

(10. 20a) 

(10.206, 

impedance Zs. In this circumstance the device is said to be condition T 
stable. If ZL = Ze, then \\ = 0 and | r j < 1 only if | S „ | < 1. Similarly ff 
Z, = ZC, i r ( ) U J < l only if 
absolute stability are 

|S 2 2 | < 1. Hence two necessary conditions for 

I S „ | < 1 and >22 < 1 

Values of T, that result in \rm\ < 1 are called stable ones. The 
corresponding region of the Smith chart is the stable region. The boundary 
between stable values of TL and unstable ones is the circle in the VL plane 
that corresponds to the mapping of the circle jF^] = 1 in the Tjn plane. 
From the bilinear transformation 

r.„ 
Su - AfL ArL - s u 

i s22rL s^r,, I 
we find that the center of the mapped circle is at (A = A, -SU=B, 
S.22 = C, - 1 = D) 

SUA* - S22 
r*.c = |A|2 - \Sj 

and the radius of the circle is 

Rr.r ~ 
)12S21| 

lLC 

(10.21a) 

(10.216) 

| ( | A | 2 - | S 2 2 | 2 ) | 

This load stability circle may or may not include the origin rL = 0 as s ow 
in Figs. 10.11a and b. When YL = 0, Tin = S„ and |S„ I < 1 for a «J 
circuit. Hence, if the stability circle encloses the origin, then all v a l u *? es 0f 
inside the circle will give values for Ym such that ITJ < 1- These v 
rL are stable ones. If fL = 0 lies outside the circle, then all y f j j j f ^ u s 
outside the circle are stable ones. The origin is included only " t ^s 

RLC is greater than the distance | r i C | to the center. If this s i t u * t l o n
n g i d e the 

then we require RLC > 1 + \TLC\, so that all values of JfJ < 1 ue g^goB-
circle and represent stable values for all possible passive load ternu 
If the origin is not included, then we require that |FLCI > 1 + " ' • ' ' ' .so 

that 
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ir,nl = 1 circle 

(a) 

^ Smilh chart 
boundary 

r,nl = 1 circle 

FIGURE 10.11 
Load stability circles plotted on the Smith chart, (a) Origin is included within stable region; (6) 
origin is excluded so load impedances outside stability circle are stable values. 

t h e en t i re stabili ty circle \Fin] = 1 m a p s into a circle outs ide the S m i t h cha r t 
boundary \TL\ = 1. T h e n again all values of \VL\ < 1 will be s table ones . 

We need to find an expression t h a t will enable us to s ta te , in t e r m s of 
t h e sca t te r ing-matr ix p a r a m e t e r s Su, S 1 2 , S 2 1 , and S 2 2 of the device, 
w h e t h e r or not i t is an absolutely s table device. If t he amplifier will be s table 
for all passive source and load impedances, then the device is absolutely 
s table. If it is s table only for a l imited se t of source and load t e rmina t ions , 
t h e n the device is only conditionally stable, T h e r e are two cases to consider 
and they bo th lead to the same s t a t emen t or cri terion for stabili ty. 

Case 1. Origin (1*^ = 0 ) lies outside the circles of VL values that make 
ir,nl = 1. As noted earlier this case corresponds to all values of I", outside the 
load stability circle |I"m| = 1 being stable values. All passive values of Z/ will 
be acceptable if the \Tm\ ~ 1 circle lies outside the Smith chart boundary 
|I"J = 1. This requires that the distance \VLC\ to the center of the circle be 
greater than the radius plus one, that is, |ftc-| > 1 + RLC. In order to have 
r / r | > 1 + Rlr, we must have tic 

|2 

> ff£c. From (10.21) we see that this 
requires Ii>t,A* — S ^ T > I S ^ S ^ J . By direct expansion we can show that 

O u - i &22I ~ l^,12^l2ll ( l - | S n | 2 ) ( I S , / - | A | 2 ) (10.22) 

Hence our stated condition is equivalent to 

( 1 - I S „ | 2 ) ( I S 2 2 I 2 - | A | 2 ) > 0 

which is possible only if IS22 | > IAi since IS n l < 1. Thus Case 1 can occur only 
when this condition is true. When the condition is true, then |(|S22I - |A|2)| = 
| S 2 , | 2 - |A|2. The stability condition 1 + R, r < \l'LC\ can be stated in the form 

(Su* - S}f >d + RLCf(\M2-\s2./y 
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upon using (10.2la). From (10.216) we obtain 

« « : -
is2 2r - IAI2 + is,as2 ,i 

IS22I2 ~ IAI2 

and hence 

|S„A* - S | 2 | 2 > ( |S 2 2 | 2 - IAI2 + \Sl2S2i\f 

Upon using the expansion (10.22), we can restate the condition for stabilit 

I S 1 2 5 2 i r 2
+ ( l - | 5 u | 2 ) ( | S 2 2 l 2 - | A | 2 ) 

> ( I S , / - IAI2 + \Sl2S2,)f 

After multiplying out the term on the right, canceling the common factor 
| S l a S 2 i l on both sides, and also canceling a common factor IS2.,|2 - |^i2 

we get 

( | S 2 / - | A | 2 ) + (2|S1 2S2 X | ) < 1 - I S U | 2 

We now introduce the stability parameter K and express the final result in the 
form 

1 - I S , / - |S22I2 + \M2 

2IS|2S21I 

| S U | < 1 

> 1 (10.23a) 

(10.236) 

Case 2. It may happen that the circle of TL values giving If^l = 1 encloses 
the origin (FL = 0, Tin = S u ) . In this case all YL values inside the circle are 
stable ones. For absolutely stable devices the circle must then be large enough 
to enclose the entire Smith chart \YL\ < 1, so that any passive load impedance 
ZL can be used. This requires that the radius RLC be greater than one. With 
reference to Fig. 10.12 it is seen that we now require d > 1 or RLC ~ \^LC> > l 

or equivalently |F£CI < Rlc - 1. This case can occur only if 

i r i n l = 1 circle 

FIGURE 10.12 , i t i o n when 
Illustration for deriving stability to 
the stability circle encloses the origi 
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using (10.21) we find that we require |S22I < IA|. We now use (10.21a) and 
(10.21A) aJong with the expansion for \SnA* - S$J2 given by < 10.22) to state 
the stability criterion in the form 

[|(|A|2 - | S 2 2 | 2 ) | - | S 1 2 S 2 1 f > |S 1 2 S 2 , i 2 + (1 - \Snf)(\Snf - |A|2) 

or (|AI2 - I S , . / ) * + IS 1 2 S 2 1 | 2 - 2 |S u S 2 1 ( ( |Ar ' - [ S 2 / ) 

> | S ] 2 S 2 J | 2 - ( l - | S n | 2 ) ( | A | 2 - | S 2 2 | 2 ) 

When we cancel the term IS1 2S2 i l2 on both sides and a common factor 
)AJ - IS- /̂l in the remaining terms, the final result is the same as obtained 
earlier for Case 1. 

The requirement that RLC be greater than one places a further 
restriction on the condition for absolute stability. From (10.2.16) we readily see 
that, when IAI > |S2al in order for RLL > 1. we must have 

|A|2 - | S 2 2 | 2 < |S 1 2 S 2 1 | 

From the expression for K we gel 

1 - | S n | 2 |A|2 - | S 2 / 
= 2K 

| S ] 2 S 2 | | lo | 2 S 2 | l 

Let (|A|2 - IS 2 2 | 2 ) / | S J Z S 2 l | = 1 - 5 , where .5 is a positive quantity since this 
term is less than one. Thus we get 

1 -\Sn)
2 

= 2K- l + 5 > 1 
IS12S21I 

since K > 1. Hence we require that 

IS,2S2JI < 1 — IS,jl 

in order that we can have Rlc > 1. The condition K > 1 is a necessary 
condition for absolute stability but may not always be sufficient since the 
condition that R,c > 1 when |A| > |S22J may be a more stringent condition as 
we will shortly see. 

T h e source stabili ty circle is the circle of source reflection-coefficient \\ 
values t h a t m a k e \l'oull = I. By direct analogy with the derivation of (10.21), 
we find t h a t the cen te r for the source stabili ty circle, in the r„ plane, is 
given by 

r s r = - ^ , £ ( 1 0 . 2 4 a ) 

and its r ad iu s is given by 

RsC=-, — r (10 .246 ) 
sc |(|A|*-lSMf)| 

These equa t ions a re t h e same as (10.21) wi th S n and S 2 2 in te rchanged. 
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Since K is symmetrical in the variables Su and S2 2 , it c 

inferred that the same condition K > 1 for absolute stability • " ^ J be 
from the requirement |rout | < 1, along with the two conditions lo* i° t a i n 6 d 
\Sr2S3}\< 1 - \ST/. ^ 2 2 ^ land 

The necessary and sufficient conditions for absolute stabilit 
n y are thu s 

1 - \SU\2 - \S.,f + |A|2 

2)S 1 2S 2 1 | > 1 (10.25Q , 

| S „ I < 1 

IS22| < 1 
(10.256) 

(10.25c) 

| S 1 2 S 2 , | < 1 - IS , , | 2 (10.25d) 

IS1 2S2 1 | < 1 - | S 2 2 | (10.25e) 

By adding (10.25A?) and I10.25e) and using (10.25a), we get 

2\S12S2i\ < 1 - | S „ | 2 - IS2 2 |2 + |A|2 + (1 - |A|2) 

< 2 | S 1 2 S 2 1 | K + ( 1 - I A I 2 ) 

Thus 

|A|2 - 1 

* > 1 + 2 1 S ^ <U JV> 
When |A| < 1 then clearly this condition holds whenever K > 1. However, 
when |A| > 1 the condition (10.25 f) is more stringent than (10.25a). For 
most devices |A| < 1, so that (10.25a) to (10.25c) are sufficient to guarantee 
absolute stability. 

Conditionally Stable Devices 
For GaAs MESFETs in the common source connection and bipolar transis
tors in the common emitter connection, one generally finds that l^u1 *" 
|S 2 2 | are both less than unity. For bipolar transistors in the common base 
connection, (S , , | and | S 2 2 | are usually greater than one. L l k e ™ s e ; a n d 

MESFETs in the common gate connection, one often finds that \SU\ 
I S ^ will be greater than one. The same is true for the common 
connection. h'l'tv circle 

For an unstable device there are four possible load s t a ^ ' ' y
T h e s e 

configurations and a similar number for the source stability circ es.^ ^ g i n 

four cases are described below, along with the necessary conditions 
to occur. 

Case 1. The load stability circle may lie entirely outside the Smit ^ ^^ 
| S „ | > 1. In this case all values of fL on the Smith chart are uns^ abgo,utely 
since the origin is an unstable point. The device in this case 
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unstable and would be of no interest or use for an amplifier. The necessary 
conditions for this case to occur are 

K < - 1 

| S 2 2 | < |A| 

Wnf>l 

Case 2. The load stability circle may enclose the Smith chart, and when 
|S,,I > 1 all values of l'L on the Smith chart will be unstable values. Again, the 
device will be an absolutely unstable one. The necessary conditions for this 
case to occur are 

K < - 1 

IS22I > IA| 

I S , , | - > 1 - (2K + 1)IS I2S21I 

Case 3. The load stability circle may lie entirely inside the Smith chart. In 
this case the device is conditionally stable since a region of the Smith chart will 
represent stable values of VL. In order for the stability circle to lie inside the 
Smith chart, we require that | r / f . | + RLC < 1 and RLC < 1. When IS2.,| < IA| 
these two conditions lead to the following necessary conditions for this case to 
occur: 

K > 1 

\SW\ < |A| 

| S „ r - > 1 - ( 2 K - 1 ) | S 1 2 S 2 1 | 

The last condition is equivalent to RLC < l .When | S 2 , | > |A| the corresponding 
necessary conditions for the load stability circle to lie entirely inside the Smith 
chart are 

K < - 1 

|S22I > 141 

| S n | 2 < 1 -(2K+ 1)|S12S21I 

These conditions are obtained by requiring that \YLC\Z < (1 - RLVSZ and using 
(10.21) and (10.22). 

When K > 1, | S 2 2 | < |A|, and IS,,I2 < 1 - (2/f - 1)IS12S21I, the device 
is absolutely stable. Devices for which K > I are almost always stable, and 
since devices with K < - 1 are not likely to occur, Case 3 is not likely to be 
encountered in practice. 

Case 4. The usual situation that occurs in practice when a device is only 
conditionally stable is the one for which the load stability circle intersects th€; 
boundary of the Smith chart. This case is the one on which we will focus our 
attention. The load stability circle |r j n | = 1 then maps into a circle of |I'L | 
values that intersects the Smith chart boundary I fJ = 1 at two points. The 
load stability circle may or may not enclose the origin. In order to establish 
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whether values of \'L inside or outside the |I"ln| = 1 circle are stahl 
following rules apply: Ues. 

(a ) 

the 

ir.nl =1 

i s , , l < i 

is„|> l 

(6) r. = l 

i s „ i < i 

i s , , i> i 

circle encloses the origin 

all interior values are stable vaJues 

all exterior values are stable values 

circle does not enclose the origin 

all exterior values are stable values 

all interior values are stable values 

These rules are established by simply noting that the origin 1", = 0 wh h 
gives r,n = Sn is a stable point when |S , , | < 1 and is an unstable point when 
IS,,I > 1. 

A similar set of rules applies to the source stability circle which is a 
plot of all values of the source reflection coefficient J's that gives ir | = 1 
For example, when |S 2 2 | < 1 the origin I"s = 0 giving r<ml = S2 2 is a stable 
point. Thus, if the circle |l"n,J = 1 encloses the origin, all values of r„ inside 
the circle are stable values. They are unstable values when |S22I > 1. 

By plotting the load stability circle whose center and radius is given by 
(10.21), it is easy to determine what values of YL, and hence load impedances 
ZL, can be used to ensure that |f'jn| < 1. A similar plot of the source stability 
circle ir,ml| = 1 shows what values of source reflection coefficient Ys can be 
used and will ensure a stable circuit. 

It is useful to have an analytical test of when the load or source 
stability circle will enclose the origin. Such a test is easily established by 
examining the ratio WLC^/R'IC-

 F r o m (10.21) and using the expansion 
(10.22). we obtain 

ir, : . ( • 

sic = I + 
( 1 - | S U I 2 ) ( I S 2 / - I A I 2 ) 

\Sl2S 2V 

In order for the origin to be enclosed, we must have # / x > ' ^ " ' ' ^ 
requires that the last term on the right-hand side of the above equation 
negative, since the ratio must be less than one. Hence we can sta 
following rule: 

The load stability circle encloses the origin when |SUI < * l 

|A| > |S 2 2 | or when \SU\ > 1 and |A| < |S2 2 | . 

When these conditions do not hold, the origin is not enclosed. A sim ^^ 
applies to the source stability circle. The origin is enclosed c 
|S22I < 1 and |A| > \Sn\ or when |S22I > 1 and |A| < ISn l . reflection 

After the derivation of the equations for the load and source ^ . ̂  
coefficients needed for conjugate impedance matching at bo v ^^ ^ 
(10.17), we promised to show that for an absolutely stable device i 

ir.nl
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a re positive. T h e expression for A2 is 

A 2 = ( l - | S n | 2 ) - ( | A | 2 - | S 2 2 | 2 ) 

Since IS , , ! " < 1 for an absolutely s table device, t h e first t e r m is posi t ive. 
For | S 2 2 | > |Al t h e second t e r m is also positive and A2 is positive. When 
|S221 < \\\ t h e n we m u s t have |A|2 - I S 2 2 | 2 < |S 1 2 S 2 1 I in order to get RLC > 
1. Th i s condition comes directly from (10.216) which gives RLC. In order for 
A 2 to be positive, we requ i re 

1 - | 5 „ l 2 > IA|2 - | S 2 2 | 2 

But ou r stabili ty r e q u i r e m e n t s specify tha t 1 - \SU\2 > I S ! 2 S 2 1 | > |A|2 -
| S 2 2 | and hence A.2 is positive. A similar proof shows t h a t A, is positive. 

Example 10.1 S tab i l i ty c i rc les . A MESFET has the following scattering-
matrix parameters at 5 GHz: 

S, , = 0.75^ - 120= S , , = 0.08^50° 

S 2 I = 3.9^.90° S 2 2 = 0.4Z - 25° 

and at 10 GHz: 

Sn = 0 .72/170° S 1 2 = 0.1Z40° 

S 2 , = 2.3/i450 S 2 2 = QA/L - 55" 

We wish to find the stability parameter K, the maximum stable gain, and the 
load and source stability circles. At 5 GHz we find from (10.23a) that K = 
0.64234: so the transistor is not absolutely stable at 5 GHz. By using (10.21) 
we obtain the load stability circle parameters which are 

YLC = 3.7678 +78.3712 KLC = 8.5057 

From (10.24) we obtain the source stability circle parameters which are 

I ' s c = -0 .9971 +jl. 19296 Rsc = 0.7104 

These circles are shown plotted in Fig. 10.13. Neither circle encloses the 
origin, and since IS , , | < 1 and |S22l < 1, all values of I", and r, outside their 
respective stability circles are stable values and may be used in an amplifier 
design. 

At 10 GHz we find that for the given parameters K = 1.0891; so at this 
frequency the transistor is absolutely stable. The stability circle parameters 
are 

l'/x. = -2 .1677 -ylO.5364 Ru: = 11.8549 

r s c = - 1.47156 - iO.28336 R^ = 0.47035 

For the load stability circle ii',.,-1 = 10.757, and since RLC > \rLC\ + 1, the 
circle encloses the Smith chart. Since IS,,I < 1 all values of FL inside this 
circle are stable values. The circle is a very large one, so that only a small 
portion of it is shown in Fig. 10.13 (dashed line). The source stability circle is 
also shown in Fig. 10.13. This circle lies entirely outside the Smith chart, and 
since |S22I < 1 all values of H, outside this circle are stable values. 
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I m r 

Load stability 
circle Load stability 

circle, 10 GHz 

Source 
stability 
circle 

Rer 

Source stability 
circle. 10 GHz 

FIGURE 10.13 
Load and source stability circles for a MESFET at 5 GHz (solid circles) and 10 GHz 
circles). The device is conditionally stable at 5 GHz and absolutely stable at 10 GHz. 

10.7 CONSTANT POWER-GAIN CIRCLES 

It is convenient to introduce the normalized power gain g given by 

G„ 
Sp = 

\S3l\
2 

(10.26) 

From (10.15) we obtain 

i - Vt 
gp 1 - | S n | 2 + VrJt(\S.Z2\

2 - \A\2) - TL(8n - AS*,) - I?(S& - * * * -
(10.27a) 

upon writing \TL\2 = YhXl and using the relationship 2 Re Z - ^ 
can rewrite the expression for normalized power gain in the form 

,(S2*2 - A*sn)rL* - (i -^uQirjJ. 
r,A* -

g „ ( S 2 2 - A S * ) r t + g. 

(|S22|2 - \A\2)gp + l 

= o 
110.27*) 



SOLID-STATK AMPLIFIERS 7 4 5 

by multiplying gp by the denominator on the right-hand side and bringing 
the term 1 - \YL\2 over to the left-hand side and then dividing by the 
coefficient of V^V*. When we compare the above expression with (10.1), we 
see that it describes a circle in the TL plane. The center of the circle is at 
\'L = VLg, where VLg is the coefficient multiplying T£. The radius RLg of the 
circle is obtained by noting that the constant term is equal to | I j _ | - R'f ,. 
Thus we readily find that the constant normalized power-gain circles have a 
center at 

r„- 'a--,r,f,"*r. 
and a radius given by 

IS22I'
2 - |A|2)g„ + 1 

1 - 2Kgp\SV2S.2l\ + g2\S12S2i\
2)' 

Ri.= - r^—•—~^r^ i (io.28ft) 
|(WJ" - lAI2)^ + l| 

where we have used the expansion (10.22) to replace \S22 - A*S,,|2 and 
expressed 1 - |S n l~ as \S2.2\

2 - |A|2 + 2K\Sl2S2i\ in order to simplify the 
expression for RLg. When gp approaches infinity the equations above 
become those for the load stability circle. Thus, on the load stability circle, 
the power gain is infinite. When gp = 0 we obtain I", g = 0, RLg = 1, which 
is the boundary of the Smith chart. On the boundary of the Smith chart, 
\Y,\ = 1. which corresponds to a pure reactive load impedance and conse
quently no power is delivered to the load and gp = 0, as the above equations 
verify. 

It is common practice to plot the normalized constant power-gain 
circles that correspond to gains 1 dB, 2 dB, 3 dB, etc., less than the 
maximum normalized power gain (K - iJK2 - 1 ) / | S l 2 S 2 1 | [see (10.19)] for 
an absolutely stable device. For a potentially unstable device, constant 
power-gain circles for normalized gains 1 dB, 2 dB, etc., less than the 
normalized "Figure of Merit" gain ( |S 2 1 I / |S 1 2 | ) / |S 2 1 | 2 = 1 / |S I 2 S 2 I | are 
usually plotted. 

The equation for the center of a constant power-gain circle lies on the 
same ray from the origin as the center of the load stability circle does, since 
both r i C and \"Lg have the same complex numerator except for the factor 

By plotting the constant power-gain circles and the load stability circle. 
we can easily determine those values of load reflection coefficients TL that 
will give the largest power gain and yet result in a stable amplifier design. 
Those values of Tt in a stable region and lying on a given gp = constant 
circle will give a power gain Gp = \S2i\

2gp. Later on we will find that there 
will be additional constraints imposed on TL because of low-noise and low 
input and output VSWR requirements. 
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Properties of the Constant Gain Circles 

By examining the geometric properties of the constant gain circles 
obtain considerable insight into the operational characteristics '^ *'*' 
crowave amplifier. The characteristics of the constant power-gain ci (3 "^ 
quite different for absolutely stable devices and potentially unstable d ^ " 
so we examine each case separately. ceS; 

Stable Devices 

For a stable device one set of constant gain circles lies entirely inside th 
Smith chart. The gp = 0 circle coincides with the boundary of the Smirl 
chart. As gp increases from zero, the radius RLg decreases and becomes 
zero when 

K ± VK"' - 1 
o p 

|S12S21I 

For circles inside the Smith chart, RLg = 0 when 

K- \/K2 - 1 

| S I 2 S 2 1 | 

When K = 1, RLg = 0 when gp - l / | S l 2 S 2 1 l , which gives the maximum 
gain. A second set of circles exists outside the Smith chart and gives values 
of gp for values of \VL\ > 1, which implies the use of an active load. For 
passive loads these circles are not relevant. In the region 

K- JK'1 - 1 
S„ = \Sl2S 

to 
!i>02|l 

K+fK2-l 
\S12S21\ 

there are no real solution for RLs, when gp > 0 as illustrated in Fig. 1014. 
Typical constant power-gain eireies for a stable device are shown in Fig. 
10.15 for the case when the load stability circle lies outside the Smith chart. 

Inside the Smith chart boundary the maximum normalized power gam 

* 9p FIGUHE J0.14 h e is " =°'U" 
^ No real solution for RLQ Illustration of region where t er ^ 

in this region lor g p> 0 tion for the radius of the consttu 
gain circles. 
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Load stability circle 

FIGURE 10.15 
Circles of constant normalized power gain for an absolutely stable transistor when the load 
stability circle lies outside the Smith chart. The circles of constant negative power gain are 
shown by the dashed circles. 

(K - y/K2 - 1 ) / |S 1 2 S 2 1 | is obtained at the single point where V, = VLM\ as 

given by (10.176). This is the gain for the conjugate-impedance-matching 
condition. Away from this point the constant gain circles have increasing 
radii and decreasing gain values. The limiting circle coincides with the 
Smith chart boundary on which gp = 0. 

A second set of similar constant power-gain circles exists inside 
the load stability circle. In this region the minimum normalized gain is 
(if + \JK2 - 1 )/\SViS2\\ and occurs for YL = VUMZ, where now VLM2 is the 
other solution given by (10.176) for conjugate impedance matching, i.e., 
using the positive sign in front of the square-root term. As we move away 
from this point, the constant gain circles have increasing radii and increas
ing gain values. The limiting circle is the load stability circle on which the 
gain is infinite. Inside the load stability circle, which is the unstable region 
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of F, values, each FL results in an input reflection coefficient I' 
magnitude greater than unity. Since \V,J > 1 also in this region it ^^ a 

that both Z„, and ZL have negative resistive parts. This type T i ^ 
impedance could arise by connecting an unstable microwave amplifi t '^ 
output of the amplifier under discussion. When |Tin > 1 and IF I > e , he 

power is reflected from the amplifier input and load termination th ^ 
incident on either one. The input power and load power are thu 
negative but the ratio is positive, so that the power gain is positive A 
boundary of the load stability circle is approached, which is the circle f r 
values that give |F i n | = 1, the gain becomes infinite since, when IF I = \ 
there is zero input power to the amplifier. 

In the region between the Smith chart, and the load stability circle 
|FL | > 1, but since this is a stable region each F, produces a I' with 
|F jn | < 1. We now have a situation where there is a finite positive input 
power to the amplifier but a negative load power since, with |FJ > 1, the 
load termination reflects more power than is incident upon it. Thus the 
power gain is negative. Indeed, if we assume a negative power gain, we will 
get another system of constant negative power-gain circles that fills the 
region between the Smith chart boundary and the load stability circle. As 
the load stability circle is approached from this region, the gain approaches 
minus infinity. These negative power-gain circles are shown as dashi 
circles in Fig. 10.15. The circle with infinite radius occurs when 

SP = 
IAI2 - | S 2 . / 

10.29) 

i.e., when the denominator in the expression (10.286) for RLg vanishes. Or 
this straight line the gain is constant and is given by (10.29). In order to 
obtain finite values for F, from (10.276) when gp is given by (10.29), the 
numerator of the second term in (10.276) must vanish. If we let VL = x +jy, 
we find that setting the numerator equal to zero gives the following 
equation for the straight line which is the constant power-gain circle having 
an infinite radius 

y = * 
R e ( S 2 2 - A S r , ) 

I m ( S 2 2 - A S * 
| A | - - | S 2 . / + | S n l - 1 10.30) 

In Fig. 10.16o we show the gain profile along the line c o n n e ^ . i n
t [h e 

origin of the Smith chart to the center of the load stability circle. I> 
regions in which the power gain is negative. p o r 

When |A| > |S 2 2 | the load stability circle encloses the Smith c n ^ w n in 

this case the constant power-gain circles have the configuration s ^ 
Fig. 10.17. For this case the circles again begin at the point It ^ 
inside the Smith chart and increase in radii and decrease in gain v • ^ 
circle is IFJ = 1 on which gp = 0. Beyond the Smith chart boun J .^ 
inside the load stability circle, IF, I > 1, |F in | < 1, and the power g 
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FIGURE 10.16 
Gain profile along the line joining the Smith chart center and the load stability circle center. 
(o) Gain profile when the load stability circle lies outside the Smith chart; (6) gain profile when 
the load stability circle encloses the Smith chart. 
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K-VK 2 - I 

Load stability circle 

S „ I 2 - I A I 2 

Smith chart 
boundary 

FIGURE 10.17 
Circles of constant normalized power gain for an absolutely stable transistor when the load 
stability circle encloses the Smith chart. The dashed circles are circles of constant negative 
power gain. 

creases in a negative direction and approaches minus infinity on the load 
stability circle. Beyond this circle the radii keep increasing until the straight 
line given by (10.30) is reached. On this line gp is given by (10.29) but is 
now positive since |A| > |S22I. The radii then begin to decrease until th< 
limit point at rL = YLM2, the second solution given by (10.176), is reachw 
and at which the normalized gain is (K + J~K2 - 1 )/)Sl2S21l A gain profile 
along the ray from the origin to the center of the load stability circle for ' 
case is shown in Fig. 10.16*. When WJ approaches infinity the g» 
approaches the value given by (10.29). 

Unstable Devices 

For an unstable device the load stability circle will usually i n t e r ^ f 
Smith chart and may enclose the origin. For unstable devices with I ^e 

no value of gp that is real will make RLg = 0. Again the gp = ° c i r c e 



SOLID-STATE AMPLIFIERS 7 5 1 

boundary of the Smith chart. For most unstable devices the load stability 
circle will cut the Smith chart boundary at two points. We can show that 
these two points are invariant points that all constant gain circles pass 
through. The constant gain circle on which the gain is given by (10.29) is 
the circle with infinite radius. This circle is the straight line given bv 
(10.30). 

We can prove that all constant gain circles intersect the Smith chart 
boundary at the same two points that the load stability circle does as 
follows: The load stability circle is given by 

fit - hd2 = R'tc = irj2 -r irLCl2 - r,j-,*. - iyru. 
We now let \'L = x +jy. The stability circle intersects the Smith chart when 
|TL| = 1. By setting \VL\ =1 we then find that the above equation is that of 
a straight line given by 

RerLC \ru:\
2 ~ Ric + i 

y = — % -(- . 

Im l'LC 2 Im r i C 
This line intersects the circle |T; | = 1 at two points. In a similar derivation 
we find that the constant gain circles will intersect the circle ll'J = 1 at the 
two points where the line 

Reru ir,,/-fl|,+ i 
I m T , . / 21mr,. f i 

intersects the WL\ = 1 circle. By substituting for r,_r, RLC from (10.21) into 
the first equation and for [\ , RLg from (10.28) into the second equation, 
we find that both lines have the same slope and intercept. We omit the 
detailed algebra involved but it is straightforward. As a consequence of the 
above property, the constant normalized power-gain circles for an unstable 
device have the configuration shown in Fig. 10.18. When YL approaches 
either one of the two invariant points, both the numerator and denominator 
in the expression (10.27a) for the power gain approach zero. The ratio is 
thus indeterminate and must be evaluated as a limit with the result that the 
limit depends on the direction along which the invariant points are ap
proached. Thus we can have many constant gain circles with different gains 
at the two invariant points, as is clearly evident from an examination of Fig. 
10.18. 

We will now examine the constant gain circles for the four special cases 
that can occur in practice. The usual situation is the one where \Sn\ < 1. 
When this is true the origin, that is, F, = 0, is a stable point. The load 
stability circle may or may not enclose the origin. When the origin is not 
enclosed, the constant gain circles within the Smith chart but outside the 
load stability circle are in the stable region and \'L may be chosen to lie on 
one of these gain circles as shown in Fig. 10.19a. In the region common to 
both the Smith chart and the load stability circle, the power gain is 
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9o = 
IAI2 - I S * / 

load stability cin 

9A<93 

FIGURE 10.18 
Constant normalized power-gain circles for an unstable device. 

negative. In the region outside both circles, the power gain is also negative; 
in the region inside the stability circle but outside the Smith chart, the gain 
is again positive. The gain always changes sign when the circle IfJ = >- o 
which gp = 0 is crossed and also when the load stability circle on which the 
gain is infinite is crossed. On one side of the load stability circle boundary. 
gp = oo, and on the other side of the load stability circle boundary, g„ -

For this case the centers of the constant gain circles move from zero ^ 
YLC as gp increases from zero to infinity, as shown in Fig. 10.19a. for o 
locations of the centers on the ray joining the origin to the stability c 

center, the constant gain circles have negative gain values. 
When the stability circle encloses the origin, then the stable region ^ 

the region inside the load stability circle as shown in Fig. 10.19b .^ 
stable amplifier design YL must be chosen to lie on a constant gain circ 
this region. For this case the centers of the positive constant gain cir 
move from zero to infinity in the direction away from YLC and return 
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(a) 

FIGURE 10.19 
Constant normalized power-gain circles when ISUI < 1 so that the origin is a stable point, (a) 
Constant gain circles and stable region when the origin is not enclosed; (6) constant gain circles 
and stable region when the origin is enclosed. 

infinity toward YLC as the gain increases from zero to infinity, as shown in 
Fig. 10.196. 

The other two cases occur when | S U | > 1 for which the origin is an 
unstable point. The constant gain circles for these two cases are shown in 
Fig. 10.20. The stable and unstable regions are interchanged from those 
shown in Fig. 10.19. The values of YL must be chosen to lie on a constant 
gain circle in that part of the Smith chart in which the origin is not 
included. Hence, when the stability circle encloses the origin, Y, must be 
outside the stability circle for a stable design. When the stability circle does 
not enclose the origin, then YL should be chosen as a point inside the 
stability circle. 

For an absolutely unstable device, K < — 1, and there are two values 
of gp that are negative and correspond to circles of constant gain that have 
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FIGURE 10.19 Continued. 

zero radii. These gain values are given by gp = ~(\K\ ± vK" - 1 )/IS l2S2jl. 
The constant gain circles are similar to those shown in Figs. 10.15 ana 
10.17 but gp is negative inside the Smith chart. For the case when the load 
stability circle lies inside the Smith chart, K may be greater than 1 or less 
than - 1. In both cases there are two points corresponding to constant gai 
circles with zero radii. The constant gain circles are again similar to 
shown in Figs. 10.15 and 10.17. On the load stability circle gp equals plus or 
minus infinity and on the Smith chart boundary gp = 0. If the interio 
the load stability circle is a stable region, gp will be positive in this| r^f1° ' 
Between the load stability circle and the boundary of the Smith cha^'t^ 
will be negative, and outside the Smith chart it will be positive. 
interior of the load stability circle is an unstable region, the sign ol gp 
be opposite to that described above. 
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9p=' 

Smith charl 
boundary 

fLg moves from 
0 to ~ away from VLC 

(a) 

\'Lg moves Irom 
co toward lLC 

Load stability circle 

FIGURE 10.20 
Constant normalized power-gain circles when |S'U | > 1 so that the origin is an unstable point. 
(a) Constant gain circles and stable region when the origin is not enclosed; (61 constant gain 
circles and stable region when the origin is enclosed. 

Example 10.2 Prel iminary amplifier design. A given microwave 
transistor has the following scattering-malrix parameters: Sn = 0.9Z.60". S l 2 

= 0.06/160°, S 2 I = 3^120°, S.i2 = 0.82^ - 30°. We will use this device in the 
design of a single-stage amplifier having 50-12 input and output transmission 
lines. 

For the given transistor we find that 

Stability parameter K = 
1 - 0.9- - 0.82* + |A|8 

= 0.902026 

where \M = \SuS2-2 ~ S 12^2,1 

2 x 3 x 0.06 

= 0.898404. The transistor is potentially 
unstable since K < 1. The "Figure of Merit" gain is IS 2 1 /S 1 2 | = 50 or 17 dli. 
The normalized value is 50 / IS 2 , | 2 = 5.555. The parameters for the stability 
circles are obtained using (10.521) and (10.24) and are 

r t c = -0 .40026 +J0.46312 Klc = 1.336 

r s c = 6.8262 - 7 6 3 . 2 4 3 Rgc = 62.7068 

The centers and radii of the constant normalized power-gain circles for gp = 5, 
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FIGURE 10.20 Continued. 

Load stability circle 

m 

4, and 3 are 

8,, 

gP 

RLg= 1.3227 

RLg = 1.01606 

RL = 0.9456 

5 rLg = 0.8262 - J0 .95596 

4 TLg = 0.4678 -.,-0.5413 

g p = 3 VLg = 0.2715 - jO.31417 ^ ^ ^ ^ ^ ^ ^ 

The stability circles and constant gain circles are shown in Fig- ' 
The load stability circle encloses the origin. The source stability circle m t e r s e * ' ^ 
only a small portion of the Smith chart, so that almost all values of sou 
reflection coefficients Ts will be stable values. Since (S u l < 1 t n e °. . 
represents a stable point, so that all values of fL inside the load stability 
are stable values. The source stability circle appears as a straight line i 
10.21 since its radius is very large, that is, Rsc = 62.7. . a 

From the figure we see that I"t = 0 is a stable point and would g" ^ 
normalized gain somewhat greater than 5. From (10.27a) we see "f 1 ^ 
normalized gain, when T,. = 0, is 1/(1 - | S n l z ) which equals 5.2b. ^ 
advantage gained by using YL = 0 is that no output matching net*" 
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FIGURE 10.21 
Load and source stability circles and constant normalized power-gain circles for the amplifier 
designed in Example 10.2. 

required. On the straight line joining the two invariant points, gp = 1/(|AI -
IS22|") = 12.75 which is considerably larger than the "Figure of Merit" gain. 
We could choose I~, to he on this constant gain circle and still have irinl < 1 
with a sufficient stability margin. However, as we will see, the choice of too 
large a gain will result in poor stability at the output of the amplifier or a very 
high input and output voltage standing-wave ratio. 
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ion 

If we choose I,. = 0, then r,„ = S „ . For conjugate impedance mo* ._-
at the input, r. = T* = Sf,. If we choose this for the source Zf 
coefficient, then the amplifier output reflection coefficient becomes ^ 

S 2 2 - Ai ; S 2 2 - AS?, 
r„ut = . _ s r = — 5 - = 0.2838 +70.3384 

The magnitude of the output reflection coefficient is 0.4416 Since r n * t 
output VSWR is (1.4416)/(1 - 0.4416) = 2.58. L t h e 

The point r, = Sf, is shown in Fig. 10.21 and is seen to lie quite close 
the source stability boundary. A relatively small increase in Ts could lead 
oscillations in the output circuit of the amplifier since i r ^ l > 1 when V li i 
inside the source stability circle. A more conservative choice for r would ho 
0.85Z. - 60°. This point is also shown in Fig. 10.21. For this choice the input 
is not conjugate matched. The mismatch at the input is, from ( 1 0 . 1 2 B ) 

(1 - i r i n | 2 ) ( l - | r , | 2 ) 0 .19X0.2775 
M = n - r , r , n i ' = 0.05523 = 0 - 9 5 4 7 

The input VSWR is now 

1 + v'l - M 
VSWR, = = 1.54 1 1 - / l - M 

With the above choice for l\, we find that r„u, = 0.3846 +J0.1615 and the 
output VSWR is 2.43. For this choice we improved the stability margin but at 
the expense of having to accept an input VSWR of 1.54. 

Before we leave this example, we will introduce a useful method that 
helps one to choose a value for l"s that gives a good stability margin, a low 
input VSWR, and a given normalized power gain. The input reflection 
coefficient is given by 

Sn-Ary, 
in i - s z 2 r L 

The complex conjugate of this equation is 

A*l?-Sf1 
in sf2rL*-i 

This is a bilinear transformation. Thus all values of VL tha t lie on a constant 
gain circle will map into a circle of T* values. If we choose r„ to lie on t h e

o ^ 
circle, then the input will be matched. We will discuss the FJ circles in m 
detail in Sec. 10.9. For now we note that the centers of these circles lie 0 ^ e s 

ray from the origin to the center of the source stability circle. The r,n
 c ^ d a r y 

also have the interesting property that all circles cut the Smith chart b 0 " ^ 
at the same two points that the source stability circle does. This p r ° ^stable 
similar to the corresponding property of constant gain circles for u ^ , 
devices. In Fig. 10.21 we show the F* circle for all values of TL on the ^ . ^ 
circle. Some of the T* values will correspond to YL values outside U^ ^^ 
chart. The best stability margin is obtained by choosing F, as the pomi ^ 
as Ts in Fig. 10.21, since this is farthest away from the source stabui . 



SOLID-STATE AMPLIFIERS 7 5 9 

For this example the T* circle has a center at 0.11833 -j 1.09625 and a radius 
of 0.46922. The value of \\ at the illustrated point is 0.06797 - j'0.6297. With 
this choice for Ts = I,*, the input is matched and we get a normalized power 
gain of 5 or a real power gain of 5 x | S 2 ] | = 45 or 16.53 dB. However, we 
must check if the corresponding value of I"; is satisfactory. With the above 
choice of Ts, we find that r„ul = 0.7819 - /0 .2077- For the chosen value of r*„ 
we can solve for V, using the equation 

S - I 
r^ = A~" o r = ° - 7 0 9 7 +70.36165 

The value of \'L for the chosen F,,, is well within the load stability circle. In 
Fig. 10.21 we show the points TL and r*ut. The output VSWR is easily 
calculated and is 2.52. Thus this design gives a matched input, a good power 
gain of 45. good stability, and an output VSWR equal to 2.52. However, we do 
need an output matching network that will transform the line impedance of 
50 17 into a load impedance given by 

1 + '"/. 
ZL = —Z, = 85 * j168.2 

1 " <i. 

A better output VSWR could be obtained by relaxing the input VSWR. 
By trial and error we find that, by using T, = 0 .35- . /0 .6062 and l\ = 
0.47237 — /0.31859, we can achieve a normalized power gain of 5. an input 
VSWR of 1.366, and an output VSWR of 1.8515. These final values of T, and 
YL are shown in Fig. 10.21 as the points I" and Y\. This last design results in 
good gain, low input and output VSWR, and good stability margins. 

The last item that we will examine is what happens if we try to design 
the amplifier for a gain significantly larger than the "Figure of Merit" gain. A 
very large gain means that the amplifier is very close to oscillation. Hence it 
can be anticipated that either Ts, YL, or both will be close to their respective 
stability circle boundaries. The [",* circle for all values of I", on the gp = 12.75 
gain circle is shown as the dashed circle in Fig. 10.21. This r,* circle lies very 
close to the source stability circle. For a matched input, I", would have to be 
chosen to lie on this I-*, circle and clearly this would not give an adequate 
stability margin. If we choose Ts sufficiently far away from this circle to obtain 
a good stability margin, then we will end up with a very poor impedance match 
at the amplifier input. The consequence of a poor impedance match al the 
input is that only a small fraction of the incident power on the input 
transmission line will be delivered to the amplifier input. Thus, even though 
the power gain will be high, the transducer gain will be low. In practice, 
microwave amplifiers are generally designed for power gains no greater than 
the "Figure of Merit" gain because of the poor stability and high input and 
output VSWR that results for larger gain designs. 

As is apparent there is no direct way to control all design objectives 
individually, since improvements in some areas generally are accompanied by a 
deterioration in some other characteristic. 

In Sec. 10.9 we will discuss low-noise amplifier design and will find that 
this will result in an additional constraint on Vs, since the best noise figure is 
obtained only for a particular value of I,. 
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Noiseless • 
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en«) 
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R 

(a) 

'n(t) = 

FIGURE 10.22 • 
(a) Thevenin equivalent circuit which uses a noise voltage generator; (6) equivalent circuit for 
a noisy resistor in which a noise current source is used; (c) typical noise voltage waveform. 

10.8 B A S I C N O I S E T H E O R Y 

As a result of thermal agitation, the electrons in a resistor have an inherent 
random motion which results in a random voltage appearing across the 
resistor terminals. This random voltage is referred to as noise. There is no 
analytical way to describe the exact voltage waveform; so we must be 
content with a description of certain average characteristics of the noise. We 
can model a noisy resistor as a noise-free resistor in series with a noise 
voltage generator en{t) or in shunt with a noise current source i„(t) as 
shown in Pigs. 10.22a and b. In Fig. 10.22c we show a typical noise voltage 
waveform that might be produced. 

Noise is a random process and its effects in a linear system are 
analyzed using statistical methods. For this purpose we construct an ensem
ble of macroscopically identical systems, e.g., we consider an infinite number 
of resistors with each one producing its own noise voltage. Averages < 
various products of the noise voltages at different times, such I 
e„(f,), e„(t,)e„(r2), etc., are obtained by averaging over the ensemble of noise 
waveforms. . 

Thermal noise is generally regarded as a stationary ergodic nois^ 
process which is a random process for which ensemble averages c 
replaced by time averages. Thus, in our brief summary of basic n o l s e -1 
we will use time averages. Since our objectives are only to obtain t .... r 

results needed to derive the equations required for low-noise amp ^ 
design, our discussion will be brief. Much more complete treatme 
noise are widely available in texts on statistical communication theory < 
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the reader should consult some of these for the details that are missing in 
our treatment. 

The time-average value of the noise voltage, given by 

< e„( t)) = Hm — / % „ ( 0 dt = 0 (10.31) 

is zero. The correlation function for the noise voltage is the average value of 
the product of the noise voltage at time t and that at a later time / + r, thus 

C ( r ) = H m g y j ea{t)en(t + T)dt 

= (en(t)en(t + 7)) (10.32) 

where C(r) is the correlation function. If r = 0 we obtain the average power 
{e'l) associated with the noise (the noise voltage is thought of as being 
applied to a 1-0 resistor, so that the dimensions are those of power). The 
average power in noise is distributed over a broad band of frequencies 
because noise voltage waveforms contain a broad spectrum of frequencies. 
The power spectral density S„(w) of noise is given by the Fourier transform 
of the correlation function; thus 

S„(o>) = C C(r)e J-rdT (10.33a) 

The inverse transform relationship is 

,-* du> 
C(r)= S „ ( W ) ( > . ' - — (10.33ft) 

The power spectral density represents the noise power in the spectral 
domain; so S„(w) A f is the noise power in a frequency increment \f. 

At room temperatures the power spectral density of thermal noise is 
constant up to frequencies of the order of 1,000 GHz and decreases at 
higher frequencies. Thus, at microwave frequencies and below, we can 
assume that the spectral density is a constant or is flat. This is equivalent to 
having a correlation function that is a constant multiplying the delta 
function §(r), that is, 

C ( r ) = CQt(r) 

since the Fourier transform of 8(r) is a constant equal to unity. Noise with 
a constant power spectral density is called white noise and is uncorrected 
noise. 

The power spectral density is an even function of ft>; so we can choose 
the spectral density such that only positive values of w need to be consid
ered. For thermal noise in a resistor, the power spectral density for the 
noise voltage is given by Nyquist's formula 

Sc(to) = 4kTR <o>0 (10.34) 
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ZL zs i(V) z, 

FIGURE 10.23 
A two-port network connected to (o) a voltage source; <b) a current source. 

where k = 1.38 X 10 '23 J / K is Boltzmann's constant and T is the absolut* 
temperature of the resistor R. Thus the amount of noise power P in 

frequency interval A f is given by 

P„ = UTRAf (1035) 

Thermal noise in a resistor is also called Johnson noise, after one of the 
early investigators of noise. 

If we use the equivalent current source model shown in Fig. 10.226, 
then the average power, if the current in{t) flows in a 1-il resistor, is given 
by (if,(0) and has a power spectral density given by 

4kT 
Sf(ft») = - S - w > 0 (10.36) 

R 

for thermal noise. 

Filtered Noise 

Consider a sinusoidal voltage generator with a complex rms voltage V that 
is connected in series with a source impedance Zx and a two-port network 
as shown in Fig. 10.23o. The input current produced by V is V/(Z„ + Zm>. 
where Zm is the input impedance to the network. The input power produced 
by V is given by 

2 

P. i n . l 

V 

z. + z, 
fife = 

47?, IZS + Zia 

ivi_2 

4R. 
-M 

(10.37) 

where \V\2/4RS is the available power and M is the impedance-misma 
factor. The power transfer function is M / 4 i ? s and is a function of *» su 
Zs and Zin are functions of co. If the voltage generator is replaced by a n 

voltage source ejt) with a power spectral density Seia>), then the 
noise power in a frequency band A f centered on w is given by mu P 
the source power spectral density by the power transfer function 
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factor A /'; thus 

M(w) 
(10.38) 

The total input noise power is obtained by integrating over all frequencies; 
thus 

,* M(ui) dai 
.10.39) 

Consider next the circuit shown in Fig. 10.236. The input current from 
the current source is Z!II/(ZS + Z,n) and the input power is 

P in.2 = 
izx 

P in.2 = zs + zin 

l / l2 

fl.„ = 
| / | 2 | Z / 4fl„* in 

4/?. Z,. 

4& 
-M (10.40) 

where Gs = Re ( l /Z s ) = RH/\ZS\ . If the sinusoidal current source is re
placed by a noise current source i„(t) with power spectral density S,(«), 
then the input noise power in a frequency band A f is given by 

M(w) 
P „ , , ( W ) = S , ( W ) ^ - A / - (10.41) 

The power spectral density of the noise power delivered to Z, would, by 
analogy, be given by the product of the power spectral density of the source 
and the power transfer function from the source to the output load 
impedance. Since we can describe the power delivered to ZL by the product 
of Pm with the power gain Gp(co), we see that the noise current source will 
produce an output power in ZL with a spectral density given by 
G„(w)Af(w)S,(w)/4Gs. A similar expression holds for the output power 
spectral density produced by the noise voltage source en(t) acting alone. 

When both sources V and I are acting, the input current will be 

V + /Z . 

and the input power will be given by 

(V+ IZS)(V* + I*Z*) 
in, 3 R,» 

ivr i/r vi*z*Rin 
- M + T ^ - M + 2 R e - ' "2 (10.42) 4fl< 4G„ IZ. 
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Because of interaction between the two sources, the input 
simply the sum of that from each source acting independently 

When we have two noise sources ejl) and in(t) acting sirnulta 
there is no input power caused by the interaction between e (/) a ^0Usv> 
when e„U) and i„(t) are uncorrelated or statistically independent ' " ' " 
sources. For this case the input noise power in a frequency band A f - " ° ^ e 

sum of that given by (10.38) and (10.41). When there is a de * 
correlation between e„(t) and iri(t). there will be some input noise n 
due to the source interaction. 

The cross-correlation between the current source in(.t) and volta 
source e„(l) is given by 

1 (T 
Cx( T) - hm wJ JMKit + r)dt ( io.43« , 

The Fourier transform of CJT) gives the cross-power spectra] density 
Sx(o>), t ha t is, 

Sx(w) = S„(o>) +jSxl(u>) = C Cx(r)e-JmTdr (10.436) 
J — X 

If we replace to by -to, we see that Sx(—u>) = Sx(to) since Cx(ri is real. 
From this result we find that SXr(to) is an even function of to and Sr,(o>) is 
an odd function of to. For input noise power calculations, we replace |V| by 
the noise voltage source power spectral density Se(,to), replace |/|~ by the 
power spectral density S,(io) of i„(t), and replace VI* by the cross-power 
spectra) density SJto) in (10.42). Thus, for partially correlated noise sources, 
the total input noise in a frequency band A f is given by 

Pn = Af(Se( 
M 

1~R~ 
+ S,(to) 

M 

4a 
4[Sxr{to)Rs + Sxi(to)Xs] 

+ s - K . 
\z. + z„ 

(10.44) 

The extra factor of 2 in the last term is due to the fact that we have 
combined the contribution from negative values of to with those nom 
positive values of to using the fact that SxrRs and SxlXs are even junc
tions of to. Also, we have defined the spectral densities Se(to) and Sjlf s^ 
that only positive values of to are to be integrated over to get the total mpu 

noise power. H ffers 
The power spectral density of the noise produced in a network ^ 

from that of the noise source because the network response d e P e " l f
S

t h e 

frequency. The source noise spectrum is filtered by the network- ^ ^ 
source noise spectrum is flat (white noise), the noise spectrum P r o <^U C^w e r 

some point in the network is not flat. Noise with a nonconstant P 
spectral density is called colored noise. 
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From (10.44) we find that the power spectral density of the noise 
power delivered to Z, is 

M M 

4R. 4G. " 
M)Gl,(co) 

(10.45) 

after multiplying by the power gain Gp of the two-port network. The total 
output noise power delivered to ZL is 

P„,,n, = f S(,0)-
dc 

(10.46) 

Noise in Active Devices 

In an active device such as a transistor, there are three main contributions 
to the noise produced by the device: (1) thermal noise in the resistive 
elements that are present, (2) shot noise due to the discrete nature of the 
charge carriers that constitute the current flow across p-n junctions, and 
(3) flicker noise that has a power spectral density proportional to 1/ / ' in the 
frequency domain. The current that flows across a p-n junction is not a 
smooth stream of charge. It consists of discrete charges that cross the 
junction in a more or less random manner like raindrops falling on a (in 
roof. The noise associated with this current is called shot nu ;se and is 
directly proportional to the dc bias currents. Shot noise, like thermal noise, 
has a flat power spectral density. For low noise an active device is operated 
with low dc bias currents. However, since the transconductance, and hence 
the gain of the device, decreases with a reduction of the bias current, there 
is an optimum lower value of bias current that gives the best compromise 
between low noise and gain and produces the optimum noise figure for the 
device. In Fig. 10.24 we show the typical behavior of noise figure versus 
drain current for a MESFET. 

2 -

1.5 

10 20 30 

mA 

40 
FIGURE 10.24 
Variation of the noise figure F of u MESFET as 
a function of drain current. 
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FIGURE 10.25 
Equivalent input noise sources for a noisy linear two-port network. 

Flicker noise is usually negligible relative to thermal noise and shot 
noise at frequencies greater than a few kilohertz for bipolar transistors but 
may be important in MESFETs up to frequencies as high as 100 MHz. 

Noisy Two-Port Networks 

In analyzing the noise produced at the output of a linear two-port network 
due to the internal noise sources, we can replace all of the internal noise 
sources by a series noise voltage generator e„(t) and a shunt noise current 
generator in(t) at the input as shown in Fig. 10.25. The total noise power at 
the output can be found by evaluating the noise output produced by 
en(t), i„(t\ and the thermal noise in the resistive component Rs of the 
source impedance. Two equivalent noise sources are needed at the input 
because if the input is short-circuited, that is, Zs = 0, the source in(t) does 
not produce any output noise, yet the noisy two-port does have a noise 
output under short-circuit conditions at the input so a noise voltage source 
e„(t) is required. Similarly, under open-circuit conditions e„(t) does not 
produce any output noise; so a noise source /„(/) is needed to represent the 
equivalent input noise source under open-circuit conditions. The two nois 
sources e„(t) and in(t) axe not completely independent since a part of e„\t 
and in(t) may arise from the same basic noise-producing mechanism within 
the two-port network. Thus, in general, there is some cross-correlation 
between e„{t) and i„(t) with a resultant nonzero cross-power spectr 
density. . j 

It is common practice to express the power spectral density asstx 
with the two noise sources e„(f) and in(t) in a form similar to that ^ v e " . J, 
(10.34) and (10.361 for thermal noise. When this is done, nicker noise, w ^ 
is low-frequency noise with a X/f spectrum, is not included, bine 
microwave amplifiers do not produce an output for low-frequency ^e 

signals, the neglect of flicker noise can be justified. We will thus specity 
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spectral densities as follows: 

Fore„(t) S,.(w) = 4A77?,. 

For /„( / ) S,(w) = AkTG, 

and 2[Sxr(") +JSx,(u>)} = 4kT(y, + jy,) 

where Rc is an equivalent noise resistance, G, is an equivalent noise 
conductance, and yr -i-jy, is a complex equivalent noise impedance. A total 
of four parameters, Rt„ Gh yr, y,, are needed to describe the noise properties 
of a noisy two-port network. 

In terms of the above spectral densities, we can express the total noise 
input to the noise-free two-port network, in a frequency band A /'. as follows 
by using (10.44): 

D p 

Pnin = hTlfM + kTAf-^M + kTLf-^-M 

R,y,. + X,y. 
+ 2kTbf—^-——M (10.47) 

In this equation the first term on the right, liTIfM, is the input thermal 
noise from the source resistance fig. The output noise in Z; in a frequency 
band A/'is obtained by multiplying by the power gain Gr(ui) of the network. 
The noise produced at the output termination by the equivalent sources 
enit) and i„(t) placed at the input of the network is fully equivalent to that 
produced by the internal noise mechanisms in the real noisy two-port 
network. 

10.9 L O W - N O I S E A M P L I F I E R D E S I G N 

In a typical microwave communication system, the information to be com
municated is modulated onto a microwave carrier and radiated into space by 
means of an antenna. At the receiving site an antenna is also used to 
intercept a small portion of the radiated signal energy. The receiving 
antenna will also pick up a certain amount of noiselike radiation from 
atmospheric disturbances, radio stars, the sun, and other celestial bodies. 
The received signal, along with some noise, is very weak and must be 
amplified to a level where it can be used to produce the desired video, audio, 
or digital output information that was transmitted. The function of the first 
amplifier stage is to amplify the signal with the addition of a minimum 
amount of extra noise. Thus the first amplifier stage should be designed for 
minimum noise. If the power gain of the first stage is around 10 or more, 
the signal will be sufficiently large at the output of the first stage, so that 
additional noise contributed by the following amplifier stages will have a 

1 
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Noise Figure 

negligible degrading effect on the overall signal-to-noise power rat 
vided that the noise contribution of the second stage is moderate I ^F° 
design of the first stage, the minimum noise requirement is more i m D " 
than maximum power gain or output VSWR, provided a power gain f ^If"1 

more can be achieved. Hence we can relax the gain and output V^wr"" 
requirements in order to achieve the objective of a minimum noise cont "k 
tion from the first stage. 

In this section we will discuss noise figure and the design of 
amplifier for minimum noise. We will show that there is an optimum sot 
impedance Z, (or source reflection coefficient Vs) that will result in the 
lowest noise figure. We will also introduce constant noise-figure circles that 
can be plotted on the rs plane and which will show in a pictorial way the 
increase in noise figure that occurs when the optimum source reflection 
coefficient cannot be used. For transistors that are not absolutely stable, the 
use of the optimum source reflection coefficient for minimum noise could 
result in an unstable amplifier, in which case a noise figure somewhat larger 
than the minimum one will have to be accepted. 

With reference to the circuit shown in Fig. 10.25a, the definition of noise 
figure F (also called noise factor) is 

signal-to-noise ratio at input 
F = — — (10.48) 

signal-to-noise ratio at output 

The output noise is the amplified thermal noise from the source resistance 
plus the noise produced by the amplifier. The standard definition of F 
requires the source to be conjugate impedance matched to the network, that 
is, Z„ = Z*, and the source resistance R„ to be at the standard temperature 
T0 = 290 K. Very often in practice the source resistance is at a different 
temperature and the source is not matched to the network. In this case t ' 
definition (10.48) gives the operating noise figure. If F is given at a single 
frequency and is based on the noise power in a small frequency band h 
then the noise figure is called the spot noise figure. When all of the noi^ 
sources are referred to the input as equivalent noise sources, then the sp 
noise figure can be defined as follows: 

total input noise power to network , ^n.49) 

thermal noise input power from source resistance 

where the noise powers are those in a narrow frequency band A/. i> . 
this latter definition, the spot noise figure for the system shown m 
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10.25 may be obtained from (10.47) by dividing by kT AfM. Thus we get 

/? , G, Rsyr + X„n 
F = ^ T , + -G,+2—B— | 1 0 5 0 ) 

This noise figure is seen to depend on the source impedance as well as on 
the noise parameters Re, G,, yr, and 7,. In (10.50), Gs = RjiR'i + X*\ 
The noise figure does not depend on the frequency bandwidth Af. However, 
the input signal-to-noise ratio will deteriorate if the amplifier bandwidth is 
greater than that required to accommodate the signal. 

The optimum source impedance that will minimize the noise figure is 
obtained by setting l>F/dRs = 0, 9F/dXa = 0, and solving for RK and Xs. It 
is readily found that 

X, = X,„=-^- (10.51a) 
G, 

and R* + X* = Re/G„ which gives 

When these values for i? , and Xa are used in (10.50), we obtain the 
minimum noise figure Fm. 

We now replace y, by -X„,G, in (10.50) and consider F - Fm which is 
given by 

F- Fm = — [Re+ ( 8 * -f X*)G, - 2XmX,.G,l 
**« 

-^-[Re + (R2
m+Xi)G,-2XiG,} 

- -jf[n. + (R« - -R,-,)2G, + ( * , - * » ) * $ + 2fl„*„ IG I 

-i?*,G,-A';?,G,] 

- ^ - [ « e + ^ . G 1 - Z r
2 „ G , ] 

ft 

= ^-[(Rs-Rmf + (Xs-X„,)2] 

1 1 \ 
>2 /"! . V 2 1 

+ \T<-R-j{R*-RiG'~x2">G'} 

upon using 2RsR,„Gi/Rs = 2R2
mG,/Rm and putting this term with the 
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factor - 1/Rm. The factor Re ~ (R2
m + X 2 )G , is zero as ma 

(10.51). Thus we obtain W n t r 0 l » 

G 
*-rm+ YI<R> - * - . ) * + ( * . - xm)2] (10.52) 

This is a very useful relationship in practice, since it determines the n " 
figure in terms of the minimum value Fm obtained when the optimu 
source impedance Rm +jXm is used along with only one additional parame
ter G,. By adjusting the source impedance, both the optimum source 
impedance and the minimum noise figure can be determined experimen 
tally. Transistor manufacturers will often give the minimum noise figure 
Fm, the optimum source impedance Rm +jX„, or source reflection coeffi
cient r,„ = (Rm + jXm ~ ZC)/(R„, +jXm + Zc), and the noise conductance 
G, or noise resistance Re. If Re is given the equation i? 2 + Xf = R ,/G 
which gave (10.516), can be used to find G,; thus 

G, = 
R, 

Rl+Xi 
(10.53) 

The given data can be used in (10.52) to find the noise figure F. 

Noise Figure for Cascaded Stages 

Figure 10.26 shows a two-stage microwave amplifier. The power gains of the 
two stages are GPl and GP2 . The input impedance mismatch is M, for the 
first stage and M2 for the second stage. The equivalent noise sources for 
stage 2 are designated as e'„(t) and i'n(t). The source impedance for stage 2 is 
the output impedance of stage 1. The noise figure for stage 1 will be called 
F, and that for stage 2 will be called F2. The noise figure for the system will 
be called F. 

Prom the definition (10.49) for noise figure, we see that the total input 
noise to the first stage is F^kTAfM,). At the output of stage 2, this noise 

en{t) •#») 
iC\ 

Gpi 

/O 

GP2 

zs 

V9 

1 

[ Gpi r GP2 

A-h 

Gpi 

K h 

GP2 

F I G U R E 10.26 
A two-stage microwave amplifier showing equivalent noise sources. 
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has been amplified by the factor GP]GP2 to give an output noise contribu
tion 

Pm = Gpfi^F.kTlfM, 

A similar analysis shows that the noise sources e'„(t) and /'„(/) produce an 
input noise power equal to kT \[M2(F2 - 1) to stage 2. Note that we do not 
include the thermal noise from the source resistance for stage 2. since this 
comes from the resistive part of the output impedance of stage 1. The latter 
is an internal noise source for stage 1 and its effects have already been 
included in the equivalent noise sources for stage 1. The total output noise 
power in a frequency band Af is readily seen to be 

Pn,^ = GPlGP2FikTAfMl + GP2(F2 - Y)kTAfM2 

where the last term is the amplified noise produced by e'„(t) and i'„(t). The 
output noise can be considered to be the amplified thermal noise in /?,. 
multiplied by the two-stage amplifier noise factor F; thus 

P*,m = GPfiP2FkT\fM, 

By equating these two expressions for output noise power, we get 

F-r> + ip>-»l£t < 1 0 ' 5 4 » 
This result shows that the second-stage noise does not produce a large 
change in the noise figure above that of stage 1 alone, since the contribution 
from the second stage is divided by GPl, provided GP[ is of order 10 or 
more, and the second-stage noise figure is on the order of that of the first 
stage. 

For a cascade of three or more amplifier stages, a similar analysis 
shows that the overall noise figure is given by 

Clearly, successive stages do not degrade the overall noise figure signifi
cantly. 

The noise in an amplifier can be accounted for by imagining that it 
comes from the thermal noise in the source resistance by assigning an 
equivalent noise temperature T„ to the source resistance. Thus we can write 

Pn,m = GP]GP2 •••MxkTL,\f 

= GPiGP2 ••• FM^kTXf 

and hence Te = FT. The excess temperature Tc - T = (F - l)T is called 
the noise temperature of the amplifier. A low-noise amplifier with a noise 
figure of 1.4 would have a noise temperature of 0.4 X 290 = 116 K. 

If all sources of noise in a system, which includes amplifier noise, 
thermal noise, and radiation noise picked up by the antenna, are regarded 
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as thermal noise in the source resistance Rs, then the temperat 
must be assigned to Rs so as to give the same amount of total no" » l 

and is called the system noise temperature. ls Tt 

C o n s t a n t N o i s e - F i g u r e C i r c l e s 

For the purpose of low-noise amplifier design, it is useful to plot con t 
noise-figure circles on the source reflection-coefficient plane. Since 

Z„, ~ Z, Z, - Zc 

zs+zc •- zm+z/ 

the expression (10.52) for noise figure can be written as 

F"#--S*l i + rr I + r 
i - r. i - r. 

G, „, 4irs - r„ 

Next we use 

2ft, 

R , ' i i - r / i i - r 

z. + z: i + r. 
= 2 Re 

= 2 Re 

z, i - r,. 

( i - r s ) ( i - r s * ) 2(1-irj2) 

ii - r„ ii - rj 

to get 

F~Fm = AG, K - U 
li - r j 2 ( i - i r / ) 

(10.56a) 

can be where G, = G,Zt, is the normalized value of G,. A similar expression 
derived involving RN = Re/Zc, namely, 

F _ F - 4 j ? . . ~ - l i ; : r " l ' . - g - (10-56*) 
NU + r j 2 ( i - i r / ) 

We now introduce a parameter N, defined as 

AT. = 
(fl-irju + r j 2 (F;-Fm)ii-r„ 

4f t N 4G, 

where W, corresponds to a chosen value F", for F. From (10.56) " 

(10.57) 

now 
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obtain 

N = r -r i r r* - r r* - r r + r r* 
i-!rj2 i-r,r; 

which can be wr i t t en in a form such as (10.1) and identified as descr ibing a 
circle in t h e r , plane. T h e cen te r of the circle is located at 

r.,= J ^ - „0.58a, 

and the rad ius of t h e circle is given by 

yV + N,(i-irmi2) 
R,= — ( 1 0 . 5 8 6 ) 

We can plot t h e circles for var ious values of Nn de te rmined by (10.57) for 
chosen values of F:. Each circle shows the values of Y s t h a t can be used in 
order to get a noise figure equal to F1. Fo r N, = 0 the circle degenera tes to a 
single po in t at Ym giving t h e m i n i m u m noise figure Fm. If F, = Ym is a 
s table point , t h e n t h e amplifier can be designed to give a m i n i m u m noise 
figure Fm. Usual ly , we can choose t h e load ZL so t h a t F, = Ym gives a s table 
design. However, somet imes the i npu t VSWR is too high if we use F, = F„(. 
In such a case a choice for Ts on a cons tan t noise-figure circle with F, > Pm 

would be used in order to obtain a be t te r i npu t VSWR. 

Example 10.3 Low-noise amplifier design. A silicon bipolar transistor 
has the following parameters at 4 GHz: 

Su = 0.36X148° S , , = 0.11X42° S2I = 1.57X27° 

S 2 2 = 0.67Z. - 64° Tm = 0 .38^ - 153° RN = 0.4 

Fm = 1.905 (2.8 dB) 

By using (10.25a) we find K = 1.2421 > 1; so the transistor is an absolutely 
stable device. From (10.19) we find that the maximum power gain is 7.2123 for 
which the maximum normalized gain is 7.2123/IS2II = 2.926. Since the 
device is absolutely stable, we can use conjugate impedance matching. From 
(10.17) we find that this requires F. = -0.53287 jO.40911 and TL = 
0.34159 + y 0.74723. With conjugate impedance matching, the input and output 
VSWR equals unity. If we use the above value of T in (10.566). we find th;n 
the noise figure is 2.49 or 3.96 dB. This is 1.16 dB greater than the minimum 
value. It is desirable to have a lower noise figure and yet not sacrifice any gain 
which already is on the low side. We can accept an increase in VSWR at both 
the input and the output of the amplifier. A design using gp = 2.9, which is 
very close to the maximum value, will be attempted. For an aid in the design 
process, the two constant normalized power-gain circles gp = 2.9 and gp = 2,3 
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FIGURE 10.27 
Constant normalized power-gain circles, constant noise-figure circles, and J"* 
the low-noise amplifier design example. m 

have been constructed and are shown in Fig. 10.27. The centers and radii of 
these circles were found using (10.28) and are 

rLg = 0.34026 +J0 .7443 RLg = 0.03574 for gp = 2.9 

['Lg = 0.30532 + /0 .6679 RLt, = 0.2052 for gp = 2.3 

As explained in Example 10.2 the values of VL on a gp ~ constant circle 
generate a set of values for r i n and hence a circle of 1",* values. The 1*̂  circles 
for gp = 2.9 and 2.3 are also shown in Fig. 10.27. The centers and radi) of 
these two circles [the equations for these circles are given in Sec. 10.10 a 
(10.59a) and (10.596)] are 

1* , = -0 .53198 - . /0 .40843 Rin = 0.03029 for g„ = 2-9 

lfn c = -0 .51225 - jO.39328 tf,n = 0.148 for gp = 2.3 

Also shown in Fig. 10.27 are the constant noise-figure circles for F = 2. 
(3.3 dB) and 2.4 (3.8 dB), which correspond to 0.5 dB and 1 dB greater t"^ 
Fm. The centers and radii for these circles are found using (10.57) and 
and are 

rxf= -0 .31706 -y"0.16155 R r = 0.23444 for F„, + 0.5 dB 

r g / = -0 .2959 - J0.1508 Rf = 0.3317 for Fm + 1 dB 

If we want an input VSWR of unity, then we must choose fs to ' * ° 
f* circle. The dot shown inside the smallest f* circle is the value of J in 
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conjugate impedance matching is used. The figure clearly shows that if we 
choose T„ to lie on this point, the noise figure will be more than 1 dB greater 
than Fm. Our earlier calculation gave a value of 1.16 dB greater. If we are 
willing to relax the gain requirement to gp = 2.3, then the figure shows that 
we can obtain a unity input VSWR and a noise figure somewhat better than 
Fn, + 0.5 dB by choosing F, as the point Vsi shown in Fig. 10.27. If we choose 
rt = i'm and gp = 2.3, then the best input VSWR is obtained by choosing a l'L 

that will produce a Tfn that lies as close as possible to \\. = Ym. This is the 
point rj = -0 .3386 - j'0.1725 shown in Fig. 10.27. The corresponding value 
of VL is l'£2 = 0.1818 + ./0.504 and is also shown in the figure. These choices 
result in a minimum noise figure, an input VSWR equal to 1.392, and an 
output VSWR equal to 2.069. The noise figure is a minimum value and the 
VSWRs are acceptable but the gain is only 2.3 X \S21f = 5.67. 

If we insist on having gp = 2.9 which gives a power gain of 7.15 and we 
also want a good input VSWR, then we have to accept some increase in noise 
figure. If we accept a noise figure 0.5 dB greater than F,„, then for the best 
input VSWR we choose rs to lie on the F = Fm + 0.5 dB constant noise-figure 
circle and as close as possible to the [** circle for gp = 2.9. This point is 
Ts = -0 .471 - /0.338 and is shown in Fig. 10.27 as the point !'„.. The required 
value of TL that will place I"* as close as possible to !"„. is I, = 0.3217 I- yO.7137 
and is shown in Fig. 10.27. These choices result in an input VSWR equal to 
1.22 and an output VSWR equal to 1.065. This last design can be considered to 
be acceptable. 

The input and output impedance-matching networks using parallel 
open-circuited transmission-line stubs can be designed using the method 
described in Sec. 5-6 (i.e., (5.29a ) and (5.296>i. Since we use parallel stubs each 
stub is required to produce only one-half of the susceptance given by (5.29a). 
From the chosen values of 1', and YL given above, we readily find that the 
required normalized source and load admittances are 

Ys = 1.683 +71.716 YL = 0.1715 -./0.6327 

The matching networks along with the stub positions and lengths are shown 
in Fig. 10.28. This figure does not show the dc bias circuit which is also 
required. 

FIGURE 10.28 
Matching networks lor the low-noise amplifier 



7 7 6 FOUNDATIONS FOB MICROWAVE ENGINEERING 

AJI of the calculations for the above amplifier design 
determination of the values of TL and \\ that give the best input and t l l e 

VSWR for the chosen gp and F were carried out using the computer ° U t p u t 

MICROAMP. The matching networks were also designed using this PTO^^ 

10.10 C O N S T A N T M I S M A T C H C I R C L E S 

In Examples 10.2 and 10.3 we used the f£ circle as an aid in the design f 
microwave amplifier with a low input VSWR. The parameters that describe 

* circle will be derived here. For an amplifier terminated in a load the Tj 
having a load reflection coefficient 
given by 

rL, the input reflection coefficient is 

'"in = 
1 - S22VL 

The complex conjugate of this equation is 

r* = 
' i n 

a*rL*-s* 
$22^1. _ 1 

This is a bilinear transformation, so that all values of Tt that lie on a 
constant gp circle will map into a circle of r i n values. The center rLlj and 
radius RLg for a constant normalized power-gain circle are given by (10.28). 
By using these circle parameters, we can obtain the corresponding parame
ters for the circle of Tjn and circle of Pj* values as described in Sec. 10.7. 
The center f£ c for the circle of f£ values is given by 

r* 
in. 

-* 
1**, V 

" 6 ' v 

- i i 2 

s is given by 

Rir — 
l«a SJR^g 

Rir — 

K* s22\ - \s22rLg -- n 2 | 
(10.596) 

In the design of a microwave amplifier, the choice for the s o U 

reflection coefficient is constrained by the requirements that are " ^ f ^ . j u 
to obtain a stable amplifier with a low noise figure. Unity input VS ' 
be obtained if Ts can be chosen to lie on the r£ circle for the cho=ei P 
circle. If the constraints do not allow this choice or, as sometimes h *P j^ ^ 
the r£ values inside the Smith chart are unstable values for I s . . eS[ 
should be located as close as possible to the r£ circle to obtain the ^e 

input VSWR. When the choice for f, has been made, then, if f~s
 l i e S 
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T,* circle, we will require Fin = F* and we can then find the required value 
of FL using 

If Ts cannot be placed on the r*n circle, then the best value for T*n is the one 
that is closest to r,s but on the specified rz circle. The complex conjugate 
value of this should be used for r,n in (10.60) to find T/.. 

For an unstable device a part of the gp = constant circle will lie 
outside the Smith chart boundary. The values of \'L on the gp = constant 
circle outside the Smith chart produce values of \'*t that lie outside the 
Smith chart. As explained in Example 10.2 the F*, circles have two invariant 
points for an unstable device. These invariant points coincide with the two 
points at which the source stability circle intersects the Smith chart bound
ary as illustrated in Fig. 10.21. The proof that these points are invariant 
points is as follows: For an unstable device we have shown that the 
gp = constant circles have two invariant points that coincide with the two 
points at which the load stability circle intersects the Smith chart boundary 
(see Sec. 10.7). Since F,* is given by 

A* Ff - S f , 
in s2*2r* - 1 

it is clear that these two particular values of F,, which we will call VLl and 
r / 2 , that are invariant points for the gp = constant circles will map into two 
fixed values for F£ that are common to all \'*n circles. Thus the r;* circles 
have two invariant points. Since F,, and l\2 also lie on the load stability 
circle that makes |r i n | = 1, the two points, which we will label as rin , and 
lm 2, must lie on the Smith chart boundary. Thus the two invariant points 
for the F*; circles lie on the Smith chart boundary. It remains to be shown 
that these points coincide with the two points at which the source stability 
circle intersects the Smith chart boundary. 

The source stability circle is the circle of Fs values that make |F011t| = 1, 
where 

Ar; - s 2 2 
I' = — " (10.61) 

We can rewrite (10.60) in the following form: 

1 r„ 

1 
A — - S 22 

' ' s , ' 1 

(10.62) 

which is a bilinear transformation of the same form as in (10.61). Let us 
choose rs l = F* ,. Since I V , 1 2 , = 1 we have r r i - 1/Fin ,. From (10.62), 
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l / r i n , maps into the point l/\'Ll for which | r t l | = 1. The bilinear tr 
mation in (10.61) is the same, so it follows that F/Sl = 1/f 
point rout , for which )l't Thus r , is a point on tne ' source^ahT* 3 

circle. For the same reasons r s2 is a point on the source stabilit . -
Consequently, F*,, = Vsi and T* 2 = Ts2 must be on the source s t a S h l 
circle. Hence the invariant points for the ["£ circles coincide with th t 
points at which the source stability circle intersects the Smith chart h W° 
ary. u 

C o n s t a n t I n p u t M i s m a t c h C i r c l e 

If we want to design an amplifier with a specified input VSWR, then if th 
load reflection coefficient VL has been chosen, there will be a circle of l 
values that can be used which will produce the specified input VSWR Let 
the required input VSWR be VSWR,. The reflection-coefficient magnitude is 
given by 

VSWR, - 1 
P = VSWRj + 1 

and the input impedance mismatch Mx is given by M, 
(10.12a) the input mismatch is given by 

| 3 \ / 1 i i - ,2 
«t/t . i l : _ 1 1 — 1 1 : . 4RxRiD ( i - i r i n i 2 ) ( i - i r / ) 

1 - p2. From 

(10.63) 

Let \"t be the chosen value of VL. From (10.60) we can calculate the 
corresponding value of f,n, say r,'n. By using this particular value of Tin in 
(10.63), we can express (10.63) in the form of an equation for a circle in the 
1*. plane. The center of this circle is located at 

sM l-o-iiWJ2 

and the radius of the circle is given by 

/r=nr(i-iiy*) 

(10.64a) 

R.u = lsM 
(10.646) 

i - ( i - M , ) i r ; n r 

The following example will illustrate the application of the constant inp«' 
mismatch circle in amplifier design. 

Example 10.4 Application of constant input mismatch circ 
amplifier design. An FET has the following parameters: 

SM = 0.8Z. - 140° S,2 = 0.2Z30° S21 = 2.8^60° 

5 2 2 = 0.2Z11500 T,„ = 0.7Z.100" RN = 0.4 

F,„ = 1.5 (1.76 dB) 

We want to design an amplifier with low noise and an input VSW 
ill tO 
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ssc 

F=F_+0.5 dB 
LSC 

FIGURE 10.29 
Constant gain, constant noise-figure, and constant input impedance-mismatch circles used for 
the amplifier design in Example 10 4. 

1.6. The required value of the input impedance mismatch is found to be 
M, = 0.94674. 

In Fig. 10.29 v>'e have plotted the £;, = 1.6 constant normalized power-
gain circle, the load stability circle, the source stability circle, and the optimum 
value r,„ for I's to obtain a noise figure equal to the minimum value /''„,. The 
F = 1.683 constant noise-figure circle is also plotted. This noise figure is 0.5 
dB greater than Fm- For this example we have chosen \'L = 0.307 /0.55, 
which is a point on the g;, = 1.6 constant gain circle and not too close to the 
load stability circle, for this choice of l\ = \"L, the input reflection coefficient 
r;n = -0 .3302 - . /0.3062, The input mismatch circle that will give VSWR, = 
1.6 has a center and radius given by 

[•„# = 0.316 ( ./0.293 ft,,,, = 0.186 

and is also plotted in Fig. 10.29. All values of VH on this circle will give an 
input VSWR equal tc> 1-6. In order to obtain the best possible noise figure, we 
should choose \\ to lie on this circle and on the line that joins the center of 
this circle to the optimum point I",,,. The best choice for I", is shown in Fig. 
10.29 and lies inside the F = Fm + 0.5 dB constant noise-figure circle, so that 
the input VSWR requirement can be met with a noise figure somewhat less 
than 1.683. The power gain obtained is 1.61 S2I\

2 = 12.54, which is quite close 
to the "Figure of Merit" gain of 14. 



780 FOUNDATIONS FOR MICROWAVE ENC.INEERING 

O u t p u t I m p e d a n c e - M i s m a t c h C i r c l e 

If it is required to design an amplifier with a specified output V'SWR 
for each chosen value of I's = \"s, we can plot a circle of r; values t h - ^ 6 " ' 
ensure that the specified output VSWR is obtained. The equation f^ * ' " 
output impedance-mismatch circle are of the same form as (10 641* T^ 
center of the circle is located at 

0* " 
MAKucf 

i - ( i - A f 2 ) i r ^ (10.65a 

and the radius of the circle is given by 

- / i ~ ^ 2 ( i - i r ; , j 2 ) 

where 

CM 1 - ( i - M 2 ) i r ; u t i
2 

M2- = 1 -
( VSWR2 - 1 ^2 

M2- = 1 -
( VSWR2 + 1 ] 

- = 
AS - s.i2 

(10.656) 

snr; - I 

In the design of a two-stage amplifier, the design of stage 1 leads to a 
specified output impedance mismatch for stage 1. Consequently, the design 
of stage 2 is constrained by the requirement that the input mismatch to 
stage 2 be equal to the output mismatch of stage 1, since the impedance 
mismatch is conserved in the lossless matching network that is used to 
couple the first and second amplifier stages. For this reason the constant 
impedance-mismatch circles described above are useful aids in the design of 
a two-stage amplifier. The application of the constant impedance-mismatch 
circles in two-stage amplifier design is described more completely in the next 
section. 

10.11 MICROWAVE A M P L I F I E R D E S I G N 

In this section we will present a design strategy for designing narrowb* 
one- and two-stage amplifiers, The first stage can be designed for a low noise 
figure. The method to be described can be used with both stable an^ 
potentially unstable transistors. It is assumed that the scattering-ma 
parameters S,j, the optimum source reflection coefficient Ym for mini 
noise, the minimum noise figure F„„ and the normalized noise resis 
RN or noise conductance G, are all known. The design specifications 
assumed to be a power gain greater than some minimum value, a 
figure no greater than a specified maximum value, and input and o 
VSWRs that do not exceed specified maximum values. 
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There is no unique design for an amplifier that meets the design 
specifications. Also, there is no unique method for carrying out the design. 
The method described in this section works quite well for achieving a 
satisfactory design, but many other systematic approaches could also be 
developed. In general, we have to examine a range of possible load and 
source reflection coefficients in order to obtain an optimum design. It would 
be very tedious to carry out the required optimization procedures using 
hand calculations. Consequently, in practice a suitable computer program is 
used. The design strategy that is described in this section has been imple
mented as the computer program MICROAMP. 

S t a g e Ampl i f i e r D e s i g n 

The first stage of a multistage amplifier or a single-stage amplifier is 
normally designed for a minimum noise figure, maximum power gain, and a 
chosen maximum input and output VSWR. In a multistage amplifier the 
output VSWR of the first stage is usually not a critical parameter. When the 
constraint on the output VSWR is relaxed, there is a greater degree of 
freedom available that makes it easier to achieve the other design require
ments. The design of the second stage is also easier to carry out when the 
first-stage output VSWR is relatively large. We will describe the design of 
the first stage as a series of steps or procedures to be carried out. 

1. The first step is to evaluate the stability parameter K given by 
(10.25a), i.e., 

%\SuSn\ 

and also to check if (10.256) to (10.25/') are satisfied. When these conditions 
hold and K > 1, the transistor is absolutely stable and steps 2 to 4 should 
be followed. If K < 1 the device is potentially unstable and steps 5 and 6 
should be followed. 

2. For K > 1 conjugate impedance matching can be used. The required 
values for the source and load reflection coefficients are given by (10.17). Let 
r*s, be the solution for I"s given by (10.17a). From this value of I", the noise 
figure F can be calculated by using (10.56). The power gain with conjugate 
impedance matching is given by 

Gp = Gl>,max=(K-^i-l) 

If the noise figure is acceptable, then the design is finished except for the 
design of the input and output matching networks. In practice, it usually 
turns out that the noise figure obtained using conjugate impedance match
ing is not satisfactory. In order to obtain a better noise figure, it will be 

" 1 2 
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FIGURE 10.30 
Constant gain. I'*,, and constant noise-figure circles used for amplifier design. 

necessary to design for a lower gain and some mismatch at the input and 
output ports, as described in the following steps. 

3. In order to visualize the design procedure, we have plotted three 
constant normalized power-gain circles, the corresponding three V*n circles, 
and two constant noise-figure circles for a hypothetical device in Fig. 10.30. 

We first try to obtain a satisfactory design using l"s = Tm for minimum 
noise and a chosen normalized power gain. For example, we can choose 
§P

 = £i /2) in Fig. 10.30. We now construct an objective function 

OF = WlMl + W2M2 

where M, is the input mismatch and M.> is the output mismatch and W, 
and W2 are weights that can be chosen to place different levels of impor 
tance on the input and output VSWRs. A value of VL, say r t „ is chosen on 
the g (2) constant gain circle. From this value of fL we can calculate ,„ 

using 

n„ = 
M i , - S u 
^ 2 2 ^ 1 1 

We can also calculate foul using Ts = F„,; thus 

r = 
1 n i l ! 

AT... - S, 22 

slxrm-t 
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From these we calculate M, and M2 using 

( i - i r i n i 2 ) ( i - i r j 2 ) 
M , = 

M2 = 

li - rinr„,i2 

( i - i r o u [ i
2 ) ( i - i r L 1 0 

li - i ; u ^ 1A 

The objective function for this value of P; is now evaluated. The best input 
and output VSWRs are obtained by maximizing the objective function. Thus 
we search the gp(2) circle for the value of YL that maximizes OF. This 
search is carried out by incrementing \\ in the direction that increases OF, 
that is, rL is set equal to r / 2 , P t 3 , . . . , as shown in Fig. 10.30. If satisfactory 
values for the input VSWRj given by 

VSWR, = 

and the output VSWR2 given by 

VSWR, = 

1 + fl - M, 

l-}fl-M1 

1 + / l - M2 

are obtained, then the design process is terminated. 
If we obtain a good value for the output VSWR2 but an unacceptable 

value for the input VSWRj, then we can set the weight Wi = 0 and W\ = 1 so 
as to place all of the emphasis on achieving a good input VSWR!. With all of 
the emphasis placed on M\. the optimum value of T/. will be that value which 
produces a F"n that is as close as possible to r m . since this produces the best 
input impedance match. However. M] and M->_ have the same dependence 
on rL so the largest values of M\ and Mi occur for the same value of TL, so 
changing the weights will not improve the results. It will then be necessary to 
search for an optimum value of Ti on a lower constant gain curve, say gr(i). 
The corresponding r^ circle is larger: so clearly HJ, can be brought closer to 
r m , thereby improving the input VSWRj. 

The above process is repeated until the lowest acceptable constant gain 
circle has been searched. If this does not result in acceptable input and 
output VSWRs, the only alternative left is to accept a noise figure greater 
than Fm. In this case it is helpful to compile a table of best possible input 
VSWR, values for a given noise figure and normalized power gain, as 
described in step 4. 

4. Figure 10.31 shows the F = F, constant noise-figure circle and the 
[^(2) circle for gp = gp(2). If we are designing the amplifier for this noise 
figure and power gain, then the optimum choice for Y^ and T* that will 
result in the best input VSWR, is the value of Ts on the F = Fx circle and 
the value of F£ on the V*a(2) circle that are as close together as possible. 
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FIGURE 10.31 
A constant noise-figure circle and a 1",* circle and the optimum choice for Vx and T*, that will 
give the lowest input VSWR. 

These points lie on the line that joins the center of the F = Fj circle to the 
center of the F*(2) circle as shown in Fig. 10.31. 

The center for the noise-figure circle is \'Sf given by (10.58a) and the 
radius Rf of the circle is given by (10.586). The center V*n (. and radius r?m 

for the Fj* circle are given by (10.59). The vector from the center of the 
F = Fl circle to the center of the F*n(,2) circle is given by 

r = r * . c - i v 
A unit vector pointing from Ts/ to f* c is r / | r | . The point Ts lies a distance 
Rf from Vst and in the direction of r; hence 

r* - r 
r--w*'- ir* ^T~l r 

The optimum value of f* is similarly given by 

Thus we can calculate the optimum choice of Ts and I'* and from 

T* = -
1 in 

;Ein = fi,_ 

these 
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evaluate the input mismatch Mt and VSWR,. The value of VL that pro
duces rjjj is given by < 10.60). The above calculation can be repeated for 
various choices of gp and F and allows us to compile a table of best VSWR, 
values as a function of g and noise figure F. By consulting such a table we 
can easily see the tradeoffs between power gain, noise figure, and input 
VSWR,. We now choose fe for the lowest noise figure consistent with the 
lowest value of acceptable power gain and the largest acceptable value of 
input VSWR,. The next step is to repeat the optimization procedure de
scribed in step 3 by searching the identified gp = constant gain circle so as 
to optimize the objective function. The maximum value of the objective 
function might not correspond to the optimum choice for V* that maxi
mizes M|. Also, the output VSWR2 might be higher than specified. If this is 
the case, then either the design requirements have to be relaxed or a 
different transistor must be used. 

5. If the transistor is potentially unstable, then we cannot carry out a 
design with conjugate impedance matching. For this case a design for 
minimum noise using \\ = l'„, should be explored first. This requires that 
we determine the source stability circle and check that l',„ lies in a stable 
region of the Smith chart and not too close to the boundary of the source 
stability circle. When Tm is a stable value, the design procedure is the same 
as described in step 3, i.e., a chosen gp = constant gain circle is searched for 
the best value of V, that will maximize the objective function OF given in 
step 3. The ' 'Figure of Merit" gain is | S 2 , / S , 2 | with a normalized value 
|S1 2S2 1 j • It is good practice to design an amplifier for a normalized power 
gain that does not exceed this value. Thus constant power-gain circles with 
SP

 = | S a i S l 2 | ' and smaller are searched. If acceptable values of gp, VSWR,, 
and VSWR.,, are obtained, then the design process is terminated. The 
resultant amplifier will have a minimum noise figure Fm. If a satisfactory 
design cannot be obtained using T, = f"„, or if l'„, is an unstable value, then 
the procedure outlined in step 6 should be followed. If f„, is an unstable 
value, it would be advisable to use another transistor. 

6. In order to minimize the amount of searching for the optimum 
value of V, subject to the constraints on gp, F, VSWR,, and VSWR2, it is 
again helpful to compile a table of best VSWR, values as a function of gp 

and F. By consulting such a table we can determine if the design objectives 
can be met and /o r the best power gain, noise figure, and input VSWR, that 
can be obtained using the chosen transistor. When the I",* values inside the 
Smith chart represent stable values of I",, then the input VSWR, for the 
optimum choice of T*n and fs on a chosen F = constant circle are calculated 
the same way as for a stable device. The procedure is described in step 4. 
The optimization of the input VSWR, and output VSWR., for the chosen 
normalized power gain and noise figure can be carried out in the same way 
as described in step 4. 

A bipolar transistor used in a common base configuration or an FET 
used in a common gate configuration often have | S , , | > 1 and |S22I > 1. 
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When this latter set of conditions holds true, it is not possible to des' 
amplifier with a low input or output VSWR. The reason is that stable if*? ^ 
of T, produce values of V*n that lie in the unstable region of the r nla 

we cannot choose Ts equal to 1',*. Similarly, stable values of r produce r*° 
values that lie in the unstable region of the rL plane so the output n ""' 
cannot be matched. Since the common base and common gate connectin 
usually have poorer noise performance as well, the common base or commo 
gate circuits are not used in low noise amplifiers. In Example 10 5 w 

illustrate the impossibility of matching the input port of a common base 
amplifier. 

Example 10.5 Common base amplifier. A bipolar transistor in the 
common base connection has the following parameters at 5 GHz: 

Su = 1.3^140° 

S22 = I.lfiZ - 50° 

S12 = 0.2^130° 

r,„ = 0.7^135° 

S2 I = 2 ^ - 8 5 ° 

Fm = 2.5 RN = 0.4 

For this transistor K = - 0.579 so it is potentially unstable. In Fig. 10.32 we 
have plotted the load stability circle, the source stability circle, the gp= 1.5 

FIGURE 10.32 , 6 

Load stability circle, source stability circle, gp = 1.5 circle and corresponding i&i^ 
F = F„, + 1 dB constant noise-figure circle for the bipolar transistor, in a 
configuration as used in Example 10.5. 

ircle. 
common base 
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circle and corresponding !',* circle, and the F = F„, + 1 dB = 3.147 circle. 
Since IS n l > 1 and |S 2 2 | > 1, the origin is an unstable point for both \\. and 
!'/_. The regions of the Smith chart where stable values of Tv and V, are 
located are shown cross-hatched. The point r £ ] on the gp = 1.5 circle maps 
into the point l~* , which lies in the unstable part of the Tv plane. All values of 
l'L in the stable region map into T* values that lie in the unstable part of the 
Ys plane. Hence we cannot choose 1", = 1'* and consequently the input port 
cannot be matched, 

If we try to design a low-noise amplifier by choosing I.. = [*„, and with a 
normalized power gain of 2. the resultant input VSWRl = 15.42 and the 
output VSWR., = 19.03. If we reduce the gain requirement Gp to 5. for which 
gp = 1.25, we obtain VSWR, = 12.76 and VSWR., =• 26.56 for a design with 
minimum noise. There is a small improvement in the input VSWR, but the 
output VSWR2 is increased. 

From Fig. 10.32 it is quite clear that any value of r„ on the F = Fm + 1 
dB noise-figure circle and in the stable region will still be far away from all I'* 
values inside the Smith chart. Thus a low-noise amplifier with acceptable gain 
and input and output VSWRs cannot be designed using the above transistor in 
a common base circuit. 

Example 10.6 Low-noise amplifier design. A GaAs FET has the following 
parameters at 10 GHz: 

Su = 0.73^42° S1 2 = 0.2A - 58° S.2I = 1.52i - 66" 

S.,2 = 0.5^34° r,„ = 0.52Z. - 70° F„, => 1.25 A\v = 0.75 

We want to use this device in a low-noise amplifier design which meets the 
following specifications: 

Noise figure /•' < 1.5 

Input VSWR t < 1.5 

Output VSWR2 < 1.5 

Power gain G(, as large as possible 

For this device K = 1.071 so that the FET is absolutely stable. For a 
conjugate-impedance-matched design, we get Gp = Gpmm = 5.222. VSWR, = 
VSWR2 = 1. and F *= 1.7. The noise figure is too large; so we must consider a 
design that is not matched at the input and output. The power gain which can 
be obtained is no greater than 5.222; so we do not want to sacrifice much 
power gain for an improved noise figure. The best VSWR, that can be achieved 
using gp = 2.25, which gives Gp = 5.1984. for F = F„, -i 0.5 dB is 1.3644 and 
for F = Fn, + 1 dB it is 1.026. This shows that the design objectives can be 
met by allowing a noise figure equal to Fm + 0.5 dB = 1.4. By searching the 
gp = 2.25 circle for the optimum value of I", and using the optimum value of 
I",, which was determined so as to lie on the F = Fm + 0.5 dB noise circle and 
give VSWR, = 1.3644. we obtain Gp = 5.1984, VSWR, = 1.3643. VSWR;, = 
1.1179, and F = 1.4. The required values of Tv and V, are I"v = 0.389 -./'0.534 
and IV = -0 .0028 - / 0 . 3 2 S . This design meets all of the specifications. 
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FIGURE 10.33 
A block diagram of a two-stage amplifier. 
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Design of Second Stage for a Two-Stage Amplifier 

The design specifications for the second stage of a two-stage amplifier 
emphasizes power gain and output VSWR. The noise figure of stage 2 is not 
very critical since the noise contribution of the second stage is reduced by 
the power gain of the first stage as shown by (10.54). However, at the higher 
microwave frequencies, the power gain of the first stage is often not very 
large, so that some consideration of the noise figure of stage 2 is necessary. 
If we assume that the matching network used between the output of stage 1 
and the input to stage 2 is a lossless network, then, since the impedance 
mismatch is constant throughout a chain of lossless networks, the impedance 
mismatch at the input to stage 2 is the same as that at the output of stage 
1. This places a constraint on the design of stage 2, namely, that the input 
impedance mismatch must equal M.2, where M2 is the output mismatch for 
stage 1 and was determined in the design of stage 1. In order that the 
interstage matching network be physically realizable, this constraint cannot 
be violated. 

In Fig. 10.33 we show a block diagram for a two-stage amplifier. The 
source reflection coefficient, input reflection coefficient, output reflection 
coefficient, and load reflection coefficient for stage 2 are identified by a 
superscript prime. The output impedance mismatch of stage 2 is M3 and 
the corresponding output VSWR will be called VSWR3. It is assumed that 
the same type of transistor that was used in stage 1 is also used in stage. 

The design of stage 2 will be based on the optimization of the noise 
figure and output VSWR or mismatch M3 for a chosen power gain gp- Th l £ 

optimization is carried out subject to the constraint that the input imped 
mismatch equals M2. The following objective function is used for the desi 
of stage 2: 

F 
OF = W,M3 + W2 — 

nd 
where W, and W2 are suitable weights. We choose Fm/F for the se ^ ^ 
term, since this quantity is of the same order of magnitude as M3 t 

becomes larger for smaller values of F. Thus our goal is to find t h e 
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F I G U R E 10.34 
A constant power-gain circle and a constant input impedance-mismatch circle used in the 
design of the second stage of a two-stage amplifier. 

value of rL on a chosen gp = constant gain circle so as to maximize OF. 
The design procedure is the same for both stable and unstable devices. 

A visualization of the optimization process can be obtained by refer
ring to Fig. 10.34. In this figure we show the load stability circle, two 
constant power-gain circles, and a constant noise-figure circle for a hypo
thetical transistor. Let us assume that we will choose gp = gl. We then pick 
an initial value of V,, say T,',, on the gt circle. From this value of V'L we 
can calculate I7n using 

nrLl - su 
1 in Q i - _ i 

The input mismatch M2 is given by 

( i - i r j ' ) ( i - i r / ) 
|i - r;nr;i2 

Since M2 is fixed by the stage 1 design, this equation determines a circle of 
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Vs values that can be used. The center and radius of this input 
circle are given by (10.64) and are 

m i smatch 

KM ~ 
M 2 d 7 n f 

R'SM -
i - ( i - M 2 ) i r ; j 2 

Each value of T's such as 1^, r;2, etc., shown in Fig. 10.34 enables us to 
calculate a corresponding noise figure using (10.56). Also for each IT we can 
calculate an output reflection coefficient I"1,, ,. From r;ul , and the chosen 
value Y'Ll for V{, we can evaluate the output mismatch Af3. Thus we can 
evaluate the objective function. Our procedure is now to search the input 
mismatch circle for the value of l"s that maximizes the objective function. 
The maximum value is recorded. We now increment Y"L to a new value Y',.,. 
This results in a new input mismatch circle which is searched for the value 
of l"a that maximizes OF. This value of OF is compared with the previous 
one, and if it is greater then l"L is incremented to a new value T£3 in the 
same direction on the gp = gx circle. If the second value of OF is smaller 
than the first one, then i"L is incremented in the opposite direction. The 
search process is continued until the optimum values of VL and T'a are 
found. The optimization routine would be very time consuming to carry out 
with hand calculations but can be done very quickly on a computer. The 
optimization carried out on the input mismatch circle will result in a choice 
for H that lies as close as possible to the optimum point l'm if the weight W, 
is set equal to zero (see Fig. 10.34). When WL is not zero, TJ will generally 
deviate from this point in order to get a lower output VSWR3. 

If satisfactory values of noise figure and output VSWR3 are not 
obtained from a value of Y'L on the chosen gp = constant circle, then the 
procedure outlined above must be repeated on a constant gain circle having 
a lower gain. If, after searching the lowest acceptable power gain circle, an 
acceptable design is not obtained, then the design specifications will have 
be relaxed, a different transistor used, or a third stage added. A third stag* 
can be designed using the same approach as used for the second stage-

Some of the Vs values on an input mismatch circle may he '"* *? 
unstable region of the Smith chart. If Y^ is an unstable point, t h e " t e ' r 

produces an output reflection coefficient r„u[,, with a magnitude 8 ^ ^ 
than unity. When i r ; u t J > 1 the output mismatch M3 and output VbW ^j 
will be negative. Consequently, M:) will contribute a negative quanti } 
the objective function. Since the objective function is being maxim' ^ 
unstable values of f^ are not selected since they tend to mininuz 
objective function. 
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When the design of the second s tage has been completed, the two-stage 
amplifier will have a power gain 

Gp
 = Gpfip2 

and a noise figure 

F = FX + ( F a - 1) 
M 2 

Mfipl 

T h e in te rs tage ma tch ing ne twork m u s t t rans form the ou tpu t admi t 
t ance YtMl of s tage 1 in to t h e required source admi t t ance FJ for s tage 2. At 
the same t ime it m u s t t ransform the i npu t admi t t ance V,'n of s tage 2 into 
the required load admi t t ance YL for s tage 1. This ma tch ing ne twork is 
physically realizable because of the cons t ra in t t h a t was placed on t h e s tage 2 
input impedance misma tch when i t was designed. T h e design of an inter
s tage match ing ne twork is described in Sec. 5.7. 

Example 10.7 Two-stage amplifier design. At 6 GHz an PET has the 
following parameters: 

Sn = 0 . 8 ^ - 130° Sts = 0.2,630" S2 I = 3z60° 

S, 2 = 0.3Z.140" r„, = 0.6/Ll6(T PL, = 1.6 Rx = 0.6 

The design specifications are: 

Two-stage power gain O > 120 

Total noise f igure Fs 1.8 

Input VSWR, < 1.5 

Output VSWR, < 1.5 

For this device K = 0.513. so that the transistor is not absolutely stable. The 
"'Figure of Merit" gain equals [£jj,/£,2l = 15. The normalized value is gp = 
1.666. 

For the design of the first stage, the following table of minimum VSWR, 
values as a function of normalized power gain and noise figure was compiled: 

gp F VSWR, r. 
1.6 *m 2.39 -0.564 +70.205 
1.4 Fa 2.084 -0.564 +70.205 
1.2 Fm 1.809 - 0.564 -+ 70.205 
1.6 1.68 1.71 -0 .581 -70.304 
1.4 1.68 1.49 - 0.576 7'0-306 
1.2 1.68 1.294 -0.569 t-7 0.307 

From the above table we see that we can obtain a noise figure of 1.68, a 
normalized power gain of 1.4, and an input VSWR, = 1.49 or, with a reduced 
normalized gain of 1.2, an input VSWRt of 1.294. We will choose a power gain 
gp = 1.2 and a value of I % midway between those giving VSWR, equal to 1.294 
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and 1.809, so as to obtain a noise figure somewhat smaller than 1.68. Thu 
choose r„ = - 0.568 + j '0.27. We now use this value and search the g = i 
gain circle for the value of ["L that will give the smallest values for VSWTl 
VSWR2. The result is TL = 0.458 + ./0.14 and an amplifier having a nT 
figure 1.572 and an input VSWR, = 1.484 and a power gain G , = 10 8 Th 
output VSWR2 = 6.5015 which gives M2 = 0.4621. 

The design of stage 2 is carried out using the procedure described earlier 
The objective function W^AT, + W.,F„,/F is optimized by searching for the 
value of l", on a chosen gp = constant gain circle and the value of rj on the 
associated input impedance-mismatch circle using M2 determined above 
The search on the gp = 1.6 circle resulted in a design with VSWR., = 1.65 and 
F2 = 3.693 using W, = 1, W2 = 0. For this example a search on lower gain 
circles gave higher values of VSWRa. If we relax the design specifications to 
allow the somewhat larger output VSWR3 value, then for the two-stage 
amplifier the following performance is obtained: 

14.4 = 155.5 VSWR, = 1.484 VSWR3 = 1.65 

F0 - 1 2.693 

Gp = 10.8 X 

F = F, + M., 
Mfi 

= 1.572 + 0.4621 x 
•• 

0.962 x 10.8 
= 1.692 

ssc 

Input 
mismatch 

circle 

FIGURE 10.35 
Illustration for the two-stage amplifier designed in Example 10.7. 
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For all specifications except the output VSWR3, this design meets the stated 
criteria. For practical applications an output VSWRa equal to 1.65 instead of 
1.5 is acceptable. 

In Fig. 10.35 we show the load and source stability circles, the g = 1.6 
and 1.2 constant gain circles, the values of r, and f", for stage 1, the values of 
i"s and \"L for stage 2, and the point fs = !"„,. Also shown is the point I",;, for 1"̂  
and the input mismatch circle for V'L. Note that V's lies on this circle but is not 
as close as possible to the optimum point Im . The reason for this is that V 
was chosen to obtain the best output VSWR3, not the best noise figure. The 
figure clearly shows that t'v, \'L, P., and \"L are sufficiently far away from the 
stability circle boundaries so the design has an adequate stability margin. 

A second design was carried out for which the input stage was designed 
for a power gain of 7.2 and a minimum noise figure and a resultant input 
VSWR| = 1.358 was obtained. For the second stage we were then able to 
obtain GpS = 14.4, VSWR3 = 1.517, and F = 4.28. For the two-stage amplifier 
we obtained Gp = 103.7, VSWR, = 1.358, VSWR., = 1.517, and F = 1.685. 
This design has an input VSWR, lower than required, a noise figure essentially 
the same as for the first design, an output VSWR,, nearly equal to 1.5, but a 
significantly lower gain. The small increase in output VSWR., in the first 
design is only a small price to pay for the much larger power gain that was 
obtained, so the first design is a better one. 

10.12 O T H E R A S P E C T S O F MICROWAVE 
AMPLIFIER D E S I G N 

Microwave amplifier design as described in the preceding section is only a 
small part of the overall design problem. Once it has been verified that the 
specified performance can be obtained, a decision has to be made as regards 
to whether hybrid construction or monolithic integration will be used in the 
fabrication of the physical amplifier. A decision of whether to use mierostrip 
circuits or eoplanar-waveguide circuits must also be made, as well as a 
decision of whether to use lumped elements or distributed elements for the 
impedance-matching networks. The layout of the circuit must be designed 
and the circuit must incorporate both the bias circuit and the RF elements 
with suitable decoupling of the RF circuit from the dc bias circuit. The 
physical dimensions of ail transmission lines and other printed-circuit ele
ments must be calculated and will depend on the substrate material used. 
Suitable masks must be prepared for use in the fabrication of the amplifier. 
After the amplifier has been built, it must be tested to determine if it meets 
the design specifications. 

After the RF circuit and dc bias circuit have been designed, a theoreti
cal evaluation or computer simulation of the amplifier should be carried out 
to verify that it is stable at all freqxiencies. This check should be performed 
before the amplifier construction is undertaken. 

For a broadband amplifier the design of the matching networks is 
considerably more complex than that for narrowband amplifiers. The 
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matching networks must be designed so as to provide adequate stabilit-
gain throughout the passband, and constant group delay. The latt 
quires that the phase function <M«) in the overall amplifier transfer f ' 
tion H(<o) = \H(u)le-,M<"' be a linear [unction of w (see Sec. 3.19). 

For a power amplifier, dynamic range, nonlinear distortion, and i 
modulation characteristics must be taken into account. Also, suitable n 
sion must be made to remove the heat produced in the active devices 

Companies that manufacture microwave amplifiers use a number f 
computer-aided design (CAD) software packages to facilitate the overall 
design. The effort expended in carrying out a thorough design before 
construction is undertaken pays large dividends since there is very little 
that can be changed in either the circuit component values or the circuit 
layout once the amplifier has been built, particularly so for monolithic 
microwave integrated circuits (MMICs). 

Hewlett-Packard manufactures modular microcircuit packages that 
are very useful in the eaHy stages of microwave amplifier development. 
These packages provide a ready-made miniature box with input and output 
miniature 3-mm coaxial-line connectors and dc bias terminals that allow for 
easy mounting of a prototype circuit so that it can be tested. A photograph 
of these package modules is shown in Fig. 10.36. 

FIGURE 10.36 o r t e s > . of 
Modular microcircuit package for prototype circuit design and testing. (Photograpn 
Ray Moskaluk, Hewlett-Packard Company.) 
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FIGURE 10.37 
A broadband traveling-wave amplifier (MMIC) circuit. All components including matching 
networks are built on a single chip. (Photograph courtesy of Kay Moskaluk. Hewlett-Packard 
Company.) 

A typical MMIC circuit is shown in Fig. 10.37. Th i s is a b roadband 
genera l -purpose traveling-wave amplifier. It is a GaAs MMIC chip us ing 
seven M E S F E T gain stages and has a flat gain of 8.5 ± 1 dB over t h e 
frequency range 2 to 26.5 GHz. A large n u m b e r of gain s tages is requi red 
since for any amplifier t h e gain-bandwidth product t ends to remain con
s t an t , so t h a t the gain pe r s tage is necessari ly low in a very broadband 
amplifier. T h e noise figure ranges from a r o u n d 5 dB at the low-frequency 
end to 7 to 8 dB at t h e high-frequency end. T h e input and o u t p u t VSWRs 
a re less than 1.5. 

P R O B L E M S 

10.1. A bipolar transistor has the following scattering-matrix parameters at 2 
GHz: 

S,, = 0.56Z.170" 

S, , = 4.04 Z. 76° 

S I 2 = QM/-75* 

S.u = 0.41Z -23° 

Find the stability parameter K, and if K > 1 also find the maximum stable 
gain. Find the load and source stability circle parameters and plot these on a 
Smith chart. 
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er circuit at 5 
10.2. A silicon bipolar transistor is used in a common base amplifi 

GHz. Its scattering-matrix parameters are: 

Su = 1.3^140° S ( z = 0.2Z130" 

S 2 1 = 2Z. - 85° S 2 2 = 1.15/. - 55° 

Find the stability parameter K, the maximum stable gain, and the load 
source stability circle parameters. Plot the stability circles on a Smith ch 

10.3. A GaAs FET has the following scattering-matrix parameters at 2 GH? 

S„ = 0.91Z - 42° S l z = 0.05^33° 

S 2 , = 6Z.105° S 2 2 = 0 . 6 2 Z - 9 5 ° 

Find the stability parameter K and the load and source stability circles Pint 
the stability circles and show the regions of the Smith chart where stable 
values of the load and source impedances lie. 

10.4. A bipolar transistor is used as a common collector {source follower) amplifier 
at 5 GHz. Its scattering-matrix parameters are: 

S„ = 0.63A - 9 6 ° S 1 2 = 0.8^15° 

S21 = 2.3Z. - 5 3 ° 5 2 2 = 0.62Z98" 

Evaluate the stability parameter K. Find and plot the stability circles and 
show the regions of the Smith chart where stable values of YL and i"8 occur. 

Answer: K = 0.3993, rLl. = - 1.298 +J4.0718. RLC = 4.5735, r s l = 
2.347 -J3 .8792, Rsc = 4.8395. Stable values he inside the stability circles. 

10.5. An engineer adds an external network to a bipolar transistor and finds that 
in a common base connection its scattering parameters at 5 GHz are 

S„ = 1.3^140° S1 2 = 0.2^130° 

S 2 1 = 2zL85" S 2 2 = 1.1SZ - 5 5 ° 

Find the stability parameter K and the stability circles. Show in what 
regions of the Smith chart stable values of YL and Ts occur. 

Answer: K = 1.439 but the device is only conditionally stable since 
|S„ ) > 1 and ISajJ > 1; Vu- = 0.174 + J0.6258, Ru: = 0.2172, TS( -
-0 .2179 - jO.495," ftsc = 0.2714. Origin is unstable. 

10.6. For the amplifier discussed in Example 10.2 and using the design that 
requires ZL = 85 +j 168.2. design a matching network consisting of an 
open-circuited stub located a distance d from the output that will transform 
the 50-11 line impedance into the required load impedance (see Sec. 5.6). 

10.7. Redesign the amplifier discussed in Example 10.3 so as to get a noise figure 
of 2 and a normalized power gain of 2.9. Find the required values of I , , w 
and the resultant input and output VSWRs. . 

Hint: Construct the F = 2 noise-figure circle. The best choice for I, 
a point on this circle lying on the line joining the center of the F - & 
with the center of the P* circle for gp = 2.9. This Is can be found since^* 
centers and radii of the circles are known. The corresponding E 

calculate T,.- <"* 

input and output impedance mismatches can now be found using U 
and (10.126). From these the input and output VSWRs can be found. 

can also be found. From P. calculate P,.,, and from F* 
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10.8. A MESFET has the following parameters at 8 GHz: 

S, , = 0.65Z - 1 5 0 " S i a = 0.12^32° 

S2 1 = 2.2Z.6T S 2 2 = 0 .1 /150 

I"„, = 0.45^130° RK = 0.32 F„, = 1.3 

Use the computer program MICROAMP to design a single-stage low-noise 
amplifier using the MESFET described above. The design requirements are: 
power gain of 9 or more, noise figure equal to 146 or less, input VSWR no 
greater than 1.5. What noise figure is obtained if conjugate impedance 
matching is used? 

Answer; G;, = 9.196, F = 1.4586, input VSWR = 1.346, output VSWR 
= 1.166, i; = -0 .5043 -j '0.3715. \\ = -0 .2188+. /0 .1157. For conjugate 
impedance matching F = 1.87. 

10.9. Show that for a microwave amplifier the available power gam Ga can be 
expressed as G„ = Mfip/M.,, where Gp is the power gain and A/, and M., 
are the input and output impedance-mismatch factors. By using relations of 
this type, show that the noise figure for a cascade connection of amplifier 
stages can be expressed as 

/•', - 1 F3- 1 

10.10. Verify that the matching networks shown in Fig. 10.28 will transform the 
line characteristic admittance 1' « 0.02 S into the required source and load 
admittances needed for the amplifier discussed in Example 10.3. 

10.11. Design a single-stage low-noise amplifier using an FET having the following 
parameters: 

S , , = 0.74Z - 115° S 1 2 = 0.14Z40" S 2 l = 2 . 7 z 8 7 ° 

S,2 = 0.13Z - 6 0 ° r„, = 0.5^100' ^ , , ,= 1-3 Rx - 0.24 

The design specifications are: G. > 15. VSWR, < 2, VSWR2 < 2, and F < 
1.5- If you cannot meet the design specifications, relax one or more of the 
requirements. 

Answer: A design with G. = 18.95, F= 1.33. V'SWRj = 2.11. and 
VSWR2 = 2.265 can be achieved using l\ = - 0 . 1 7 +./0.61. 

10.12. The transistor whose parameters are given in Prob. 10.11 is to be used in a 
two-stage amplifier. The design calls for Gp > 300, F < 1.5. VSWR, < 1.5. 
VSWR:i < 1.5. Plot the load and source stability circles, the gp = 2.6 and 2.4 
constant gain circles, and the F = F,n + 0.5 dB constant noise-figure circle. 
On this figure show your final design values for V. and \'L for the first stage 
and I" and V't for the second stage. Does your final design have a good 
stability margin? 

10.13. A transistor has the following parameters: 

S„ = 0.5Z 160'- S , , = 0.06^50° S 2 , = 3.6/.600 

S,., = 0.5Z -45° l„, = 0.4/. 145° Rs = 0.4 Fm<*> 1.6 

Design a single-stage amplifier with the best possible noise figure subject to 
the constraints Gp > 10, VSWR, < 2. VSWR2 < 2. 
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CHAPTER 

11 
PARAMETRIC AMPLIFIERS 

A parametric amplifier is an amplifier utilizing a nonlinear reactance, or a 
reactance that can be varied as a function of time by applying a suitable 
pump signal. The time variation of a reactive parameter can be used to 
produce amplification. This is the origin of the term parametric amplifier. 
The possibility of parametric amplification of signals was shown theoreti
cally, as long ago as 1831, by Lord Rayleigh. The first analysis of the 
nonlinear capacitance was given by van der Ziel in 1948.f He pointed out 
that this device could also be useful as a low-noise amplifier since it was 
essentially a reactive device in which no thermal noise is generated. The 
first realization of a microwave parametric amplifier was made by Weiss, 
following the earlier proposal (1957) by Suhl, suggesting the use of the 
nonlinear effect in ferrites (Sec. 6.7). In the following few years, the 
semiconductor-diode (sometimes called a varactor, for variable reactance) 
parametric amplifier was developed through the combined efforts of many 
workers. At the present time the semiconductor junction diode is the most 
widely used parametric amplifier. For this reason we limit the discussion in 
this text to this particular type of parametric amplifier. The p-n junction 
diode has a nonlinear capacitance. If a pumping signal at frequency wr, and 
a small-amplitude signal at frequency «„ are applied simultaneously, the 
device behaves like a time-varying linear capacitance at the signal frequency 
a>.. As we show in later sections, a time-varying capacitance or a nonlinear 

tA. van der Ziel, On the Mixing Properties of Nonlinear Capacitances. J. Appl. Phys., vol. 19. 
pp. 999-1006, November. 1948. 

799 
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capacitance can be incorporated into a circuit to give linear amphficat' 
a small-amplitude signal. Before presenting this analysis a brief desc-'°r °f 

of some of the properties of junction diodes is given, followed by a p re ' P "^ 
tion of the Manley-Rowe relations. The latter are a set of power-cons 
tion relations, of considerable value in determining the maximum gain &A 
other performance features of parametric amplifiers. 

11.1 p-n J U N C T I O N D I O D E S 

The diodes used for parametric amplifiers consist of a junction of rc-type 
and p-type semiconductor material. An n-type semiconductor has an excess 
supply of electrons, which is why it is called n-, or negative-, type. An 
example of an n-type material is a pure semiconductor such as germanium 
with a small amount (about I part in 10°) of impurity doping with an 
element such as arsenic or antimony. Germanium has a valence of 4 
whereas arsenic or antimony has a valence of 5. Thus, at each site in the 
germanium or host crystal where an arsenic or antimony atom replaces a 
germanium atom, four of the valence electrons are used up to form the 
bond, and this leaves one excess valence electron. The valence electrons left 
over are relatively free to move around in the crystal under the influence of 
applied electric fields and make the material a donor of electrons, or re-type. 

In p-, or positive-, type material, the impurity atoms are chosen to 
have a valence less than that of the host atoms. For example, gallium, with 
a valence of 3, may be used in a germanium crystal. When a gallium atom 
replaces a germanium atom, there are only three available valence electrons 
to form the required bond. A stable bond requires four valence electrons, 
and consequently, at each site where a gallium atom is located, a hole is 
created which can be filled by an electron that may be passing by. If an 
electron from some other bond moves over to fill the hole, the result is the 
creation of a new hole at some other point. The overall effect is as though 
the holes were positive carriers of electricity, i.e., equivalent positive elec
trons, that can move through the crystal. The holes do, in fact, behave as 
equivalent positive carriers, and thus p-type material can be considered a 
essentially the same as n-type material except that the signs of the charg 
carriers are opposite. . , 

Consider now a linearly graded junction of n-type and p-type maten , 
as shown in Fig. 11.1a. In the linearly graded junction, the n-type materi ^ 
changes gradually and in a linear fashion over to p-type materiai i 
distance d. This variation is obtained by gradually reducing the doping, ^ 
concentration of donor atoms, down to zero in the region x = d/2 do _^ 
x ~ 0 and then linearly increasing the concentration of acceptor atoT"_g is 

the region x = 0 to x = -d/2. If the number density of acceptor ato ^ 
N0 and the density of donor atoms is Nd, the difference will vary u° 
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FIGURE 11.1 
The linearly graded junction. 

with x across the junction; thus 

N-N, = kx (11.1) 

where k is a suitable constant. 
When there is a gradient in the impurity-concent ration densities, 

electrons will diffuse from a region of high concentration to one of low 
concentration. Holes will diffuse in a similar manner. Thus the electrons 
will diffuse into the p-type side of the junction and holes will diffuse into the 
n-type side. This diffusion continues until a space-charge distribution, 
together with a resultant electric field, is set up of sufficient strength to 
produce a force that is equal and opposite to the effective force created by 
the concentration gradients. When equilibrium has been reached, a small 
region, called the depletion region, substantially free of charge carriers, is 
produced at the junction. The space charge built up on either side of the 
depletion region, together with the electric field existing across the depletion 
region, constitutes an equivalent capacitor. If a reversed-bias voltage is 
applied across the junction, the electron distribution and hole distribution 
will be forced farther apart. This widening of the depletion layer results in a 
decrease in the junction capacitance. It is now apparent that if an ac 
pumping voltage is superimposed on the bias voltage, the equivalent junc
tion capacitance can be varied as a function of time. 

In the graded junction the space-charge density will vary linearly 
across the junction so that a depletion layer completely free of carriers is not 



8 0 2 FOUNDATIONS FOR MICROWAVE ENGINEERING 

produced. The effect of having the space charge vary linearly aero 
junction instead of being concentrated at x = ±d is, however mn h 
same. If we consider a linearly varying space-charge density ( p e r 

cross-sectional area) p = qx, where q is a suitable constant, Poiss^"'1 

equation gives 

d2<& p q 

dx2 e e 

for the potential 4>. Integrating and using the boundary conditions that thp 
electric field, and hence d<P/dx, is zero for \x\ > d/2 and that 4> = Q t 

x = 0 from symmetry considerations, we get 

* = 
<7* 

2 e 

A -

3 

d2 

4 (11-2) 

The potential difference across the junction is 

-iM-i-
qd3 

127 

Under equilibrium conditions this potential difference must equal the con
tact potential <t>c plus the negative applied bias voltage - V; thus 

<t> - V = 
qd^ 

12e 
(11-3) 

The total stored charge per unit area is given by 

qd2 

Q = [ qxdx = 
8 

Eliminating d by means of (11.3) gives 

Q = 
8 

^ ( c p , . - V ) ,2/3 
(11.4) 

Since the capacitance is a function of the voltage, it must be denned as the 
ratio of an incremental change in Q to incremental change in &c - *• * " U t 

the capacitance per unit cross-sectional area is 

l ' / 3 

c = 
dQ 

d(%-V) 
= € 

12e(<&c - V) 
(11.5) 

As seen from this equation, the junction capacitance C is nonlinear sine 
depends on the voltage V. If C is a linear element, Q = CV. In an abrup 
junction diode C is proportional to (<J>C - V ) _ 1 / 2 . 
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If we denote <t>. - V by V0 and apply in addition a pumping voltage 
vp = Vp cos u)pt, the capacitance becomes a function of time: 

* \ , / 2 r vD c w-e lu^J (1 + ^ c o s ^ l (1L6) 

We now have a nonlinear capacitance that is also a function of time. The 
capacitance is a periodic function of time, and can be represented by a 
Fourier series expansion of the form 

C(t)= £ cvmsnapt (11.7) 
fl 0 

The coefficients are given by 

C n = — 
• ( i 

2ir ^ 12fV0 

e 
1/3 

C„ - I - - ^ — I / 11 + -?• cos A 
- 1/3 

cos nttdtt 
\2eVj J-w\ V0 

where 0 = oi,,/. To evaluate the coefficients would require a numerical 
procedure. However, we do not need to know the values of the C„ in order 
to analyze the general properties of a parametric amplifier. The important 
feature brought out in the foregoing analysis is that C(t) is a function of 
time that can be represented by a Fourier series involving all harmonics of 
the pumping frequency f.. It is important to note that the coefficients are 
not, in general, linear functions of the ac voltage V. or the voltage V0. Thus, 
since the junction capacitance C(l.) is a nonlinear capacitance, the principle 
of superposition does not hold for arbitrary ac signal amplitudes. Under 
small-signal conditions. A Taylor series expansion of C(l) about an operat
ing point may be used and only the linear term in the signal amplitude 
retained. In this case superposition does hold. The situation here is no 
different from that in any other amplifying device since all are nonlinear for 
sufficiently large applied signals. 

In addition to the capacitance associated with the diode junction, there 
is a shunt conductance arising from the bulk resistance of the material in 
the depletion layer. This shunt conductance is proportional to the area, and 
since C is also proportional to the area, the ratio is independent of the 
cross-sectional area of the diode. The shunt, conductance of the depletion 
layer is small, and can often be neglected. Of more importance is the series 
resistance of the n- and p-type semiconductor material outside the deple
tion layer. When the p-n junction is encapsulated and connecting leads are 
put on, an additional shunt capacitance Cp due to the cartridge and a series 
inductance arising from the leads are also present. The overall equivalent 
circuit is thus of the form shown in Fig. 11.2. Typical values of Cp and L5 

are somewhat less than 1 pF and 1 nH, respectively, at microwave frequen-

file:///2eVj
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I1* 

Encopsulofed FIGURE 11.2 
Equivalent circuit diode Equivalent circuit of a parametric diode. 

cies. The junction capacitance C is also about 1 pP, and typical values of R 
are a few ohms. 

11.2 MANLEY-ROWE R E L A T I O N S 

Manley and Rowe have derived a set of power-conservation relations that 
are extremely useful in evaluating the performance which can be achieved 
from a parametric device consisting of a nonlinear reactance.t These rela
tions are also derived below. 

The circuit considered by Manley and Rowe is shown in Pig. 11.3. It 
consists of resistive loads in series with ideal bandpass filters connected in 
shunt with a lossless nonlinear capacitance. Two sinusoidal signals at 
frequencies /", and f2 are applied. The nonlinear capacitance causes (re-
quencies at the harmonics of /", and f2 to be generated. Each bandpass 
filter is considered to pass only one harmonic component n/\ + mf2. The 
overall circuit thus isolates all the harmonics and dissipates their power in 
separate resistive loads. The Manley-Rowe relations establish two con
straints governing the conversion of input power at the frequencies /"j and 
f2 into power at other frequencies. 

Let the charge Q on C be a single-valued function of the ac voltage 
v = L>J + v2 = Vl cos toxt + V2 cos w2t applied across it. Thus Q = Q(v). We 
may expand Q in a Taylor series in u to obtain 

dQ 1 d2Q 
Q = Q(0) + ~v + -—2v

2
 + 

dv 2 ov 

(11.8) 

where all derivatives are evaluated at v = 0. Since all powers of v occur, i 
is clear that, because v = <Vj/2XeJ'"1' + e~J">') + (V2/2Xe-''"«' + e~JW1']' "JJ 
charge Q will have frequencies at all harmonics of /", and f2- If currents • 

t j . M. Manley and H. E. Rowe, Some General Properties of Nonlinear Elements, P ^ 
General Energy Relations, Proc. IRE, vol. 44, pp. 904-913, July, 1956. See also Proc. / » * • 
47, pp. 2115-2116. December, 1959. 
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~)fy (~ )h 

fi*fi\ \ ' \ - f i \ K ' * 2 ' ? \nf,+mf; 

C(/) 

FIGURE 11.3 
Circuit for illustration of the Manley-Rowe relalions. 

the various harmonics are permitted to pass through C, the voltage devel
oped across C will also contain all possible harmonics. In this case Q is a 
function of all voltages present. However, the expansion (11.8) will still be 
valid, except that now the coefficients will have different values. Conse
quently, the general expansion of Q has the form 

Q= E E Q„. >a/(tt*>4 -"nai.^l (11.9) 

The charge is a real function of time; so we must have Q „_,„ = Q*m in 
order that the n,m and —n,~m terms will combine to form a real 
function of time with frequency n to, + m w2. 

The total voltage V can be expressed as a function V(Q) of the charge. 
A similar Taylor series expansion of V{Q) then shows that V can be 
expressed in a form similar to (11.9); thus 

v - E E vni 
n ~ - ot rt j = — x 

?j(nui[ -t-mio^tt (11.10) 

For V to be real, we must have V_„ „, = V*m. 
The current through C is the total rate of change of Q with time, and 

is given by 

/ = 
dQ 

~di = E E V(™l + ma>2)Qn„y<'""'""•"*" 
n = — -x in --x 

_ y Y j ej(>
i*\+™<»2)1 ( i i . i l ) 

n = —Gt m — —x 

where lnm = j ( n w , + m<o2)Q„m. 
Since C is a pure reactive element, there can be no net power into or 

out of C. If we assume that w, and io2 are incommensurable, there will be 
no time-average power due to interacting harmonics. The average power at 

ii.il
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(11.12) 

the frequencies ±\nujl + mw, | is 

p = (V I* + V* I \ 
n m \ ' It m * n m 'nm'nml 

= (V I* + V T* \ = P 

since the time average of 

I » ™ c T 1-n-mK ) 

VI + V I = V T* + V* I = V / * + T / 7* 
'nm'-n-m ' -n-m'nm 'nm1nm T "nm'nm "nm'nm ^ ' -n-m*-n-

Conservation of power can therefore be expressed as 
X X 

E E Pnm = o (ii.i3) 
n = — x m= —x 

since />„„, = /»_„ .„, from (11.12). To obtain the Maniey-Rowe relations, we 
multiply each term by (nco1 + mco2)/(niol + mui2) and split the sum into 
two parts; thus 

x x nP x x ._ p 

" i E E -——-— + co2 z E — = o(ii.i4) 
„ = - « „ , = -* " w , + mw2 „__«,„,_ -^ ww, + mco2 

We can now show that each double sum must vanish separately. We can 
replace each Inm/(nwl + mw2) by jQnm, and then P n m / ( r a « , + ma>2) 
becomes -JVamQ*m -jV_„_mQ*n_m and does not depend explicitly on OJ1 

or u>2. For any choice of wt and o 2 , we can always adjust the network 
external to C so that the currents which result keep all the voltage 
amplitudes Vnm unchanged. The Q„m are then also unchanged since they 
depend only on the Vnm. When this is done we see from (11.14) that it is 
possible to change w1 and w2 arbitrarily but keep the two double sums 
involving P„mAna>l+ma>i)= -jVnmQ*m - JV.„ „ ,«*„_„ unchanged. 
Consequently, (11.14) can hold for arbitrary at, and w2 only if 

nP 
E E ^ ^ = 0 

n=-*m=-xni0l + mc°2 

* x mP 

E E ""' - o 
,^-xm = -x"co1 +ma)2 

That is, the coefficients of w, and <o2 must vanish separately. The above two 
relations are the Manley-Rowe relations. They are usually written m 
somewhat different form, however. We may write the first sum as 

p» np » x —nP 

E *-> "-'nm \ - V -n-m 

E ; + E E 
n = om=-oc «">, + mco2 n = 0m=-x -nwl - mo>2 

where n and m have been replaced by -n and -m in the second ter 
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Since P_ n m = Pnm, the two parts are equal; so we obtain 

" nP 

L E -o 
n«0 m= — =e tlOJy + 77! W-2 

Similarly, we can obtain 

E E 
m = 0 n = — * 

mPnm 

nco. + into* 
= 0 

(11.15Q) 

(11.156) 

These are the standard forms for the Manley-Rowe relations. The Man ley -
Rowe relations are general power-conservation relations, and do not depend 
on any specific circuit such as that in Fig. 11.3. This is apparent since no 
reference to an external circuit was made in the derivation. 

For an example of the application of the Manley-Rowe relations, 
consider a circuit similar to that in Fig. 11.3 with generators at frequencies 
fx and f2. Let all harmonics be open-circuited except /", + f2. Thus currents 
at the three frequencies fx, f2, and /", + f2 are the only ones that can exist. 
The n = + 1, m = 0 and n = 0, m = +1 and n = m = ±1 terms in (11.15) 
are the only ones present. Thus we get 

10 
+ 

!1 

0), 

01, 

= 0 (11.16a) 

Pn 
= 0 (11.1661 

&>., 

we must have P I 0 and Since power is supplied at the frequencies w, and w5 

P 0 , positive. Therefore Pu is negative, and power is delivered from the 
nonlinear capacitor C at the frequency w, + w2. If ai, 
frequency and m2 is the pump frequency, then «J3 = co 

is the input-signal 
+ 01., is the output 

frequency. The maximum signal gain is 

-Pll Ml + ^2 = 

P\<\ '"I 
= 1 

(0i 
(11.17) 

as obtained from (11.16a). A parametric amplifier of this type is called an 
up-converter. Because of losses that are always present in a practical 
amplifier, the gain will be less than w3/a),. The Manley-Rowe relations give 
the maximum gain possible and hence provide a criterion by which a 
practical up-converter can be judged. 

P - 3 L I N E A R I Z E D E Q U A T I O N S F O R P A R A M E T R I C 
A M P L I F I E R S 

Consider a linear capacitance C for which the charge-voltage relationship is 
Q = Cv. The current flowing through C is given by 



8 0 8 FOUNDATIONS FOR MICROWAVE ENGINEERING 

If C is made a function of time, for example, a parallel-plate capacitor • 
a plate separation that is varied with time, the current will be given b 

d dC dv 
+ C~dt (U.18) 

i = — (Cv) = v- , 
dr ' dt 

If instead of a time-varying linear capacitance we have a nonlinea 
capacitance, where the charge Q is a nonlinear function Q(v) of the volta 
the current is given by 

i = 
dt 

9Q dv 

dv dt 

If the voltage v is the sum of a pump voltage vp at frequency &> and 
signal voltage vs at frequency tos and \vs\ <tc Iw l̂, we can expand 

Q(v) = Q(vp + vs) 

in a Taylor series about the point vs = 0. Thus we obtain 

Q(vp + v.)=Q(vp)+
a-£ 

",'0 

1 d2Q 
+ 2 ^ " 

vt + ••• 
o.-O 

For fs sufficiently small, we can obtain satisfactory accuracy by retaining 
the first two terms only. The current is then given by 

i = 
dQ{vp) 

dt 

d IclQ 

dt \ dv o.-0 
(11.19a) 

Let the quantity dQ/dv for vs = 0 be denoted by C(t), in which case we can 
write 

. dQ{v.) d 
i = [C(t)vs (11.196) 

d t d t ^ ^ ^ ^ ^ ^ ^ 

If we compare this result with (11.18), we see that the nonlinear capacitance 
behaves like a time-varying linear capacitance for signals with amplitudes 
that are small compared with the pump signal amplitude. The first term, 
dQ(vp)/dt, in (11.19) gives a current at the pumping frequency, and is not 
related to the signal current. If the pumping voltage is also small compared 
with the dc bias voltage in a junction diode, we can assume C(t) to have trie 
form [see (11.6)] 

C{t) = C0(1 + 2Mco8o» p0 (11.20) 

since <V0 + Vp cos » p O _ 1 / ' * V / 3 d " ( V 3 V 0 ) c o s u>pt] for Vp « V0. The 
linearized equations (11.19) and (11.20) are the ones we shall use in t 
analysis of parametric amplifiers. Fig-The equivalent circuit of a p-n junction diode is illustrated in •&• 
11.2. For the purpose of analysis it is more convenient to use an equiv 
series circuit of the form shown in Fig. 11.4. The two circuits are equivale 
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if we choose 

R. 

•TCs F IGURE 11.4 
I Equivalent series circuit for a junction diode. 

RPc2 

(u>CCpRpf+(C + Cpf 
c = 

(<oCCpRpf + (C + Cpf 

(a>CRpfcp + C + C„ 

which makes the input impedance the same for both circuits at the fre
quency w. In most diodes the resistance Rp is small compared with the 
cartridge reactance 1/ioC ; so coC.R « 1. In this case we find that 

R. 
C 

c + c„ 
R. C. c„ 

When these approximations are valid, the two circuits are equivalent, 
independently of frequency. This is a necessary requirement if the series 
circuit is to be useful for analysis purposes, since in a parametric amplifier 
currents and voltages at several different frequencies are simultaneously 
present. When C is a function of the voltage, Rs will also be voltage-depen
dent. The effect of a voltage-dependent resistance Rs will, for simplicity, be 
neglected, since it is not too important. In other words, we shall consider RK 

to be a constant resistance. 

P A R A M E T R I C U P - C O N V E R T E R 

In the up-converter, a pump voltage at frequency <u and a signal at 
frequency ws are applied to the diode, and the output signal is taken at the 
higher frequency to, + cop. Mixing effects take place that give rise to all 
possible harmonics of wp and tat. However, in the up-converter, the circuit 
external to the diode is chosen so as to permit currents only at the signal 
frequency ws, the pump frequency top, and the output frequency <o0, which 
is chosen as the sum of the pump and signal frequencies, that is, at 
w0 = «, + w„. There will, consequently, be a voltage across the diode at the 
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three possible frequencies. If we let the diode voltage be represented 

vs = Re(V>'™>') = i(V5e""-' + y*e~**) 

vp = Re(Vpe>p') = | (V, ,e"V + ?*«"*•**) 

ua = Re(V0e-""»') = | ( V 0 e ^ « ' + V J * - * * ) 

we may generalize (11.19) and (11.20) to give 

dQ(vp) 1 d 
i = ~dT~* 2d7C«(1 + 2 M c o s V ) 

x( V,e>-' + Vfe •'-•' + V 0 e^° ' + V?e-**>) ( U . 2 1 ) 

Let the current at the frequencies cos and w0 be expressed as 

i.~k(l.e*"'+l*e-^') ( 1 1 .22) 

i* <*${!***+ !$*-**) (11.23) 

When the time derivative of (11.21) is taken and the terms at frequencies w 
and ± io0 only are retained, we obtain (a knowledge of the pump current at 
frequency w,, will not be required; so we do not need to evaluate it) 

Co 
*• + ***• -fU"?.*"* -JueV*e-JO'' + jto0V0e*<* -j<o0V*e-->»°' 

+jw0MVse'"'«' -ja>sMV£e~-""*' ~ju0MV*e_-"u°' + j^.MV^"'1) 

Using (11.22) and (11.23) gives 

h - j*&y, + MA ̂ o (11-2*0) 

/ o = J ^ o C 0 V o + > o C o M y s (11.246) 

These two equations show that, for the input signal current is and output 
signal current iQ, the junction capacitance may be represented by an 
admittance matrix such that 

I: 

I 

jwsC0 j(osC„M (11.24c) 
ju>aC0M jo)0C0 V0 

The parameter M is proportional to the pump voltage and gives the 
coupling between the voltages at the two frequencies u>a and o>0. 

Figure 11.5 illustrates an equivalent-circuit model of an up-converter. 
The series tuned circuits are chosen so that the three circuit loops hav 
resonant frequencies of <os, o>0, and wp and only currents with these 
respective frequencies can exist in each loop. Thus, in the input circuit 1 P< 
only /„ is present. The three circuit loops are coupled together through 
time-varying part C of Cs only. Therefore, for the two frequencies w5 an 
o)0, the equivalent circuit can be reduced to that illustrated in Fig. ll-o-
box labeled C(t) in this circuit is an equivalent impedance network 
maintains the relationship given by (11.24) between the terminal curre 
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FIGURE 11.5 
Equivalent-circuit model of an 
up-converter. 

R, R, LS'L, Cf+Ei 

Jus't 

Cg+fj, t2+tt R, 

Ke 

FIGURE 11.6 
Reduced equivalent circuit for an up-converter. 

and voltages. The analysis of the parametric amplifier is a conventional 
network-analysis problem since the diode has been replaced by an equiva
lent linear two-port network with terminal relations described by (11.24 ).t 
Each loop in the circuit is assumed to provide a very high impedance to 
currents at all frequencies present except the resonant frequency for that 
loop. The resonant circuits in Fig. 11.5 have been assumed to have zero loss. 
Circuit losses can be considered included in Rp and R,. At the end of the 
analysis, Rg and RL can then be split into two parts so as to separate the 
circuit losses from the generator and load impedances. In practice, circuit 
losses are small compared with the loss arising from the diode resistance Ry 

and the external loading represented by Re and RL. 
We may solve (11.24c) for Vv and V0 in terms of la and 70 to obtain 

V. 

1 - M2 

-M/jco0C0 
11.25) 

tCare must be exercised in the analysis since currents and voltages at several different 
frequencies are simultaneously present. 
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For the input circuit we may now write 

^ = I, 

= & 

ft + /?, +j*Ji La + L,) + 

ft ,+ / ? „ + > , ( L. + LJ + 

yWs(c„ + c,) 

i 

+ v„ 

+ yw^Cp + Cj) y W s ( i - M 2 ) c 

y « , ( l ( l - M 2 ) C 0 

whereas for the output circuit 

0 = /, 

= /, 

** + *. + M ( £ . + £*) + -jm6{€p + C2) 

1 

+ Vn 

+ > o ( C ^ + C2) j w 0 ( l - M 2 ) C D 

M7. 

j o . s ( l - M 2 ) C u 

Let us now assume that the circuits are tuned so that the following 
conditions hold: 

0>i = 

oil = 
i 

+ Cp + C, ( 1 - A / 2 ) C 0 

0 L.+U 
1 1 

i-
C p + C 2 ( 1 - M 2 ) C 0 

We then obtain 

0 = 70(ft,, + ft,) 

y^/o 
w 0 ( l - M 2 ) C 0 

jM7 s 

« , ( l - A f 2 ) C o 

We may solve for 70 to obtain 

h = 
-JV.MwoC^l - M2) (11.26) 

M2 + (Rg + ftj( ft,. + ft,)»0*»,(l - ^ 2 ) Co 

The maximum available input power from the generator is 
and the output power developed in ft,, is |!70 |2ft,.. The midband transdu 
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power gain is thus given by 

4 | / 0 | 2 f i t / ? 
G0 = 

Vf 

ARLRgM
2 

a . 2 ( l - M T C 2 (Ra + Rt){Rh + Rs) + 
M'' 

<o0cos(l - M2VC* 

(11.27) 

when (11.26) is used to express I0 in terms of V,. If desired, circuit losses 
can be included at this point by replacing Rg and RL in the denominator in 
(11.27) by Rg + Ru and R, + R2/, where Ru and R2I represent the loss 
resistance in the input and output circuits. For simplicity we shall take 

To achieve maximum gain requires adjustment of R and RL. Since 
RK and R, occur symmetrically in the expression for Gn, the optimum 
values of RL and Ra are equal. Hence we need to maximize 

G0 = 
ARIM' 

<o*,(l-M*)~C* (RL + R,y + 
M2 l 2 

Equating dG0/dRL to zero and solving for RL give 

M 2 

RL = R* I + 
j W , J ? 2 ( l - M 2 ) C u

2 

1/2 

The effective Q of the diode may be defined as 

1 

i ? . , ^ ( l -M*)Ca 

We then find that 

RL = R, 

and the maximum gain is 

G0 = 

-{MQ)' 
1/2 

(11.28) 

(11.29) 

(11.30) 

(11.31) 
m* ( i + v T T T ) 

where 5 = (ws/o>0XMQ) . According to the Manley-Rowe relations dis
cussed in Sec. 11.2, the maximum gain of an up-converter is w0/o>„. The 
quantity 8/(1 + fl + <5 )2 may therefore be regarded as a gain-degradation 
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L,*L, <V<T, CZ*CP 

FIGURE 11.7 
Equivalent circuit for a negative-resistance parametric amplifier. 

factor. As the diode Q approaches infinity, that is, as Rs goes to zero, 8 
approaches infinity, and the gain-degradation factor becomes equal to unity. 
Hence, for a lossless diode, the gain becomes equal to «0/a>s, as predicted by 
the Manley-Rowe relations. In a typical microwave diode, MQ could be 
equal to 10. If o>0/ws = 10 also, the maximum gain as given by (11.31) is 
7.3 dB. 

To achieve high gain with an up-converter requires a large ratio <w0/to 
of output-to-input frequency. At the higher microwave frequencies this is 
not a very practical requirement, and for this reason up-converters are 
usually restricted to operation at signal frequencies fs below 1,000 MHz. 
Higher gain can be obtained from the negative-resistance parametric ampli
fier, which is discussed in the next section. 

11.5 N E G A T I V E - R E S I S T A N C E P A R A M E T R I C 
A M P L I F I E R 

In the negative-resistance parametric amplifier currents are permitted to 
exist at the signal frequency cos, the pump frequency cop, and the idler 
frequency w, = <op - ws. The equivalent-circuit model that will be analyzed 
is shown in Pig. 11.7. . J 

When we replace the voltage <;0 in (11.21) by v, = {(V^' + Vt*e J > 
and introduce the idler current i, = \(l,e^' + / ,*e-"" ' ) , we may solve for 
/s and /, in terms of Vs and V, in the same manner that was used to treat 
the up-converter. It is readily found that, for w, = wp - ws, 

ju.^o 

-Jf^o CnM 

and 

V, 
V* 1 - M 2 

jcOiCoM 

M 

V* 
(11.32a) 

Jo>iCQ 

-M - 1 

j<osC, o 

h 
7* 

(11.32*) 
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For the circuit of Fig. 11.7, we can write the following equations: 

1 1 
1W, R, + Rs+jws(Ll + L , ) + > x ( C . + C,) ju,,{l-M2)C0 

M 
+ 

V2 = 7, 

( 1 - M 2 ) > , C 0 ' 

R2 + Rs+j<oi(L2 + Ls) 

! 11.33a) 

Jo>,(C„ + C2) > , ( 1 - M 2 ) C 0 

M 
•I? 

( 1 - M 2 ) > S C 0 

If we impose the tuning conditions 

(11.336) 

«! = 

1 

+ C'. + C, ( l - A f 2 ) C 0 

' L9 + L. + Cp + C2 (1-M*)C0 

we obtain 

V, = ( * , + « „ ) / , -

V2 = (R2 + RS)I,-

(11.34a) 

(11.346) 

On = 

a > s ( l - M 2 ) C 0
 9 

Let us now assume that V2 = 0. We can then determine /, from 
(11.34) and evaluate the gain G0 = 4i?1 /?2 | / , |2 /V,2 . We readily find that 

4Z?,fl2M2 

R.+R.-
M2 

(R2 + Rs)-<Q(l-Mi) 
(K2 + / * „ K « . ( i - J n cs 

(11.35) 

The term -M2/[(R2 + BJwta/£ - M2)2C0
2] may be interpreted as an 

equivalent negative resistance —/?. Introducing i?, we may express G„ as 

(11.36) G0 = 
4 /? , r t 2 [ t t , ( l -M" 2 )C 0 / f ] V 

M z ( f l , +RS -R)' 

It is clear that a very large gain can be obtained if R is made almost equal 
to i? ! + Rs. However, care must be taken not to make 7? too close to 
Rl + Rs because a small change in parameters will then cause large changes 
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in 
R 

the gain and will cause oscillations to occur if R becomes 
+ Rx.

 q u a l to 
The parametric amplifier discussed above is called a negative 

tance converter. It is possible to take the output at the same frequen^'^ 
as the input. If we split R} into a generator internal resistance R Di to* 
load resistance RL, the power delivered to R, is 5-RJJJ2 . The transd 3 

power gain will be 

G0 = 

We may evaluate I. from (11.34) to obtain 

G0 = 
4RRL 

(Rg + R^ + Rx-Ry 

where, as before, 

R 
(R.z + Rs)<0,<os(l~M2)2C* 

(11.37) 

11.38) 

The effective negative resistance -R arises in the following manner: 
The application of signal plus pump power to the nonlinear capacitance 
causes frequency mixing to occur. When current is permitted to exist at the 
idler frequency u>p - ws, further frequency mixing of power at the pump 
and idler frequencies occurs. This latter mixing causes harmonics of o»p and 
<!§, = (op - OJS to be generated; in particular, power at the frequency <w5 is 
generated. When the power generated through frequency mixing exceeds 
that being supplied at the signal frequency ws, the diode appears to have a 
negative resistance. If idler current is not permitted to exist, the negative 
resistance vanishes, as reference to (11.38) shows when R% is made infinite 
(open circuit for the idler signal). 

The negative-resistance parametric amplifier with input and output a 
the same frequency is not very stable. The reason is that in a microwave 
system Rg and RL are the impedances seen looking into the input an 
output transmission-line ports. If the loads connected to these transmission 
lines are not matched, reflected waves occur. Reflected waves in the outp 
fine return to the amplifier and are amplified and fed into both the inp 
and output lines. The result is tha t the gain becomes a sensitive function 
the external generator and load impedances. The stability of the a m P tLg 
greatly improved by the use of a circulator, as illustrated in Fig- H-°-
use of a circulator makes the load termination R L for the amplifier eq 
the characteristic impedance of the transmission line independently o 
external generator or load impedances Zg andZL. The available power 

the generator is still given by ~V?/4Rg. However, the amplifier p°m 

£1 



PARAMKTRIC AMPLIFIERS 8 1 7 

f, 

' - ? f-' t-s*Ly Rs Cp* 

Circulotor 

Matched 
load 

ffa=4 

FIGURE 11.8 
A negative-resistance parametric amplifier using a circulator. 

now all delivered to the load RL = Zc, and none of it is dissipated in the 
internal generator impedance Rg. Consequently, the power gain is nearly 
four times greater since Is is nearly twice as large, because the series 
resistance in the input circuit is now RL + R„. instead of RL + Rg + Rs -
2RL, when RL = Rg » Rs. The power gain is the square of the voltage 
reflection coefficient, and is given by 

G0 = 
Z,n - Z. 

Z-m + Zr 

(R„-R-RLy 

(R, + Rt~R? 

since Zm = Rs - R at resonance and we are taking RL = Zc. For high gain, 
R ~ RL + Rs and is large compared with Ra. Consequently, the gain can be 
expressed as 

G0 = 
4*1 

(RL+RS-R)' 
(11.39) 

The maximum value of negative resistance that can be obtained is 
determined by the diode that is used. If we make R2 = 0 in (11.38), we see 
that maximum R is R„, where 

Rm= -(MQVR. 
to, 

(11.40) 

(11.29) having been used to introduce the diode Q. If we regard R as fixed, 
we see that, for the amplifier without a circulator, we must make Rg + 
RL + Rs = R, as (11.37) shows. But with Rg = RL = Z,. large compared 
with Rs, we get Rg = RL~ R/2, and (11.37) gives 

G0 = 
R' 

(2RL+R,-Ry 
(11.41a) 
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Pump cavi ty 

Coupling h o l e ^ 

Tuning 
screws^ 

^-Tuni 
/ scr j 'Idler cavity 

Stgnal input Signal output 

FIGURE 11.9 
A microwave negative-resistance parametric amplifier. 

whereas for the amplifier with a circulator, R, = R and 

4 R 2 

G " = < « , . , * , - « , * < 1 1 - 4 1 i ) 

Note that when a circulator is used, the optimum value of RL is twice what 
it is when a circulator is not used. Thus the denominators in (11.41a) and 
(11.416) are the same. These relations then show that the use of a circulator 
gives 6 dB more gain for the same amount of diode loading, and hence will 
have a gain-bandwidth product twice as great. 

If the pump frequency iop is chosen equal to twice the signal frequency 
ws, the idler frequency a>i = o>p - ws = tos is equal to the signal frequency. 
In this case the amplifier is called a degenerate negative-resistance ampli
fier. For the degenerate amplifier the signal and idler circuits would be a 
single resonant circuit. The analysis of the degenerate amplifier is similar to 
that already carried out, and so will not be presented here (some results on 
noise properties are given in Sec. 11.6). 

There are many different ways of building microwave parametric 
amplifiers. Transmission lines, waveguides, or a combination of the two may 
be used to construct suitable cavities to use as resonant circuits. A tyP'^ 
microwave negative-resistance amplifier is illustrated in Fig. 11.9.1 
pump and idler cavities are formed in an X-band rectangular wavegu 
The signal cavity is a coaxial-transmission-line cavity. The varactor diode is 
mounted in the center of an inductive diaphragm located between the Pu™^ 
and idler cavities. Coupling to the signal cavity is achieved by h a v i n g

T h e 

diode terminate in the center conductor of the coaxial-line signal cavity. 
pump is coupled to its cavity by an aperture. The pump frequency is c o ^ 
around 9,200 MHz, and the idler frequency is 7,900 MHz. The mpu 

tW. O. Troetschel and H. J. Heuer. A Parametric Amplifier for 1296 Mc. QST. January, 
1961-
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output signal frequencies are the same and equal to 1,300 MHz. This 
amplifier gives a gain of 25 dB or more with a bandwidth of about 5 MHz. 

The bandwidth over which high gain can be obtained in a negative-
resistance amplifier of the type discussed above is small. The negative 
resistance has the effect of increasing the loaded Q, which results in a 
high-Q resonant circuit with a narrow bandwidth. To analyze the band
width properties, we shall assume that the circuit model given in Fig. 11.7 is 
valid. For high-Q circuits the impedance of the signal and idler circuits may 
be expressed in the form 

Zs = (Ri + R.M + 2 j ^ Q l \ (11.42a) 

Z, =(R2 + Rjll + 2j^Qi) (11.426) 

where 

<?!=» 
Li + Lt 

L 2 + L , 
:R,+R, "* •R> + Rs 

The derivation of these expressions is as follows: From (11.33a) the 
impedance of the signal circuit at a frequency ws + Aw, is 

Zs = Rl+Rs+j(<os + Acos) ( * - i + £ . ) 

(a>s + A W s ) 2 l C „ + C, C0-M
2C0 

= /?, +Rs+j(u>s + A<os)(Ll + LS 1 -
ml 

> * + A». ) 

= fl, + R, +j- , ' (2ws Aw, + Awf) 
coc + AOJK 

= ( # , +R„)\l+j2Ql 

Aw, 

A similar derivation holds for Z,. 
From (11.33) we obtain 

V, =IJR. +Rs)(i + 2jQl^\ 
Mlf 

<os I (1-M')j(w, + Aw,)C0 

V2 = I,(R2 + RS) \l + 2jQ2—L + 
MI! 

<o, / ( l - M 2 ) 7 ( w s + Aws)CQ 

(11.43a) 

(11.436] 
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If i?j = Rg + RL and the output is taken at the frequency «>,., the e i 
given by gain is 

G = 
4 f t g f l J / s 

V,2 

When we solve (11.43) for / s , we find that (note that V2 = 0 in this case) 

2 (H.44) G = 

Z. -
AT 

», + Aw,)(w s + A w s ) ( l - M 2 ) C0
2Z; 2 7 * 

Since the pump frequency is fixed, Aw, = - A w s . The midband gain G is 
given by (11.37). To determine the bandwidth, we equate G given by (11.44) 
to G 0 / 2 and solve for Aws. When the gain G0 is high, we find that, to a 
good approximation, 

Aw.. \ (Rt+R.-RY 

(J? I + fl,)2(Q1+«,Q2/«02 

Thus the gain-bandwidth product becomes 

Aw, . ^yft^ft , , 
G° ( R 1 + f t s ) ( Q 1 + Q2ws/w,.) 

(11.45) 

(11.46) 

If we assume as a typical case Rg + RL = ft, + fts and Rg = RL and note 
that, for high gain, ft, + Rs = R, we get 

2,/G; 
Aw, 

0 w.s Qi + (w s /w , )Q z 

The smallest possible value of Q, occurs if C + C, equals zero. In this case 

<?> = 
« . ( ^ i + ^ . ) 

ft, + R„ w s ( l - M 2 ) C 0 ( f t , + ft J '" » , ( 1 - M2)C0ft 

Similarly, the smallest possible value of Q2 is obtained if C2 + ^P " 
and is 

ea = w , ( l - M 2 ) C 0 ( f t 2 + f t s) 

If we refer to (11.38) for ft, we now find that M2Q}Q2 = 1- Thus 

Aw„ 1 
2 /Go 

ws Q, + w s /M 2 w,Q, 
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This expression has a maximum value for 

1 

Hence the maximum gain-bandwidth product is 

V s / max 

For 20-dB gain we obtain a bandwidth of 

2 Aa»s Af rWj 

ws
 = 2oy «T 

Usually M is no greater than about 0.2, and consequently the fractional 
bandwidth in percent is approximately equal to Jiat/ws. In a practical 
amplifier the gain-bandwidth product will be less since the capacitances 
Cl + Cp and C2 + Cp cannot be reduced to zero. 

The parametric amplifier may, of course, be broadbanded by using 
broadband circuits at the signal and idler frequencies. An alternative scheme 
for obtaining broadband operation is the traveling-wave parametric ampli
fier, where resonant circuits are avoided entirely. In the traveling-wave 
amplifier a waveguiding system is loaded periodically with varactor diodes. 
With the application of pump power and signal power, mixing occurs, with 
resultant power generation at the signal frequency. For a detailed analysis 
the references cited at the end of this chapter may be consulted. 

1 6 N O I S E P R O P E R T I E S O F P A R A M E T R I C 
A M P L I F I E R S 

The noise produced by parametric amplifiers is the thermal noise in the 
resistances in the equivalent circuit. For the up-converter illustrated in Fig. 
11.6, the input thermal noise at frequency w, is that arising from the 
generator resistance R In analyzing the noise power in a circuit, it is 
useful to consider noise as consisting of a spectrum of noise waveforms with 
an effective root-mean-square (rms) voltage e(o>) equal to the square root of 
the noise power spectral density. Thus, for the generator resistance Rg, the 
mean-square noise voltage across Rg is e\ = 4k.TRg A f. If we neglect 
circuit losses compared with the diode resistance Rs (this is a reasonably 
good approximation), the only other noise originating in the signal circuit is 
that generated in Rs across which a mean-square noise voltage e\ = 
4kTsRs A f at frequency toa exists. We denote the equivalent noise tempera
ture of the diode at frequency <us byTs. The noise at frequency ws in the 
signal circuit is amplified and converted to noise at the output frequency o>0. 

(U .47) 

4k.TR
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The amplified output noise at midband is given by (replace Vj by J72~ 
in Fig. 11.6) V ' + 

Pi = U i l X = 
RL(e2 + e2

2)MW0C*(l - M2)' 

[ M 2 + ( R g + RS)(RL + Rs)a>0cos{l - M 2 ) 2
C * | 

where the noise current /, is obtained from (11.26), with V, replaced h 
(e2 + e 2 ) 1 / z . If we introduce the midband gain G0, we obtain [see (11 27)1 

e2 + e? 
' G 0 = 

kAf(RJ + RsTs) 

* * . ~ u R8 

G, (11.48) 

There is also noise generated in the output circuit at frequency u> in 
the resistance Rs. If the diode noise temperature at the frequency <o0 is T 
an equivalent noise voltage ej = 4kT0RsAf appears across Rs in the 
output circuit. When we solve for the noise current I2 that results and 
compute P2 = \I2\

2RL, we obtain 

n w*(l-M2fc*(Rs + R„)2G0el 

4:RgM
2 

co2(l - M 2)C2{RS + RjkT0Rs A fG0 

EM2 
(11.49) 

The total output noise power at frequency w0 is Pn = P, + P2- The avail
able input noise power from R is kT A f. Hence the noise figure is given by 
(T = 290° in the definition for F) 

Pi+P-z R,T, «>2{l-M2)C2(Rs+Rg)RsT0 } 

" G0kTAf + RgT
 + " RgM

2T 

Note that the gain G0 was defined as output power divided by the availabli 
power from the input signal source, so that F as evaluated above conforms 
to the accepted definition of noise figure. If we take the diode noise 
temperature at the two frequencies ws and w0 equal to Td, we obtain 

R, Td 
F = \ + — — 

Rg T 
1 + 

(Rs + Rs) 

M2Q2R'i 
(11.5D 

after introducing the diode Q from (11.29). For maximum gain, 

, ' /2 

R = RL = Rs 1 + — M ZQ r2n2 
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from (11.30). Thus the noise figure under maximum-gain conditions is 
given by 

T,! OJ, . \ - V » '<i 
F=l+ -£ 1 + — M2Q 2 Q 2 

(i + [iMV^ff| 
l + 

M2Q2 

= i + Y(1+<^M2Q2)
 (11-52) 

As a typical example consider Td = T, to0 = 10w„, and MQ = 10. We then 
find that F = 1.36, or 1.3 dB. This example clearly demonstrates the 
low-noise property of the parametric amplifier. 

The diode noise temperature Td is somewhat greater than the ambient 
temperature T because of shot noise that arises from random motion of the 
carriers across the junction. In addition, the resistance Rs is usually not 
exactly the same at the two frequencies. However, this difference can be 
taken into account by choosing appropriate values of T0 and T,.. The 
thermal noise arising from circuit losses can be included in (11.50) very 
simply by replacing RSTS by RUT + RSTS and RST0 by R2/T + RBT0, 
where Ru and R.2t represent the equivalent-circuit resistances. However, 
since the effective Q of most diodes, that is, [(1 - M'2)cosC,iRs]~\ would 
rarely exceed 50 whereas circuit Q's would normally be 1,000 or more, 
the resistances Ru and R.,, are negligible compared with the diode resis
tance Rx. 

The noise properties of negative-resistance parametric amplifiers have 
been analyzed and measured by Uenoharat and others. The noise theory for 
a negative-resistance parametric amplifier employing a circulator, and with 
the output signal taken at the same frequency cos as the input, is presented 
below. 

With reference to Fig. 11.10, the following sources of noise are the 
main ones that need to be considered: (1) input noise from Rg = Zc at 
temperature Tx and frequency « , ; (2) input noise at the idler frequency 
w, = o>p- a»4 that arises in i?2; (3) noise arising in the diode resistance Rs 

at frequency <MS (equivalent noise temperature Ts); and (4) noise arising in 
Rs at the idler frequency w, (equivalent noise temperature T,). It is impor
tant to consider noise sources at the idler frequency because these noise 
signals are converted into noise at the frequency o>8 by frequency mixing 
that takes place in the diode. The equivalent circuit and noise voltage 
sources are shown in Fig. 11.10. 

tM. Uenohara, Noise Considerations of the Variable Capacitance Parametric Amplifier, Proc. 
IRE, vol. 48, pp. 169-179, February, i960. 
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r " v , A n e\=HkTs hf Rs 

•-? H LS*LX Cp+C> ffs J Ls,L2 CP*C2 R 

«^n 
/?,= /•: 

*f = 4 */",#„ A' 

. 2 = 

4*^- A/ ff, 

e\ = Atrff2A/ 

FIGURE 11.10 
Noise circuit for a negative-resistance parametric amplifier. 

The noise-power input from Rg is kTx A f. This will appear at the 
output load RL as amplified noise of amount 

Px = GakTxtS.f = 
4RjkTtAf 

(RL + RS-R? 
(11.53) 

where G0 was obtained from (11.39) for the high-gain case. 
The noise contributed by the amplifier is represented by the voltage 

sources e2, e3, and e4. Since the three noise sources are uncorreiated, the 
noise powers add. Hence the effective noise voltage in the idler circuit is 
ei = ije3 + el • The equations describing the noise currents /, and I2

 at 

midband are obtained from (11.34). Thus 

e2 = (RL + Rs)I1-

e, = (R2 + Rs)I2-

jMI* 

0,,;(1 ~M2)C0 

mt 
W s ( l - M 2 ) C 0 

(11.54a) 

(11.54b) 

since the loading Rx of the signal circuit as seen by the source e2 is 
Zc = RL. 

When we solve (11.54) for Iv we can evaluate the noise power 

P2 = \h?Ri 

delivered to the external load RL. Giving the final results, we find that 

_ e2 JMe*  
II ~ RL+RS-R

 + o>,(l - M2)C0(RL + Rs - R)(R2
 + *•> 

We must find the noise power contributed by e2 and e, separately, s 
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noise voltages do not add. From e2 we obtain 

and from e, we obtain 

P(e.) = 

P ( e , ) = -
K 2' (RL + RS-R)2 

e?R,M2 

[<„,(1 - M*)C0( RL + R, - fl)( H2 + 8 , ) ] 

efMLMma 

*>,(/?*,+ fl.-AH K2 + «J 
Hence 

P2 = P ( e 2 ) + P ( e , ) = 

G0k±f 

RL 
R.T. (11.55) 

If we assume that Ta = T, = T = Td, we obtain the simplified expression 

RK ( cos R 
P 2 = G0k*fTd—\l + - -

The corresponding noise figure F is given by 

11.56) 

F = 
kT^fG0 

= 1 
TlR1 10, 

R 
(11.57) 

where Tx must be taken to be 290 K for the standard definition of F. In 
(11.57) R may be replaced by R, + Rs since this is the requirement for 
high gain. "We then obtain 

F= 1 + d 1 -
T,(wpRL + Ra 

RL 
1 (11.58) 

As an example, assume Td = Tt, choose wp = 1.5&),-, and let / ? t be 
much greater than jRg. We then obtain a noise figure of 1.5, or 1.76 dB. 

The foregoing analysis is valid only when the two frequencies ws and 
w, are spaced by an amount greater than the passband of the signal and 
idler circuits. When this is not the case, a»8 ~ to,, and the amplifier is a 
degenerate negative-resistance amplifier. Noise current from the input 
source resistance Re at the frequency coi will now exist in the signal circuit. 
Similarly, noise currents at the frequencies w, and ws arising from Rs will 
be present in both the signal and idler circuits. In the degenerate amplifier 
the signal and idler cavities are identical and the equivalent circuit is that 
shown in Fig. 11.11. If the amplifier passband is symmetrical about 0^ /2 , 
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£,+£, &*G ffs 

e\s=Ai'raff, A/, ^e\i = ^*rd/ft Ar 

Clt) 

e*s=4*r,/tf&f, \^=Akr,ng Lft 

FIGURE 11.11 
Noise circuit for a degenerate parametric amplifier. 

noise at the frequency w, < o>p/2 is amplified to give noise output at the 
frequency ots, and also converted and amplified to give noise-power output 
at the frequency o>, = o>p — u>s. The two frequencies u)s and iot are symmet
rically located about (Dp/2 and fall within the amplifier passband. Therefore 
we must consider the noise from Rg and Rs at the two frequencies us and 
a>r as separate uncorrelated noise in evaluating the total output noise power. 
The present situation is illustrated schematically in Fig. 11.12. The pass-
band is split into two equal parts A /", and A f2, located symmetrically on 
either side of cop/2. Noise in the band A /', is amplified to give noise in the 
same band A fl at the output. In addition, noise in the band A /\ is 
amplified and converted into noise in the band A f,2 at the output. The 
lower sideband A /", will be regarded as the signal sideband. 

Since ws = «,, the noise power in the band A /", arising from Rg and 
Rs produces the same amount of noise power in the output bands A /\ and 
A f.2 as does the noise power arising from Rg and Rs in the band A/2. 
Hence we need to consider only the noise in the lower band A /\ in detail. 

The noise from Rg in the band A f\ is represented by an equivalent 
voltage source eu in Fig. 11.11. To evaluate the noise power delivered to Ri 
from e l s , we shall make the approximation of taking the series impedance o 
the circuit as R5 + RL throughout the passband. We denote the noise 
currents at frequencies o>a and co, by /, and 72. 

Input 
_ F IGURE 11.12 

Output Illustration of noise conversion. 
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At the signal frequency tts the available gain is G0 = |r |2 . Under 
high-gain conditions RL + Rs = R\ so (11.39) may be used for G0 . The 
available input noise power from eu is e\t/lRg = e2

u/4RL, since we 
assume that R = RL = Zc. The noise power Pu delivered to R, in the 
band A /", is thus 

When there is no impressed voltage at the frequency u>t, the currents 
/, and /a are related by [see (11.34) with R2 = RL] 

jMI? 
(R, +R )I.,= -j— 

The power Ph delivered to i? , in the band A/"2 is given by 

I / / R 
P„ « \I./RL = -fpPu = Pu (11.60) 

Uil w / . + Hs 
since fl = M 2 / [ w 2 ( l - M2)2C0

2(ft,. + Hg)] when w, = OJ,. 
The source e,, delivers an amount of power equal to Pls to i?L in the 

band A /'2 and an amount equal to Pu into the band A fx. Hence the total 
noise power delivered to RL from R^ is the same in the two bands A /", and 
A f2, and is given by 

Pi = P u + Pu = G o ^ A A l l + R L
R

+ R ) = 2G„AT, A/", = G , , ^ , A/" 

(11.61) 

since R =* RL + Rs and 2 A /", = A /". 
To evaluate the noise power delivered to RL from Rs, we consider the 

noise in the band A/', first. The equivalent voltage source is e2s , and the 
circuit equations are (we can put wi = ws) 

jMIj 

W , ( 1 - M 2 ) C 0 

jffl? 
0 = ( * A + * , ) / , - 2 (11-626) 

«J.,(1 - M )C 0 

The output noise in the two bands A fx and A f2 is given by 

p2s = \ifRL p2l = uj»jrx 
When we solve for 7, and I2, we obtain 

p * = < * t + * . - * > * - ^ - « ; ( 1 1 6 3 ) 

fc-(JiA+*,)/, - , t1 „„,„ (11.62o) 
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The output noise from e2s in the band A f2 is given by 

R 
2i ~Pg* = 

The noise source e2, contributes a noise power P 2 s in the band \ r 
and P2l in the band A /",. Hence the total noise power delivered to 7? fr 

the internal amplifier noise sources is (in each band A fl and A f ) 

Pz = P* + P2l = 
2kTdAf\RsG0 kT„Rfiatif 

RL RL 

The total output noise from both Rg and Rs is 

P„=Pi +P2 = kAfG0 T, + - i T , 
J?. 

; n.65) 

(11.66) 

If the degenerate amplifier is used as a single-sideband amplifier 
(signal input ixi the lower band A /", only), the single-sideband noise figure 
FS S B is defined by the ratio of the total output noise power in the band 
A f = 2 A fi divided by the available input noise power in the signal band 
A /",. Thus 

^ S S B _ 

kAf1GaTl 
1 + 

PL\ 
= 2 1 

TyRL 
• 5 - (H-67) 

It is seen that, for single-sideband operation, the noise figure cannot be less 
than 2, or 3 dB. The signal-to-noise power ratio in the signal band A fY at 
the input is PJik A /", 7\). The signal-to-noise power ratio in the band A /", 
at the output, given by G0Ps/Pn, is worse by a factor equal to the single-
sideband noise figure FS S B . ' ^ n e n ° i s e degradation is due to noise entering in 
the idler band A f2, in which no signal is present. 

For double-sideband operation input signal power is present in hot) 
bands A fx and A f2. In this case the available input noise power is taken to 
be that in the band A f. Hence the double-sideband noise figure F D S B

 1S 

DSB 

kAfGQTx 

kAfGJ, 
1 + 

T, R, + 
Td R 

T, R 
f^± (11.68) 

and is a factor of 2 (3 dB) better than for the single-sideband case. 
The double-sideband noise figure has been measured by Uenohara' 

a number of different diodes. It is found that the theory given ab°^g[Il 

reasonably accurate. Typical noise figures that were measured ranged 
0.9 to 4.5 dB. For diodes with wsC0Rs less than 0.1, the noise figur*Jw^ge 

dB or better. There was a strong correlation between the measured i* 
figure and the diode quality factor Q. This is predicted by the theory as » 

ilbid. 
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Since RL + R = R for h igh gain and R can be expressed by 

from (11.29) and (11.38), we see t h a t the o p t i m u m value of RL + Rs is 
MQRX. T h e factor R^/RL in the expression for noise figure may now be 
replaced by (MQ - 1 ) " ' to give 

^ D S B - 1 + 
T, MQ - 1 

showing t h a t the noise figure improves wi th diode qual i ty factor Q. 

Parame t r i c amplifier noise is pr imari ly t he rma l noise in the diode 
res is tance Rs. T h e equivalent amplifier noise t e m p e r a t u r e is given by 
TA = (F — l)Tlt w h e r e Tl = 290 K [for the degenera te amplifier wi th sin
gle-sideband opera t ion TA = (F - 2)T, ] . By cooling the amplifier to liquid-
ni t rogen t e m p e r a t u r e , noise t e m p e r a t u r e s below 100 K have been obta ined. 

11.1 . Consider a square-law mixer for which the output, current Ut) = k[v(t)]2, 
where v(t) is the applied voltage and k is a constant. Let a local-oscillator 
signal Vp cos iopt and a signal Vs cos coj be applied, with Vs « Vp. Show that 
the output current at the sum or difference frequencies to ± m.x is a linear 
function of Vs when Vs <K V . Thus the square-law mixer is a linear con
verter for small-signal amplitudes. 

11.2. Consider a parallel-plate capacitor with capacitance Cn. Let a voltage V = 
Vs cos a> J be applied. At time / = 0 the plate separation is suddenly increased 
to change the capacitance from C0 to C = C„ - AC. Since the charge cannot 
change instantaneously, the voltage must increase. At time t = {4fs) '. 
when V = 0 and Q = 0, let the plate separation be brought back to its 
original value. There is no change in V produced since V = 0 at this time. 
When t = (2 / 9 > - 1 , let the capacitance be suddenly decreased to a value C 
again. When this process is continued, the resultant voltage across C is 
amplified and will have the waveform illustrated. This is an example of a 
linear capacitance varied at a rate twice that of the signal frequency. Evalu
ate the incremental change in voltage that occurs every half cycle and the 
power supplied by the pump. To evaluate the latter, determine the change in 
stored energy that occurs every time C is suddenly decreased. 

FIGURE PI 1.2 
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1 1 . 3 . A down-conver te r is a p a r a m e t r i c amplifier wi th an inpu t s ignal 
f requency w„ = a>„ + o>p a n d t h e o u t p u t s ignal t aken at f requency <„ "r,.' 
t h e c i rcui t of Fig. 11.6. show tha t t h e down-con ver ie r gain (actually » I ^ 
g iven by (11.27) , with <o„ and », in te rchanged . 

11 .4 . Der ive (11.32) . 

11 .5 . Derive t he expression (11.35) for t he gain of t he negat ive- res i s tance n a r 

ric. amplifier. 

11 .6 . Der ive (11.49) For t h e noise power P2. 

11 .7 . Obta in an expression lor t h e equiva len t noise t e m p e r a t u r e of a paranie t i 
up-conver te r . 

1 1 . 8 . Derive an express ion for t h e gain of t h e negat ive-res is tance degenerate 
p a r a m e t r i c amplifier i l lus t ra ted in Fig. 11 .11. 

11 .9 . Cons ider t h e degenera te p a r a m e t r i c amplifier wi th c i rcula tor shown in Fig 
11.11. A s s u m e an input g e n e r a t o r vol tage V, at f requency w, in place of e 
and eu. T h e gene ra to r s e n d s a wave wi th c u r r e n t /,* in to t h e amplifier' 
w h e r e /," mus t be equal to V,/{ Rg + Zc) = VH/2Z,., w h e n Rg = Z,., since V" 
sees a ma tched load. A reflected wave is set up w i t h a c u r r e n t I[ = -1 / •" 
T h e load current in RL is / , " , a p a r t from a phase angle. T h e total amplifier 
c u r r e n t a t frequency w, is / , = / f + / , ' . Wi th th i s in fo rmat ion determine 
t h e appropr ia t e circuit equa t i ons , ana logous to (11.34), for / , a n d I,,. 

11 .10 . A p a r a m e t r i c diode has t h e following p a r a m e t e r va lues : C0 = 2 pF , R, = 

1 ft. T h e modula t ion index M = 0.25. T h e frequency fs = 5,000 MHz and 
f = 12,000 MHz. E v a l u a t e t he diode effective Q. D e t e r m i n e t h e load resis
t ance R t to give a gain of 20 dB for a nega t ive- res i s tance amplifier of the 
form s h o w n in F ig . 11.8. A s s u m e Rg = RL = R2. Ca lcu la te R for 20-dB 
ga in . 

1. Blackwell. L. A., and K. L. Kotzebue: "Semiconductor-Diode Parametric Amplifiers," Pren-
lice-H»Jl. Inc., Englewood Cliffs. N.J.. 1961. 

2. Penfield, P., and R. P. Rafuse: "Varactor Applications," The M.I.T. Press, Cambridge, 
Mass.. 1962. 

3. Chang, K. K. N.: •'Parametric and Tunnel Diodes." Prentice-Hall, Inc., Englewood Cliffs, 

N.J., 1964. 

Trave l ing-wave p a r a m e t r i c ampl i f ie r s 

4. Cullen, A. L.: A Traveling Wave Parametric Amplifier, Nature, vol. 181. February, l 9 ° 8 -
5. Honey, R. C, and E. M. T. Jones: A Wide-Band UHF Traveling Wave Variable Reactan 

Amplifier, IRE Trans., vol. MTT-8, pp. 351-361, May, 1960. , . , 
6. Heilmeier, G. H.: An Analysis of Parametric Amplification in Periodically Loaded 1 rana 

sion Lines. RCA Rev., vol. 20, pp. 442-454, September. 1959. 

B r o a d b a n d i n g t e c h n i q u e s , 

7. Matthaei, G. L.. A Study of the Optimum Design of Wideband Parametric Amplifiers 
Up-Converters, IRE Trans., vol. MTT-9, pp. 23-28. January, 1961. W j l i e 

8. Gilden. M., and G. L. Matthaei: Practical Design and Performance of Nearly Optimu bg[ 

Band Degenerate Parametric Amplifiers, IRE Trans., vol. MTT-9, pp. 484-490, N° 
1961. 



CHAPTER 

12 
OSCILLATORS AND MIXERS 

In this chapter we will examine the operating characteristics of two types of 
negative-resistance solid-state devices, namely, Gunn devices and IMPATT 
diodes. These devices are widely used for low-power oscillators in microwave 
and millimeter-wave transmitters. The Gunn device is useful as a local 
oscillator in receiver front ends. We will also discuss the use of bipolar and 
FET transistors in oscillators. 

The last part of the chapter provides an introductory treatment of 
mixers. A mixer is a nonlinear device, very often a diode or several diodes in 
a bridge arrangement, that will cause the microwave signal and local-oscilla
tor (LO) signal to mix to produce a translation of the signal spectrum to a 
lower frequency called the intermediate frequency (IF). All superheterodyne 
receivers use a mixer for this purpose. The advantage gained is that the 
amplification of the signal, before demodulation, is more easily accomplished 
at the lower fixed IF frequency. The IF amplifier also establishes the 
bandwidth of the system since selectivity in the high-frequency RF amplifier 
is usually low. The main purpose of the RF amplifier is to increase the 
signal amplitude to a level such that the mixer noise will not produce a 
significant degradation of the signal-to-noise ratio. 

Apart from economic factors the requirements of an oscillator include: 

1. Excellent frequency stability, i.e., negligible variation in the frequency of 
oscillations due to variations in temperature, power-supply voltage, and 
oscillator loading (load pulling). 

2. Adequate power output for the intended use. 
3. Low amplitude-, phase-, and frequency-modulation noise. 

831 
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4. Variable tuning, including mechanical tuning and voltage control 
5. Capability to be modulated in amplitude (AM), frequency (FM) or i, 

(PM). ' p h a s e 

6. Simple circuit requirements. 

A variable-frequency oscillator (VFO) whose frequency is varied by means f 
an applied control voltage is called a voltage-controlled oscillator (VCO) 

Good frequency stability and low noise are obtained by employing 
high-Q resonator in the oscillator circuit. The resonator should have a 
resonant frequency that is insensitive to variations in the ambient tem 
perature, and this usually translates into low thermal expansion of the 
resonator. For critical applications the oscillator may be placed in a temper
ature-controlled oven. 

The frequency of an oscillator will vary with the dc bias voltages that 
are applied. This effect is called oscillator pushing and can sometimes be 
used to advantage to fine-tune an oscillator over a narrow band of frequen

cies. 
The frequency of oscillation is determined by the resonant frequency 

of the input and output networks. Consequently, any change in the 
impedance of the load connected to the oscillator will result in a change in 
the oscillator frequency. This effect, which is referred to as oscillator load 
pulling, is usually undesirable. The pulling effect can be minimized by using 
loose coupling between the oscillator and the load, i.e., the external Q 
should be large. A disadvantage of using a loosely coupled load impedance is 
that the output power will be smaller and the oscillator efficiency will be 
reduced. Load pulling can also be minimized by using a very high Q 
resonator as the main frequency-determining element in the oscillator 
circuit. 

Oscillator pulling can be determined by measuring the change in 
oscillator frequency as a function of the phase angle of the load reflection 
coefficient. 

12.1 G U N N O S C I L L A T O R S 

Some bulk semiconductor materials, such as gallium arsenide (GaAs), 
dium phosphide (InP), and cadmium telluride (CdTe), have two closely 
spaced energy bands in the conduction band. A typical energy vers 
momentum band structure is shown in Fig. 12.1. At low electric fie 
strengths in the material, most of the electrons will be located in ^ 
lower-energy band. At high electric field strengths, most of the electrons 
be transferred into the high-energy band. In the high-energy band ^ 
effective electron mass is larger and hence the electron mobility is 
than what it is in the low-energy band. Since the conductivity is d i r e

f i e | j 
proportional to the mobility, there is an intermediate range of electric 
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Low-energy 
high-mobility 

band 

High-energy 
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Band gap 1.4 eV 

Valence band 

Momentum 

FIGURE 12.1 
Typical double-energy conduction band for a 
Gunn material such as GaAs. 

strengths for which the fraction of electrons that are transferred into the 
high-energy low-mobility conduction band is such that the average mobility, 
and hence conductivity, decreases with an increase in electric field strength. 
Thus there is a range of applied voltages over which the current decreases 
with increasing voltage and a negative incremental resistance is displayed 
by the device. A typical current-voltage characteristic for a Gunn device is 
shown in Fig. 12.2. A Gunn device is also called a transferred-electron 
device since the negative resistance arises from the transfer of electrons 
from the low- to the high-energy band. 

The oscillations that occur in materials with the energy band structure 
noted above was discovered by J. B. Gunn. The possibility of obtaining 
negative differential resistance had been predicted earlier by Ridley and 
Watkins. 

There are two principal modes of operation that result in oscillations 
for a Gunn device. When the applied voltage exceeds the threshold value, a 
dipole domain (a region of electron concentration and depletion) forms near 
the cathode end with most of the voltage drop appearing across the high-
resistance part of the device. A short section of the input region is in the 
low-energy high-mobility state and electrons leave the cathode with a large 

High-mobility 
region 

Threshold voltage 

FIGURE 12.2 
Current-voltage characteristics for a Gunn 
device. Note the negative-resistance region-
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FIGURE 12.3 

A simple Gunn Oscillator circuit u-
the transit-time mode of oscillation. 

velocity. At the point in the material that separates the high-mobility anc 
low-mobility states, electrons accumulate on the left side and are depleted 
on the right side by virtue of the different mobilities. This dipole arrange 
ment of charge is shown pictorially in Fig. 12.3. This dipole domain swee*-
across the device, and when it arrives at the anode, the device is in a 
high-mobility state and a new dipole domain forms at the cathode end anJ 

moves toward the anode. This mechanism is self-repeating and represen 
an oscillation with a period equal to the transit time. This mode of oscilla
tion has a low efficiency (a few percent) of power generation and a frequency 
that cannot be controlled by the external circuit. This mode of oscillation " 
called the transit-time mode or Gunn mode. 

The second mode of oscillation is the limited-space-charge (LSA) mode. 
Operation of a Gunn oscillator in the LSA mode can produce several watts 
of power with efficiencies of around 20 percent or more. The power outputs 
that have been obtained decrease with frequency and are below 1 W at 
frequencies greater than 10 GHz. Output power of several milliwatts can 
obtained at 100 GHz. 

In the LSA mode the Gunn device is incorporated as part of a resonant 
circuit as shown in Fig. 12.4a. The frequency of the resonant circuit is 
adjusted so that it is several times greater than that of the transit-time 
mode. As a consequence, dipole domains do not have sufficient time to form 
and the device operates essentially as a negative-resistance device. The dc 
bias is adjusted to a value somewhat greater than the threshold voltage. The 
RF voltage of the oscillations will build up to a peak-peak value approxi
mately equal to the voltage increment over which the device resistance is 
negative as shown in Fig. 12.46. The resonator loading, represented by | 
resistor R, is adjusted to a value about 20 percent greater than the 
maximum negative resistance of the device. This will ensure that oscil a-
tions will start. The amplitude of the oscillations will build up until the 
average negative resistance of the Gunn device becomes equal to the re* 
onator resistance R. f 

If the resonator frequency is adjusted to a value slightly a b o v e r i a
t h e 

the transit-time mode, the Gunn device will operate very much hke 
basic Gunn mode, but the dipole domain will be quenched before it a r r . „ 
at the anode by the negative-going oscillation voltage. This type of ope « 
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mode is called a quenched-domain mode. Oscillations can also occur by 
adjusting the resonator frequency, so that it is lower than the frequency of 
the Gunn mode. In this cas>e the dipoie domains have sufficient time to 
sweep across the device and arrive at the anode. However, the initiation of a 
new dipoie domain is delayed until the oscillation voltage rises above the 
threshold value. This mode of operation is called the inhibited or delayed 
mode. 

Circuits 

The equivalent circuit of a Gunn device operating in the LSA mode is a 
negative resistance -Rd in parallel with a capacitance Cd as shown in Fig. 
12.5. The negative resistance has a value that typically lies in the range - 5 
to —20 ft. The required resistive loading from the cavity and the external 
load should be around 20 percent higher than the Gunn device resistance so 
that the parallel combination -RRd/{R - Rd) will be negative. The cavity 
used for the resonator must generally have an impedance-transforming 
property in order to reduce the high impedance of the output waveguide to 

FIGURE 12.4 
( a ) A basic Gunn oscillator operating in the LSA 

I mode; (6) RF oscillating voltage across a Gunn de-
(t>) vice operating in the LSA mode. 
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C„ £ - R , 

F IGURE 12.5 M 

Equivalent circuit of a Gunn device operating in the LSA mode 

the appropriate Jow value required by the Gunn device. A simple cavitv 
structure is shown in Fig. 12.6. The Gunn device is located under a post in a 
rectangular waveguide. The cavity is resonated at the desired frequency bv 
adjusting the short-circuit position. The degree of coupling to the external 
waveguide is adjusted by changing the window opening in the inductive 
diaphragm located at the front of the cavity. The top of the post is insulated 
from the waveguide. The dc bias voltage (typically around 12 V) is applied to 
the post. There is sufficient capacity between the post and the surrounding 
waveguide to provide an adequate low-impedance RF bypass capacitance 
and thus RF currents do not flow through the bias voltage supply. Fine 
tuning of the cavity can be obtained by means of a tuning screw. 

Another simple cavity arrangement for a Gunn oscillator is shown in 
Fig. 12.7. In this cavity the high impedance of the waveguide is transformed 
into a low impedance at the location of the Gunn device by means of 
quarter-wave transformers. The cavity resonant frequency can be adjusted 
by changing the location of the short circuit. A tuning screw can be used for 
fine tuning of the cavity. 

The cavity shown in Fig. 12.6 is easily modified to have two posts, one 
for mounting the Gunn device and a second one for mounting a varactor 
diode. The capacitance of the varactor diode is a function of the control 
voltage Vc. By varying Vc the resonant frequency of the cavity can be varied. 

V 

Tuning screw 

V / /•/ / / j / ; / / j ; ; / ' / / / W 

Output 
waveguide 

Z 2 3 Z Z Z Z Z Z Z Z Z 2 5 

7^77-r-A %.//// 

/ /// S//-7-. 
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V /• / ^7 
Inductive 

diaphragm 

(a) 

-

Short 
circuit 

i " ; 

zzzzfczzz^ zzzz 

Gunn device 

Inductive 
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(") 

FIGURE 12.6 j - ^ t 
(a) A simple waveguide cavity for a Gunn oscillator; (6) inductive diaphragm used to 
coupling between the output waveguide and cavity. 

the 
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FIGURE 12.7 
A Gunn oscillator cavity which 
uses a two-section quarter-wave 
transformer to transform the high 
impedance of the waveguide to a 
low impedance at the Gunn device. 
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y/////// 

'Mz. ^ZTzzzzzmzzzzzzzzzzzSzzzzzzzzzL 
Varaclor 
diode 

Gunn device 

FIGURE 12.8 
A Gunn oscillator cavity which has a 
post-mounted varactor diode for cavity 
tuning. A sawtooth sweep voltage ap
plied to the varactor diode will produce 
frequency modulation of the oscillator. 

If a sawtooth sweep voltage is applied to the varactor diode, the Gunn 
oscillator will be frequency-modulated. The cross section of the cavity is 
shown in Fig. 12.8. 

The Gunn device can be operated as a pulsed oscillator by applying the 
dc bias voltage in the form of a pulse train of short rectangular pulses. If the 
duty cycle is low enough and very short bias pulses are used, the peak power 
output will be limited only by the peak current, since thermal heating of the 
device will be negligible during the short on time. For pulsed oscillator 
applications, the IMPATT diode, or variations of it, is preferred because of 
higher output power. The Gunn device can also be, and has been, used as a 
negative-resistance amplifier. 

D I O D E S 

The acronym IMPATT stands for IMPact Ionization Avalanche Transit 
Time and describes the phenomenon associated with reverse voltage break
down in a p-n junction diode and the transport or transit of charge carriers 
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FIGURE 12.9 

Structure of a Read (IMPATT) diode and the 
electric field profile across the diode. 

through a drift region. W. T. Read had proposed in 1958 that there should 
be a phase delay of more than 90° between an applied RF voltage and the 
avalanching current if the RF voltage caused the total voltage to exceed the 
reverse breakdown voltage in a diode. In 1965, R. L. Johnson verified Read's 
prediction. When the current lags the RF voltage by more than 90°, the 
diode will exhibit a negative resistance and can be used as a source of 
microwave power in an oscillator circuit. 

The Read diode, designated as a p*nin* type, consists of a heavily 
doped p* region, a normally doped n region, an undoped or intrinsic 
semiconductor section, and an n+ region as shown in Fig. 12.9. The p~ n 
diode junction will break down when the applied reverse bias voltage 
exceeds a threshold value. The current-voltage characteristic is shown in 
Fig. 12.10 and is similar to that in the familiar zener diode. The rapid 
increase in current at the breakdown voltage is caused by avalanche multi
plication of the density of the holes and electrons. If a Read diode is placed 
in a cavity and a reverse bias somewhat smaller than the breakdown voltage 
is applied, along with a small RF voltage, then breakdown will occur when 
the RF voltage becomes positive. When breakdown is initiated a large 
number of holes and electrons are created at the p*n junction. The 
electrons are swept across the n region into the intrinsic semiconductc 
drift region. After a transit-time delay, the electrons are collected at the n 
terminal. The current pulse moves through the diode from right to I' 
When the time Cor avalanche charge buildup plus that for charge transi 
through the drift region exceeds one-half RF period, the output current w 
lag the RF voltage by more than 90°. With these conditions the diode v 
exhibit a negative resistance for RF currents. In an oscillator circui 
initial RF voltage comes from the cavity resonant-frequency componen 
the noise that excites the cavity. Once the oscillations start they gr° , 
amplitude until the average negative resistance of the diode becomes eq 
to the total equivalent resistance of the cavity and the external load. 
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Reverse voltage 
breakdown 

FIGURE 12.10 
Current-voltage characteristic of a diode. 
Note the reverse voltage breakdown re-

Since the introduction of the Read diode as a generator of microwave 
power, a number of other diode structures have been developed that will 
also produce microwave oscillations. The two most common variations of 
the Read diode are the BARRITT (BARrier /njection Transit-Time) diode 
and the TRAPATT (Ti?A pped Plasma Avalanche Triggered Transit) diode. 
The BARRITT diode is a p * tip ' or back-to-back diode. The charge carriers 
that traverse the drift region in a BARRITT device consist of minority 
carriers that are injected from the forward-biased p+n junctions. Since the 
BARRITT diode does not involve an avalanche breakdown, it produces less 
noise than an IMPATT diode does. However, the power output and effi
ciency is less. 

The TRAP ATT diode is a p'nn* diode and is driven by a large 
repetitive pulse of current. Breakdown will occur at one of the p'n diode 
junctions, and since the current drive is very large, a large collection of 
electrons and holes (a plasma) is generated. The violent breakdown creates a 
high electric field shock front that moves across the n-type drift region. 
After passage of the shock front, the plasma is located in a low-field region 
and is said to be trapped because it takes a long time to clear the drift 
region of charge carriers. When the plasma has been cleared from the drift 
region, the cycle will repeat. In a TRAPATT diode, oscillations start with 
the diode operating as an IMPATT device. When the amplitude of oscillation 
becomes large enough, the TRAPATT mode of oscillation is established. The 
TRAPATT diode will not operate at as high a frequency as the IMPATT 
diode does. It is also noisier, so its use is decreasing. 

IMPATT diode oscillators are used with the same cavity structures 
that are used with Gunn devices. IMPATT diodes are much noisier than 
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Gunn devices and so are generally not used for local oscillators E 
crowave and millimeter-wave receivers. For power generation, IMPATT 
diodes are superior to Gunn devices. Output CW powers of as much as 10 W 
at a few gigahertz and around 1 W at 100 GHz can be obtained from a sin l 
device. At frequencies above 100 GHz, the output power from eurrentJ 
produced IMPATT diodes decreases approximately as l/f3. 

12.3 T R A N S I S T O R O S C I L L A T O R S 

Silicon bipolar transistors are a good choice for oscillators at frequencies UD 
to 5 GHz. From 5 GHz up to about 40-GHz, MESFET devices can be used 
in oscillator circuits. In the frequency range 30 GHz up to around 100 GHz 
the high-electron-mobility transistor (HEMT) would be used because of it ' 
higher frequency of oscillation. 

In Chap. 10 we were concerned with the general problem of designing 
amplifiers that would not oscillate. We noted that many microwave transis
tors were only conditionally stable and only a restricted range of load and 
source impedances would ensure amplifier stability. The stable and unstable 
regions were shown graphically by plotting the input and output stability 
circles on the Smith chart. In the design of an oscillator, we choose the 
input and output port terminations in the unstable regions. In the unstable 
regions both the input and output impedances of the transistor circuit will 
have a negative resistance and oscillations will occur at a frequency at which 
the total reactance in the input and output circuits vanish (resonance 
condition). Transistor oscillators can thus be viewed as negative-resistance 
oscillators. If a transistor is absolutely stable, it can be made unstable by 
using feedback from the output to the input of the device. Common base or 
common gate circuit configurations tend to have the greatest amount of 
instability as Example 10.5 showed. One suitable feedback arrangement is 
the use of a reactance in series with the emitter or source lead. A series 
reactance can also be used in the common base or common gate circuits. 

The criteria for a transistor terminated in an impedance Zs at the 
input port and ZL at the output port to oscillate are readily_established. 
Initially, assume that a voltage source Vg acts in_series with Zs + Z in. The 
input current to the transistor will be Vg/iZ± + Z±n) = Iin. If we now reduce 
Vg to zero but at the same time make Zs + Z i n tend to zero, we can 
maintain the current 7in and a finite output power. Thus, for oscillations 
occur when Vg = 0, we must have 

Zs = Rx+jXs= -Rin-jXin 

(12. l a ) 

«.--/*. ^;lbl 
Thus the transistor must have a negative input resistance and the i P 
must be tuned to resonance. The frequency of oscillation is deterrnm . , 
(12.16). From the relations fs = (Z, - D / ( Z S + 1) and Tm - (#in \ 

or flin=-«s 
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(Zin + 1), we readily find that the condition for oscillations can also be 
stated as 

r srm = i (12.2) 

Since Rm is negative |r i n | > 1, which is in accordance with our requirement 
for instability as given in Chap. 10. 

We_will now show that when (12.1) or (12.2) hold, at the output 
ZL = -Z< m , or 

^ou, = -%t (12.3a) 

Mmt" ~JXL (12.36) 

l'J'out = l (12.3c) 

Thus the conditions for oscillations are satisfied at both ports if they are 
satisfied at one port. The proof of this property is as follows: The following 
relations hold 

= S 2 2 - M ; _ s22 - yr in = s22rin - A 

"* i - ' ; s n " i - s u / r , n " r , n - s u 

upon using (12.2). We also have 

r. = 
s„ - &rf, 

which can be solved for T, to give 

'in ~ S u 

h = ^22'm - A rout 

which is the relationship we wanted to prove. 
Since the impedance looking into both ports has a negative real part, 

the transistor will deliver power to the external circuit at both ports. Since 
it is operating in the unstable region, the power gain is negative as ex
plained in Sec. 10.7. An absolutely stable transistor with a suitable external 
feedback network can be viewed as a new modified potentially unstable 
device for which the above relations will hold true. We normally view an 
oscillator as an amplifier with a feedback loop that feeds a fraction of the 
output power to the transistor input and the input circuit. Part of the power 
fed back is absorbed in the resistance associated with the input circuit. 
When an unstable transistor is used as an oscillator, the feedback takes 
place internally and is described in terms of the reverse transmission 
coefficient S,2 . Thus the power dissipated by the input circuit as well as the 
input power that drives the oscillator is provided by internal feedback of 
power from the output to the input of the oscillator. The only significant 
difference in the two oscillator types is the feedback path which can be 
either external or internal, 

In order for oscillations to start, it is necessary to choose Rs < \Rm\ 
using the small-signal scattering-matrix parameters to evaluate Rm. Oscil-
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lations will then build up until the nonlinear characteristics of the trai 
tor cause the power gain to saturate. Thus steady-state oscillations wll 
cause the transistor to operate under large-signal conditions. For la 
signals the nonlinear behavior means that the large-signal scattering-mat ^ 
parameters will be different from those that apply for small-signal cond" 
tions. Furthermore, the nonlinear behavior will cause harmonics of th 
fundamental frequency to be generated. Usually the presence of harmonic 
in the output is undesirable unless the oscillator is specifically designed for 
an output at one of the harmonics. The basic problem in oscillator design is 
choosing the port terminations so that the desired output power is obtained 
the harmonics are adequately suppressed, and the desired frequency of 
oscillation with good stability against variations due to load, temperature 
and bias conditions is obtained. 

Some general guidelines that should be followed in order to achieve the 
above objectives are: 

1. The loaded Q of the output circuit should be at least 10 to give good 
harmonic suppression. 

2. The input reactance jXa should have a large-frequency derivative or 
slope dXs/dw. This will mean that a small change in jXin can then be 
matched by a small change in to to bring jXs back to —jXm. Usually this 
requirement is met by incorporating a high-Q temperature-stable res
onator in the input circuit or in the feedback path. 

3. For minimum harmonic generation the oscillator should operate as a 
class A oscillator. 

4. For best efficiency and largest amount of output power, the oscillator 
should be designed for class B or class C operation. This will require a 
self-bias circuit, so that initially the circuit operates as a class A oscillator 
in order for oscillations to start. 

In class A operation the collector (drain) current flows continuously 
over a complete RF cycle. In a class B oscillator the current flows for 
one-half of the RF cycle, while in class C operation the current flows for less 
than half of one period in each RF cycle. In class C operation the maximum 
collector (drain) current flows when the RF voltage at the collector (drain) is 
negative. Thus the power dissipation in the device is minimized and 
efficiency (RF output power/dc input power) can be high. At lower frequen 
cies class C efficiencies as high as 80 percent or more can be achieved, t>u 
microwave frequencies the efficiency is much lower because of circuit 1< 
relatively low power gain, and limited supply voltages to avoid damaging 
transistor. The efficiency of microwave oscillators and amplifiers is 
described in terms of the power-added efficiency. The power-added efficie 
is defined as follows: 

RF output power - RF input power , ,2 .4) 
Power-added efficiency = — * 

dc input power 
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4 T H R E E - P O R T D E S C R I P T I O N OF A T R A N S I S T O R 

In order to facilitate the analysis of an oscillator circuit, when an impedance 
is connected between one of the transistor terminals and the ground plane, 
it is useful to have a scattering-matrix description of a transistor viewed as 
a three-port circuit. In Fig. 12.11 we show a transistor with a microstrip 
line connected to each terminal. For clarity we have labeled the base 
terminal as port 1, the collector terminal as port 2, and the emitter terminal 
as port 3. Any other labeling could be used equally well. The normalized 
amplitudes of the incident and reflected voltage waves will be denoted by 
at,a2,a5 and bt,bs,b3, respectively. The three-port circuit is described by 
the scattering-matrix relation 

6, s„ s12 s„ 
b, = s,, s22 S-,3 

b, S3I 4 . °SS 

a., 

a:< 

(12.5) 

where S,, are the three-port scattering-matrix parameters. We will show 
that the three-port parameters have the property that the sum of all 
elements in any row or in any column equals unity; thus 

£ s,., = 1 
j= 1 

/ = 1,2,3 

i = 1,2,3 

(12.6a) 

(12.66) 

Consequently, the three-port scattering-matrix elements are not all inde
pendent. In fact, they can be expressed in terms of the two-port scattering-
matrix parameters that describe the transistor when one of the terminals is 
grounded, e.g., common emitter parameters when the emitter is grounded. 

In order to prove (12.6a) we note that, provided there is negligible 
stray capacitance between each transistor terminal and the ground plane, 
the sum of all currents entering the three-transistor terminals must be 
zero. Thus we have 

£ (o,-6,)=0= £ L- £s!Ja]=0 
i = l 1=1 \. j 1 / 

t7777777?77777777PV77777777/r 

FIGURE 12.11 
A transistor viewed as a three-port net
work. 
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We can choose the incident-wave amplitudes independently; so if we cho 
a2 = a 3 = 0, we obtain 

3 

«. - E £„«, = o 

or £ S„ = 1 
i = i 

which is one of the relations in (12.6a). By choosing in turn a, and a as 
the nonzero amplitude, the other two relations are obtained. 

The relations given by (12.66) are obtained by noting that, when all 
port (terminal) voltages are equal, the input current at each port will be 
zero, provided again that there is negligible capacitance between each 
terminal and the ground plane. Thus we must have 6, = a, when a = 
a2 = a-.i = a> a n ^ consequently, 6, = b2 = 63 = a and 

b,= Es,,«,= EV = " 
.; i j \ 

which gives the desired result. 
The total normalized voltage at port 3 is V3 = a3 + 63. Let us define 

new voltage-wave amplitudes at ports 1 and 2 as follows: 

V r - O i - - ^ - ^ - (12.7a) 

^ 3 V{ = 6X - -f = 6, - \ * (12.76) 

2 

a 3 + &8 
2 

a . 4 63 
2 

a 3 + &3 

V ? - « 2 - £ - « , - = ^ (12.7c) 

^ - 6 , - ^ - 6 , - ^ (12-7^) 

The total new voltages for ports 1 and 2 are now Vx = Vj* + V, = «i 
61 - V, and V., = a2 + 62 - V3 and are thus referenced to the port A 
voltage. The above definitions for the new incident- and scattered-wa 
amplitudes were chosen so as to leave the port currents unchanged, tna 
Vf - Vf = a, - bv V2

+ -V2-=a2- b2. The common emitter < c o m m ° " 
port 3 terminal) two-port scattering matrix is the scattering matrix 
relates V, and V2 to Vj" and V2

+; thus 

Vf = S^? + S 12*2 
(12.8a) 

v2 =s2y[+s22v; <l2-86) 

(\9 7) w e 

Upon expressing the V, and V, in terms of the a, and 6, using 1 *•*• 
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obtain 

= S.,.\ a. 
2 

6 2 _ H l _ ^ = S 2 I | a i - _ L _ ^ | + S 2 2 j a ^ 

Since the sum of all currents flowing into the three transistor terminals is 
zero (Kirchhoff's law), we must also have 

o1 - 6, + Q 2 - 62 + a3 — 63 = 0 

The above three equations are easily rearranged to give three equations 
expressing the bi in terms of the a,. The first two equations can be written 
in the form 

*i = -SnO, + 5,2.3:2 + ff\ 
V* 

% 
b, = S2)at + S22a2 + "T>-^ 

where <ru = 1 — §u — S, 2 and o"22 = 1 — S 2 2
 — S21. The third equation 

can be solved for b3 to give b3 ~ a, + G2 + a3 — 6, - b2. When we substi
tute for 6, and 62, we readily find that 

2a.9 2<r?, a 
b8 = - ^ - a ! + - - ^ a 2 + - a3 (12.9a) 

4 — <J 4 — (T 4 — cr 
where o-]2 = 1 — Su - S21, o"21 = 1 — S 2 2 — S1 2 . ir = Sn + S 1 2 + S 2 1 + 
S22 = 2 - cri2 - (Tz, = 2 - iru — IT.,.,. By using this expression in the equa
tions for 6, and 62, we obtain 

/ (r,,.}ir,., \ I IT.,;<T.,, \ 2(To? 

"> = ( a - + T^)a> + I s - + Trf h + 5 ^ 0 a (12-9c) 

Equations (12.9a) to (12.9c) provide the three-port scattering-matrix de
scription of the transistor in terms of the two-port scattering-matrix param
eters. The S,j are given by 

c _Q • tTi2(Ta c _o , <r™(r*i 6 2fr™ 
•^21 - -321 + 4 _ a °22 °22 + 4 _ ff

 a23 4 _ ff 

* 2o"l2 3 2«"21 ,5 °" 
* * - 4 - O- 32 4 ^ 7 ^3 - 4 _ a 
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where 

a = Sn +Sl2 + S2i + S22 <ru = l - S u - S l 2 

trl2 = 1 — Sn — S2l <r22 = 1 — S22 — S21 

a2i = 1 — S22 - Sl2 

The reader can readily verify that the above scattering-matrix parameter1? 
satisfy the relations (12.6). 

If the three-port scattering-matrix parameters have been measured it 
is easy to obtain expressions for the two-port scattering-matrix parameters 
Let us assume that we want to find the common emitter two-port scattering 
parameters. This requires that we make Va = 0 or ba = - a 3 . By setting 
63 = - a 3 in the last equation in the set given by (12.5), we can solve for a, 
in terms of a, and o2- By using this solution in the first two equations, we 
obtain the solutions for 6, and b2 in terms of a, and a2 from which the 
two-port scattering-matrix parameters are readily identified. It is found that 

£11 - ^ 1 1 

3»1 — "9.1 21 

°A 
1 + ^ 3 3 

•^23 ^31 

Sl!> — S19 — 
<S <5 
°I3°32 

12 i+$ 

i + s 
&«9 — " 9 9 

33 

^23^32 

(12.11) 

'22 22 
33 1 + 3 33 

Consider now the case when a series normalized impedance Zs is 
connected between the emitter and the ground_plane. For this situation, as 
shown in Fig. 12.12, a3 = T63 where T = (Z, - 1 ) / (Z , + 1). The same 
procedure used to obtain (12.11) can be used to find the two-port scattering 
matrix for the transistor with a series feedback impedance Zs connected in 
series with the common emitter lead. It is readily found that the new 
scattering-matrix parameters are given by (12.11) upon replacing S33 + 
by S 3 3 - r _ 1 . As a final note we point out that, if the relations (12.10) are 
used to express the §u in terms of the Sijt (12.11) is satisfied identically. 
i.e., it gives S0 • Stj. 

FIGURE 12.12 
A transistor with a series 

feedback 

impedance in the commdn emitter lead. 
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The scattering parameters Su and S.,.z are given by 

S" = ~$^~T ( 1 2 " 1 2 f l ) 
A 2 r - 3 2 2 

where A1 = SnS33 - Sl3S3l and A2 = S22S33 - S23S32. The above equa
tions can be solved for f to give 

r = c " ' d 2 . 1 3 a ) 
°33°H ~ a] 

r=* I _A < 12-136) 
°.S3'-,22 **S 

If we restrict the series impedance to be a pure reactive element, then 
|l"| = 1. The circle of |T| = 1 values maps into circles in the Sn and S22 

planes in accordance with the bilinear transformations given by (12.13). The 
center and radius of the Su circle are 

Center = ~-~ (12.14a) s„ -Mf3 
i - iW 
\Sl3S31l 

Radius = ^ ^ - (12.146) 
II - IS33I I 

while those for the S.,., circle are 

&. ~ A J? 
Center = — ^-~ (12.15a) 

1 ~ I £«,! 

\§ § I 
Radius = ^ V (12.156) 

n —1<» 1 

By plotting these circles it is possible to visually see the range of values that 
can be obtained for_S,, and S 2 2 by varying the series feedback reactance. 
For each value of jX the stability parameter K for the equivalent two-port 
network can also be evaluated [see (10.18)]. This parameter is a useful 
measure of the degree of instability a series feedback impedance can pro
duce. Some impedances, particularly resistive ones, will actually improve 
the stability of the device. Such impedances would be useful in amplifier 
design where instability is undesirable. Some caution should be exercised in 
using the above two-port to three-port relations since they are based on the 
assumption that the stray capacitance from each transistor terminal to the 
ground plane is negligible. 
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T h e above resu l t s show t h a t a knowledge of t h e th ree -por t scatterin 
ma t r ix p a r a m e t e r s i s very useful in de t e rmin ing the equivalent t w o - D J l 
sca t te r ing-mat r ix p a r a m e t e r s wi th a ser ies feedback impedance connected ' 
one common lead. T h e following example i l lus t ra tes an application of th" 
above resu l t s . 

Example 12.1 Transistor with common source feedback impedance 
A MESFET device has the following common source two-port scattering-matrix 
parameters at 10 GHz: 

Sn = 0.73/1172° S 1 2 = 0.093,139° 

S2 I = 2.31/144° Sn = 0.09Z - 5 5 ° 

This device has a stability parameter K = 1.13 > 1 and is absolutely stable. By 
using (12.10) the following three-port scattering-matrix parameters were 
computed-. 

S , , » 0.735/1241.5° Sl2 = 0.52^27.8° 

S,:1 - 0.98^24.4° S2 1 = 1.71/161.4° 

S22 = 0.517Z - 79.2" S23 = \ L - 85° 

S 3 1 = U - 5 8 ° S32 = 0.517/130.9° 

S.w = 0.59,187.8° 

If a normalized series reactance jX is inserted into the common source 
lead, a potentially unstable equivalent transistor or two-port network can be 
obtained. The possible range of Sn and S 2 2 values that can be obtained are 
shown by the circles plotted in Fig. 12.13. Also shown on these circles are the 
values of Sn and S2i obtained using a normalized inductive reactance of j0.5 
and jl and the values obtained using normalized series capacitive reactance of 
—jO.5 and —jl. The computed values of the equivalent two-port network and 
the stability parameter K for the four reactances considered are tabulated 
below. 

jX =j0.5 K - 0.921 
Su = 0.244/1181.7° si2 = 0.33Z66.3° 

S21 = 1.83/140.3° s22 = 0.342/1 -38.9° 

jX=jl AT =0.915 

Su = 0.126Z263.30 s l 2 = 0.463/. 65-1° 

S21 = 1.57/139.7° s22 - 0 . 4 7 5 ^ - 41.37° 

jX = - / 0 J K = - 0.49 
Sn = 1.818/1188.2° S,2 = 0.556^ -63.5° 

S 2 , = 3.23/158.7° SM = 0.545/1185.7° 

jX= -jl K = - 0 . 4 5 3 

Su = 3.12/1235.2° S 1 2 = L52Z - 19.7° 

S2l = 3.57/198.7° S 2 2 = 1.52Z.231.1" 
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S,, circle 

FIGURE 12.13 
Circles showing the values of the scattering-matrix parameters S,, and SB2 for a MESFET 
with a series reactance in the common source lead. 

For the above reactance values K < 1, so the MESFET with common source 
series feedback is unstable (will oscillate). Note that a series capacitive 
reactance produces a highly unstable device, in particular, for jX = -j\ the 
reverse transmission coefficient S 1 2 is very large relative to normal values and 
both IS,,I and |S 2 2 ! are greater than unity. 

The results given above were obtained using the computer program 
TRIPORT. 

J2.5 OSCILLATOR CIRCUITS 

L 
A microwave oscillator can be designed using any of the standard low-
frequency oscillator circuits such as the Hartley, Colpitts, or Clapp circuits. 
Various variations of these circuits can also be used. The frequency stability 
of the oscillator is generally achieved by incorporating a resonator in either 
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ft 
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50 a 
FIGURE 12.14 
A 5-GHz FET oscillator using ! 
dielectric resonator DR in the in
put circuit for frequency stabiliza
tion. The feedback is obtained us
ing a series capacitive reactance 
in the common source lead. 

the input or output circuits or as part of the feedback loop. A disk resonator 
can be used but its Q is relatively low; so the resultant frequency stability 
will not be very high. A high-Q metallic cavity can be used, but because of 
its large size the compact high-Q, temperature-stable, dielectric resonator is 
often the preferred choice. 

In Fig. 12.14 we show a 5-GHz FET oscillator that is stabilized by 
using a dielectric resonator in the input circuit. The magnitude of the 
source reflection coefficient is controlled by the coupling to the resonator 
which can be varied by changing the spacing d between the resonator and 
the microstrip line. The phase angle of the source reflection coefficient is 
controlled by the length /, of the input line. The output circuit is a standard 
stub-matched circuit that transforms the 50-fi load impedance to the 
required value for the oscillator. The FET is made to oscillate by using a 
series capacitive reactance in the common source lead. This feedback ar
rangement makes the equivalent transistor two-port circuit unstable as was 
shown in Example 12.1. The dc bias currents are applied through Kr 
chokes. The output load is isolated from the oscillator dc voltages by the 
low-impedance dc blocking capacitor C.t 

In Fig. 12.15 we show an FET oscillator using a dielectric resonator in 
the feedback path from the drain to the gate. The amount of feedback can 
be adjusted by the coupling to the dielectric resonator. The resonator I 
located a distance A/4 from the open-circuited ends of the coupling lin 
since the standing wave of current and magnetic field is greatest at 
location from the open ends and thus provides the strongest coupling to 
resonator. The correct phase of the feedback voltage is controlled by the 

tV. Rizzoli, A. Neri, and A. Costanzo. Analysis and Optimization of DROs Using a 
Purpose CAD Program, Alia Frequenza. vol. 57, pp. 389-398. 1988. 

Gen ,eral 
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F I G U R E 12.15 
An FET oscillator using a dielectric resonator in the feedback path from the drain to the gate. 

lengths /, and l2, as is the phase of the source reflection coefficient seen at 
the gate terminal. 

Electronic control of the oscillator frequency can be obtained using a 
varactor diode as part of the input circuit. Variable-frequency oscillators are 
also built using a yttrium garnet (YIG) ferrite sphere whose resonant 
frequency is controlled by the dc magnetic biasing field. 

O S C I L L A T O R D E S I G N 

When maximum power output and efficiency are not of prime importance, a 
satisfactory oscillator design can be achieved using the small-signal scatter
ing-matrix parameters. The amount of power generated can be varied by 
adjusting the dc bias voltages. The major shortcoming of small-signal 
oscillator design is that it does not provide any way of predicting the 
steady-state oscillating signal level. Oscillator design based on large-signal 
scattering-matrix parameters is much more difficult because of the difficulty 
of obtaining large-signal parameters. Two approaches are possible, namely, 
measuring the scattering-matrix parameters under large-signal conditions 
or obtaining these from computer simulations using a theoretical nonlinear 
model of the transistor. Neither method is easy to carry out so as to achieve 
a high accuracy. Space limitations will not allow us to discuss the large-sig
nal approach. However, the references at the end of this chapter provide 
information on methods that have been developed and used successfully. We 
will only consider the small-signal design approach, and even this in a 
limited way, by means of two examples. 

C 

50 £} 
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Example 12.2 Oscillator design using an unstable transistor. A ail" 
bipolar transistor has the following scattering-matrix parameters at 6 GH °n 

S„ = 0.65^130° 

S2 1 = 2/142° 

S12 = 0.2^80= 

S™ = 0.4Z. - 6 0 ° 

The stability parameter K = 0.646, which is less than 1, so the transistor i 
potentially unstable. In Fig. 12.16 we have plotted the input and output 
stability circles. One of the primary effects of large-signal operation is 
reduction of gain because of gain saturation. For simplicity, we will assume 
that under large-signal conditions S 2 1 changes to a value 1.5<L42° and all 
other scattering-matrix parameters stay the same. Thus, under large-signal 
conditions, we find that the stability parameter K has increased to 0.798. As a 
result the stability circles move. The large-signal stability circles are shown bv 
the dashed circles in Fig. 12.16. 

Let us choose a source reflection coefficient Ts = 1^210° which cor
responds to a pure capacitive reactance load at the base. For this value of f 

ZL = 0.14 +/'1.774 

ZL = 0.509 + /1.67 

Output stability 
circles 

Input stability 
circles 

FIGURE 12.16 . Example 
Stability circles for small- and large-signal conditions for the oscillator discussed in ^ 
12.2. The source reflection coefficient and two values of the load impedance are also sn 



OSCILLATORS AND MIXERS 8 5 3 

we find that the output normalized impedance of the transistor is 

2, = — 0.509 —j 1.67 for small signal conditions 

and Z o u t = - 0 . 1 3 9 - jl-774 for large signal conditions 

In order to satisfy the conditions (12.3) for oscillations, we must choose a load 
termination ZL at the collector where ZL = 0.509 +J1.67 for low-level 
oscillations and ZL = 0.139 f j1.774 for large-signal oscillations. The reactive 
parts are almost of the same value, but the resistive part for large-signal 
conditions is only 0.27 of the required value for small-signal conditions. In the 
small-signal design approach, it is usual practice to choose the load resistance 
around a factor of 3 smaller than what is required by the condition (12.3a) for 
steady-state oscillations. This will allow the oscillations to build up in amplitude 
until gain saturation makes —Rout equal to R,_. There will_be some shift in 
the resonant frequency as the oscillations build up since Xo u l changes and 
thus the frequency must change until Xou[ = —XL. When the input network 
produces a very rapid change in the phase of F.. with frequency, only a small 
frequency shift will occur. Some means of tuning the oscillator is normally 
used so as to establish the desired frequency of oscillation. 

In the example we are discussing, we will choose ZL = 0.14 + y 1.774. 
This impedance point is shown in Fig. 12.16, as is the point ZL = 0.509 + ./1.67. 
The former point lies on the stable side of the assumed large-signal stability 
circle and the oscillator would not oscillate under these conditions. Our choice 
for ZL will, in actual practice, limit the oscillation amplitude at a value for 
which IS2 1 | is somewhat greater than 1.5 so as to keep the point ZL in the 
unstable region. Since we have used a pure reactive termination at the input, 
there is no power delivered to the input circuit. Thus the power gain of the 
circuit is negative and infinite, so that the stable point of oscillation occurs 
when the stability circle moves outwards so as to make Zt lie on the circle 
since the output stability circle coincides with the infinite gain circle. When the 
input termination has a resistive part, the power gain must be negative and 
finite, so that ZL must lie on the appropriate negative gain circle and inside 
the unstable region (see Chap. 10 for a discussion of negative gain circles ir 
the unstable region). 

The circuit for the oscillator is shown in Fig. 12.17. An open-circuitec 
transmission line is used to produce the input reactance. Since r, = e"2jl" tht 
minimum length I is equal to 5A/24 in order to make the phase angle of F 
equal to - 150", which is equivalent to 210". The frequency sensitivity of tht 
phase angle can be increased by using a transmission line A /2 longer, that is 
/ = 17A/24. A 1 percent change in frequency or /3 will then change the phasi 
angle of Fs by ( - 1 5 0 - 1801/100 = - 3.3°. The computed values of Z„u, for i 
±2= change in_the phase angle of Ts are Zo u l = - 0 . 0 8 3 -j 1.697 for F. = 
1/12180 and Zo u , = - 0 . 2 0 2 - j l . 8 6 3 for Fs = 1^222° under large-signa 
conditions. It is apparent that Z0UI is quite sensitive to small changes in thi 
phase angle of Ts. 

The output matching network consists of a 50-ft transmission line o 
length 0.1975A and an open-circuit 50-fi stub of length 0.22A. This circui 
transforms the 50-O load to a normalized impedance of 0.14 +_/1.774 at th 
collector. The bias voltages are applied through 150-ft quarter-wav 
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50 Q 

FIGURE 12.17 
The oscillator circuit designed in Example 12.2. 

transmission lines that are bypassed to the ground plane by capacitors C^p. 
These lines are connected at low-impedance points on the input and output 
circuits. The 50-11 output is isolated from the transistor by the dc blocking 
capacitor C. 

The design carried out above is a hypothetical one since we do not know 
how the scattering-matrix parameters change with signal level. The example 
does show the basic physical principles involved in determining the steady-^tate 
operation of the oscillator. The small-signal design approach that uses ZL = 
- ( R o u l / 3 + jXout) usually leads to a reasonably satisfactory design. 

Example 12.3 Oscillator design using a dielectric resonator. In this 
example we will use the MESFET described in Example 12.1 with a series 
reactance -JO.5 in the common source lead. The equivalent two-port 
scattering-matrix parameters are Su = 1.818Z.188.20, S 1 2 = 0.556A -63 .5° , 
S2 1 = 3.23^58.7°, S 2 2 = 0.545^185.7°, and the stability parameter K = 
- 0 . 4 9 . The input and output stability circles for the equivalent two-port 
network are shown in Fig. 12.18. Since | S 2 2 | < 1 the origin is a stable point for 
r„, so that values of Ys inside the source or input stability circle are unstable 
ones. The values of ZL outside the load stability circle are unstable ones since 

ISnl > 1. 
We will choose Ts = - 0 . 8 for the initial design of the oscillator. This 

value of T5 is shownin Fig. 12.18 and is in the unstable region. For_this value 
of T, we find that ZoM = - 1 . 6 - J0.906. For Z, we will choose ZL = 0.6 
jO.906 for which RL = - 0 . 3 7 5 R o u t . The oscillator circuit used is shown ^ 
Fig. 12.19. The resonator equivalent circuit is a parallel combination of R> ' 
and C which is series-coupled to the microstrip line by an ideal translo 
with turns ratio n : 1 as shown in Fig. 7.23. We can choose R equal to unity 
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Load stability 

circle l l ' J = 1 
Source 
stability 

circle |F_ 

FIGURE 12.18 
The input and output stability circles for the oscillator in Example 12.3. The design values of 
T, and Zj are also shown. 

choosing an appropriate value for the turns ratio n:\. The resonator Q is 
given by R/w0L, which determines the inductance in terms of the resonator 
Q. The capacitance in the equivalent circuit is given by the resonance condition 
IOQLC = 1. At w = io0 the impedance coupled into the microstrip line is a 
series resistance equal to n2R = n2, so n2 represents the coupling coefficient. 
The transmission line of length A/4 can be replaced by a short circuit at the 

Rg 

c 1 
B P T 

X 
4 

• v v v 1 

, T 

o DR 

0.426X • 0.144X 

5012 

FIGURE 12.19 
The oscillator circuit designed in Example 12.3. 
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location of the resonator. Thu.,, at the resonator location, the reflect" 
coefficient on the microstrip line is I" = (n2 - l ) / ( « 2 + 1). In order to tn lc" 
T = - 0 . 8 , we must choose «2 = (1 + D / ( l - D = 0.2/1.8 = 0.111; so th 
resonator is undercoupled. By using a transmission line A /2 long between H 
resonator and the gate, we obtain Ts = V = - 0.8. 

The output circuit consists of a 50-il transmission line 0.213A long and 
an open-circuited 50-ft stub 0.144A long. This network transforms the 50-O 
load impedance to the required normalized value 0.6 + jO.906 at the drain 
terminal. The capacitive feedback normalized reactance of —j0.5 is obtained 
by using a short-circuited 50-fl stub of length equal to 0.4262A in the common 
source lead. 

In general, the resonator impedance coupled into the input microstrip 
line is given by 

n* 
£ — F.I — *.. 

12.7 MIXERS 

1 + 2jQ 
">o 

in the vicinity of the resonant frequency <o0. If we assume that the resonator 
Q equals 500, then a 0.1 percent change in frequency will change T from 
- 0.8 to 

n2Z - 1 n2 - 1 - / - 8 -ffl 
r = —- = -= = — = 0.895 L186.38° 

n2Z+l n2 + l+j 1 0 + ^ 9 
The new value of Zou, becomes - 1 . 3 7 - y l . 4 1 , where we have assumed, for a 
0.1 percent change in frequency, that there is a negligible change in the S,y 

parameters and the transmission-line length. If we used stronger coupling to 
the resonator, we would obtain a larger change in I" and this would improve 
the frequency stability of the oscillator, since the resonator would have a 
stronger control of the oscillation frequency. A better choice for I"s would be 

- 0.4 which gives n2 = 3 / 7 and Zo u l = -0 .494 - j0.089. A 0.1 percent change 
in frequency would now give 

3 - 7 - 7 7 - 4 - / 7 
T = = = 0.6605^205.3° 

3 + 7 +j7 10+jl 

and Zo u l = - 0 . 5 2 3 -7 0.905. The change in the phase angle of I" has been 
increased by a factor of about 4 by using the larger coupling. The frequency 
stability is also increased by about the same amount. The design of the 
oscillator circuit using fs = - 0 . 4 is left as a problem to be solved (Prob. 12.5). 

In Fig. 12.20 we show a block d iagram of a microwave superhe te rodyne 
receiver. T h e signal from t h e a n t e n n a is first amplified by a low-noise 
amplifier. After amplification, t h e signal is mixed wi th a local-oscillator 
signal to obta in the original signal t r ans l a t ed to a m u c h lower i requ 
called t h e i n t e rmed ia t e ( IF) frequency. T h e mixer is a nonl inear device sue 
as a diode or dual -gate F E T . If t h e microwave carr ier frequency is o>c 
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FIGURE 12.20 
A block diagram of a microwave receiver. 

the oscillator frequency is « 0 . the nonlinear mixer device will produce 
signals at the IF frequency w!F = &>„ - «,., at the frequency <«0 + to,., and, in 
general, at many harmonic frequencies no>0 ± mm,, where n and m are 
integers. The signal at the IF frequency is further amplified, then demodu
lated, and finally processed for the intended output application. 

A single-tone AM signal with modulation frequency wm has the form 

(1 + Mcos <omt) cos o)rt = cos u>ct -I- jM[cos(w,. + wm)t + cos( w,. - wm)t] 

After mixing, the sideband spectrum becomes 

cos[(w(. - <tf0)i + »mt] + cos[(w r - w0)C - bjmt] 

when the carrier frequency we is greater than the local-oscillator frequency 
run. When the carrier frequency is less than the local-oscillator frequency, 
the sideband spectrum, after mixing, remains unchanged because an AM 
signal has symmetrical sidebands. Thus a local-oscillator frequency greater 
or smaller than the carrier frequency can be used. 

For an FM or phase-modulated signal of the form cos[<o,.l + <f>(t)] the 
spectrum, after mixing, is of the form cos[(wr - w„)r + <t>(.t)] when w,. > w0 

and cos[(w0 - uic)t — <b{t)] when w,. < a>0. For the case when a>0 is greater 
than the carrier frequency wv, the sideband spectrum is reversed with the 
high frequencies becoming low frequencies, and vice versa. This phe
nomenon occurs because FM and phase-modulated signals do not have 
symmetrical sidebands. The subtraction of the spectrum of <f>( t) from the IF 
frequency reverses the high- and low-frequency components. In order to 
avoid this inversion of the signal spectrum, the local-oscillator frequency 
must be less than the carrier frequency in FM and phase-modulated sys
tems. 

In this section we will discuss those mixer characteristics that are 
important from a systems point of view. For the purpose of this discussion, 
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Vce"*<' 

FIGUBE 12.21 
A single diode mixer circuit. 

we will use a simple single-diode-mixer circuit to help clarify some of the 
operational characteristics of diode mixers. In the following section we will 
examine some of the more complex mixer circuits that enhance the overall 
mixer performance. 

In Fig. 12.21 we show a simplified circuit for a single diode mixer. The 
RF signal with carrier frequency wr is connected to the diode through a 
filter network with impedance Z R F . Similarly, the local-oscillator signal at 
frequency w0 is applied to the diode through the impedance Z0. The IF 
signal appears across Z1F which represents the input to the IF amplifier. If 
a point contact diode is used, a dc biasing circuit is not used but the diode 
must have a dc current return path to ground which is through the RF 
choke RFC. When a Schottky barrier diode is used, a small forward bias is 
normally applied to the diode. This serves to overcome the barrier potential 
and increases the sensitivity of the diode. In a conventional p-n diode, the 
junction capacitance is quite large and will shunt the RF and LO signals 
across the junction, thus making these diodes ineffective as mixer diodes at 
frequencies greater than 1 GHz. The minority carriers also limit the diode 
recovery time. The Schottky diode, consisting of a metal-semiconductor 
junction does not have a depletion layer and also has very little store 
charge at the junction. Hence it has a very small junction capacitance. It 
usable as a mixer diode for frequencies in the microwave and millimeter-wa 
range and beyond. -

The IF frequency is much lower than the LO and RF frequencies, to 
example, if the RF frequency fe = 10 GHz and a typical IF frequency ot 
MHz is assumed, then the local-oscillator frequency must be (10 ± • 
GHz. In this case the IF frequency is a factor of 200 smaller than the 
and LO frequencies. Hence the capacitor Ch in the circuit shown in 
12.21 can be chosen large enough to short-circuit the high-frequency 
rents at the IF amplifier input. Consequently, the IF port is isolated 
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FIGURE 12.22 
C„ Equivalent circuit for a microwave diode. 

the RF and LO ports. On the other hand, the RF and LO frequencies are 
almost equal, so it is not practical to use filter networks Z0 and Z R F that 
provide good isolation between the RF and LO ports. We can, however, 
assume that Zn and Z R F are essentially zero-impedance elements at the IF 
frequency. We could, for example, insert a series resonant circuit across the 
RF and LO ports (shown by dashed hnes in Fig. 12.21) with L and C 
chosen so that LCUJ\V = 1, where ct>l(. is the IF frequency. This circuit 
provides a zero-impedance path across the RF and LO ports at the IF 
frequency. At the RF and LO frequencies, jwL represents a very high 
reactance that shunts the RF and LO ports and can be neglected. 

The equivalent circuit of the diode is shown in Fig. 12.22. In this 
circuit we have an ideal diode shunted by the diode junction capacitance C, 
along with a series resistance Rs, a series inductance Ls, and a package 
shunting capacitance C . The ideal diode is described by the equation 

<,i = / s ( e v " " - l ) (12.16) 

where irt is the diode current, /s is the reverse saturation current, vd is the 
voltage across the diode; y = e/kTn, where e is the electron charge, k is 
Boltzmann's constant, T is the absolute temperature, and n is a diode-
dependent parameter having a value between 1 and 1.5. At room tempera
tures y has the approximate value of 40. 

For the purpose of the discussion in this section, we are going to 
neglect all of the parasitic elements in the equivalent circuit of the diode. 
This can be justified only if we assume that the RF and LO frequencies are 
quite low. We will carry out a more careful analysis of the diode mixer in a 
later section. With the assumptions we have made, the mixer equivalent 
circuit for RF, LO, and IF signals reduce to those shown in Fig. 12.23. The 
network that the diode is embedded in has been assumed to have a zero 
impedance at all frequencies except those in the vicinity of the RF, LO, and 
IF frequencies.t Thus the only voltages that can exist across the diode are 
those at the RF, LO, and IF frequencies since all other frequency compo
nents are short-circuited by the embedding network. 

iWhen diode biasing is used, the RF and LO circuits must have nonzero dc resistance so as not 
to short-circuit the dc voltage applied to the diode. 
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F I G U R E 12.23 
(a) Equivalent circuit for RF signals in the mixer; (6) equivalent circuit for LO signals; 
(c) equivalent circuit for IF signals. 

The current id through the diode can be expanded in a Taylor series 
about the dc operating point. This is equivalent to assuming a power-series 
expansion of the form 

h = Jo aiv + a2v
2 + a 3 t ; 3 + ••• (12.17) 

where /0 is the dc biasing current, v is the voltage excursion about the 
operating point, and av, o 2 , a 3 , . . . are suitable coefficients. We will assume 
that the voltage v consists of a local-oscillator signal v0 = V0 cos w0/, an RF 
signal Uj = V, cos to^t, and an IF signal — vlF at the IF frequency <n0 - " I -
The IF signal has the form wIF = \V[F\cos(wiFt + </>), where d> is the phase 
angle. The complex-phasor IF voltage is Viy = |VIF|e-'*. When we expand 
(12.17) we obtain 

id = /„ + as(v0 + Vl - u,F) + a2{vl + v\ + vjF + 2v0v1 - 2v0vlF - 2W,«IF) 

+ a3(vl + u? - ufp + Sv'lv^ - Svluw + 3y0u? + 3f0ffF 

- S i ^ j p - Ba0vtvw) (12-18) 

In a number of published analyses of mixers using a power series sue 
as that in (12.17), it is assumed that the voltage across the diode consists 
only of the RF and LO signals. This assumption would imply that the 
embedding network that the diode is connected to has a zero impedance a 
the IF frequency, which is an unrealistic assumption. If power is to 
delivered to one port of the embedding network at the IF frequency, then 
the network must have a nonzero impedance at the IF frequency at 
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port. The impedance of the embedding network at the various harmonics of 
the applied signals determines the harmonic voltages across the diode. 

O p e r a t i o n 

In practice, the local-oscillator signal has an amplitude much larger than 
the RF signal and the IF signal. When the RF signal amplitude is small, we 
can neglect terms that are proportional to higher-order powers of the RF 
and IF signals. Thus, when we retain only those terms that are linear in u, 
and v[F, the diode current is given by 

id =I0+ c , ( j ' 0 + t>, - vw) + a2(4 + 2v0vl - 2£/0d/IF) 

+ a3{u% + 3v$vt - 3u2i;,F) (12.19) 

A term such as u^ equals V0
2 cos2 a>0t = iV<2 + \v*)cos2ajiit. The product 

term 2U0L ,
1 equals V0V,[cos(w0 - « ,) / + cos(w0 + co})t] and has an IF fre

quency component. The product term -2v(lvlF equals -V0|V,K|{cos[(a»0 -
wlF)t - <!>] - cos[(w0 + wlF)l + </>]} and does not contain frequency compo
nents falling within the IF amplifier passband. The term —3a3i>|ojF con
tributes an IF current component equal to - fcig^fvjF. The total IF 
current is given by 

j I F = - a , i / 1 F + a.y0Vl cos w,Fr - fa3V(fi;,F 

We now let ilF = Re / I Ke"" I F ' and use phasor analysis to obtain 

ht = -«!*» + »*W - hsV$Vw 
At the IF frequency the circuit equation or constraint imposed by the 
embedding network shown in Fig. 12.23c gives VlF = / | F 2 I F . Thus we find 
that 

a o V f . Z • r-

VIF= : .,v V. (12.20) 
,F 1 + ( o , + 1.5a3Voa)ZlF ' 

The power-series expansion up to terms in a3 is valid only for small values 
of V0. Consequently, the term 1.5a:)V,2 is usually small relative to a,. The 
above equation shows that under the assumptions made, the voltage at the 
IF amplifier input is linearly proportional to the RF voltage amplitude V,. In 
this operating range the mixer functions as a linear mixer. 

The conversion loss, in decibels, for the mixer is given by 

available RF power 
L = conversion loss = 10 log——— (12.21) 

IF input power 
Typical values for conversion loss for a single-diode mixer are 6 to 10 dB. 
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Nonlinear Mixer Operation 

For larger values of the RF voltage, we must take additional terms ;m 
account. From the term multiplied by a3, we have a term 

-3a a wf& 1 P = -1.5a3V,2U|K - 1.5a3V1
2u IFcos2w1i 

and a term 

- a 3 u ? F = -a.jVlF\3 cos3(o]Ft + <j>) = -0 .75a 3 |V I F | 3 cos (w, F i + <£) 

- 0.25a3 |V I F |3 cos(3w1F/ + 3$) 

The IF frequency component of this latter term can be expressed as 
— 0.75a3|V ir,|

2t/1F. We can use (12.20) to obtain an approximate solution for 
|VIF|2 and then find that 

a2VnZ1FV, 
V!y = 

l + [a1 + 1.5a3(V0
2 + V2) + 0.75a3 |V1Fl2]Z IF 

«M 
VIF + at + 1.5a3V0

2 , V2 a2V2 |ZIF |2 

VIF + at + 1.5a3V0
2 

V0
2 211 + (a, + 1.5a3V0

2)ZIF|2 

(12.22) 

where YlF = Z^F. This equation shows that the effect of the nonlinear 
terms - a 3 i ; 3

F and -3a 3 u 2 L' I F is to reduce the IF voltage. Thus a mixer will 
exhibit nonlinear saturation and the range of allowed input RF voltage 
amplitudes (dynamic range) must be limited in order to avoid nonlinear 
distortion of the down-converted RF signal. The dynamic range of a mixer is 
specified by giving the RF power level at which a compression of 3 dB occurs 
in the IF power.t In Fig. 12.24 we show a plot of IF power versus RF input 
power and the 3-dB compression point. The units are dBm or decibels 
relative to 1 mW. 

The nonlinear behavior of a mixer also results in intermodulation 
distortion. Consider an input signal consisting of two closely spaced sinu
soidal signals at the frequencies w, and w2, where |w, - io2\ « « I F - l e 

presence of two closely spaced RF signals results in the generation of a 
larger number of frequency components. For linear operation we obtain 
IF signals |VIFI|cos[(a«0 - uix)t + <£,] and |VIF2|cos[(o>0 - <o2)t + <b2i

 T h e ' £" 
bic term -a3 i>3

F will result in new additional frequency components 
come from the products VjFlulF2 and ulF1v'iF2. The new frequencies ge ^^ 
ated, which fall within the IF amplifier passband, are a>0 - 2<ol + <*2 

tSometimes the 1-dB compression point is used. 
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FIGURE 12.24 
Illustration of nonlinear mixer response and the 3-dB compression point. 

w - 2w2 + w,. We will let o>1F:i = (wn - w,) + (w2
 _ w0 a n ^ -• i r--i = (u>0 -

a>2) + (o)| — &>2). For a self-consistent solution for (12.18), we see that we 
must assume the presence of at least four IF signals, namely, 

V\F = VlFl COS( W,KI< + ( / > , ) + V , F 2 C O S ( w , F 2 f + (j>2) 

+ V,F3cos(«|K3* + d>3) + VIF., cos(w IF4/ + d>4) (12.23) 

When v I F 3 and ulFA are included, then the term multiplied by o3 will also 
have product terms of the form vjPlvlF3, v'iP3vn-4, etc. These product terms 
result in additional new frequency components that fall within the IF 
passband. Since vlFl and L'|F2 are proportional to V, and V2>

 we s e e that 
I>IF3 and uiV4 will be proportional to V|2V*2 and V2

2V,, respectively. A term 
such as i^f^ip;! is thus proportional to V*V2 and can be neglected since its 
amplitude will be much smaller. 

The production of new frequency terms that arise from the mixing of 
vSF1 and ulF2 is called two-tone intermoduiation distortion. If V, = V2 = V 
these terms are proportional to the third power of the RF signal amplitude. 
The IF power associated with the intermoduiation terms will increase 
proportional to the third power of the input RF power. The intermoduiation 
distortion of a mixer is specified by giving the RF power level at which the 
intermoduiation IF power becomes equal to the IF power associated with 
the desired IF signals t;)F, and v1F2. This is a theoretical value that is 
obtained by extrapolating the linear mixer respon.se or IF power output at 
the desired frequencies <0|F| and <0|F2 and that of the IF power output for 
the intermoduiation terms until they meet. On a decibel scale the slope of 
the curve giving the intermoduiation IF power is three times that of the 

respon.se
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/ / l . Third-order intercept 

Intermodulation 
IF power 

-40 - 3 0 -20 - 1 0 

RF input power. dBm 

FIGURE 12.25 
Illustration of diode mixer response for the desired IF power and the IF power at the 
intermodulation frequencies. The intersection of the two extrapolated response curves gives 
the third-order intercept point. 

curve giving the desired IF signals. The intercept point is called the third-
order intercept and is illustrated in Fig. 12.25. In practice, the RF input 
power to a mixer must be kept below the 3-dB saturation point and also 
below the third-order intercept point to avoid signal distortion. 

When the amplitude V2 of the RF signal at the frequency co2 is held 
constant, but Vj is increased, then the slope of the line giving the intermod
ulation power in the IF passband will be 2. 

12.8 MIXER N O I S E F I G U R E 

The noise figure of a mixer is another important parameter that specifies 
the performance of a mixer. Thermal input noise at frequencies around 
<o0 - w IF will be down-converted into noise in the IF passband. Thermal 
noise at the image frequencies around w0 + « I F when mixed with the LU 
signal will also fall within the IF passband. The mixer will also introduce 
additional noise with frequency components in the IF passband. 
additional noise arises primarily from thermal noise in the resistive ' 
ments of the mixer and from shot noise. 

The noise figure of a mixture is defined by the relation 

F = SJN0 

(12.24) 

the 
where S,/N, is the input signal-to-noise power ratio and S0/Nn

 lS _ 
output signal-to-noise ratio. If the local-oscillator frequency is <o0, the 
signals at <o0 + <o]F and «0 —wIF are converted to IF signals. .fl 
quency u>0 + coie is called the upper sideband and the frequency w0 ~~ a 
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the lower sideband. Noise at both sidebands is converted into noise in the IF 
passband. In most systems the signal is present in one sideband only. The 
unused sideband is called the image frequency. When the signal is present 
in one sideband only, the noise figure is designated as the single-sideband 
(SSB) noise figure FS S B . If the signal is present in both sidebands, the 
corresponding noise figure is called the double-sideband (DSB) noise figure 
and denoted by FDSB. A double-sideband signal would be of the form 
A[l + m(t)][cos(<u0 + (Ojp)t + cos(<u0 — wlF)t], where m(t) is the modula
tion. When down-converted the IF signal voltage will be proportional to 
2A[l + rn{t)]cosa)1Ft, and consequently, the IF power is increased by a 
factor of 4. Thus for double-sideband signals, the ratio Sl/Su is one-half of 
that for a single-sideband signal since the output IF power is increased by a 
factor of 4 but the input RF power is increased by a factor of 2 only. This 
assumes that the mixer conversion loss is the same for both sidebands. As a 
consequence of the above, the single-sideband noise figure is twice as large 
as the double-sideband noise figure, that is FSSB

 =
 2^DSB- The double-side

band noise figure is easiest to measure since noise sources are usually very 
broadband and would provide noise signal input in both sidebands. 

Schottky diode mixers have typical single-sideband noise figures in the 
range of 4 to 8 dB. The IF amplifier noise figure will also increase the noise 
figure of the mixer-IF amplifier combination because of the mixer conver
sion loss. The noise figure of the mixer-IF amplifier combination is given by 

F = Fm + Lr(FlF- 1) (12.25) 

where Fm is the mixer noise figure, Fw is the IF amplifier noise figure, and 
L(. is the numerical value of the mixer conversion loss. As an example 
assumes that the conversion loss is 4 (6 dB), the IF amplifier noise figure is 
2 (3 dB), and the mixer noise figure is 4. The noise figure of the combination 
is thus 8 which is a 3-dB increase over that of the mixer by itself. Since the 
signal level at the output of a mixer needs additional amplification, the 
mixer conversion loss has a significant effect on the overall noise figure. For 
this reason it is important to have sufficient signal amplification ahead of 
the mixer. The noise figure of the preamplifier will then govern the system 
noise figure. 

9 B A L A N C E D MIXERS 

There are several disadvantages associated with a single-diode mixer. These 
are: no isolation between the RF and LO ports, poor isolation between the 
IF port and the RF and LO ports, a high level of oscillator noise input to the 
IF amplifier, and the generation of many spurious signals. Balanced mixers 
can improve the characteristics of a mixer and alleviate many of the listed 
shortcomings. 

The basic circuit for a single balanced mixer is shown in Fig. 12.26. 
The two diodes need to be well matched in their electrical characteristics in 
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FIGURE 12.26 
Basic circuit for a single balanced diode mixer. 

1 

order to achieve a well-balanced mixer. From the symmetry properties of 
the circuit, we can see that the voltage across diode D x is u0 + v - v 
while that acting across diode D2 is u0 - ux + u IF. If we retain terms up to 
a2 in the expression (12.18) for the diode current, we find that for diode D 

ld\ = I0 + o^Uo + Vt - i/IP) + a2(ug + vf + v^ 

while for diode D2 , 

+ 21;, ,^ - 2u0u I F - 2u,ulF) 

ld2 = h + Ol("o _ yI + UIF) + Q 2( t ; 0 + Ul + 1>IF 

- 2 ^ 0 ^ , + 2y0y I F - 2v1vlF) 

The input current to the IF low-pass filter is 

•dl — i dl = 2a 1 (u , - o,p) + 4o 8 (u 0 o 1 - u0o1F) 

The IF frequency component is given by 

/ 1 F = - 2 a 1 V I F + 2a2y0V1 (12.26) 

From the above equations we see that there is no local-oscillator voltage at 
the IF port so the LO and IF ports are isolated. Amplitude-modulation noise 
from the oscillator, as well as up-converted (or down-converted) thermal 
noise in the oscillator circuit, will consequently not be present at the I* 
input. From an examination of the circuit in Fig. 12.26, it is also apparent 
that the LO and RF ports are isolated. , 

For broadband mixers operating up to 1 GHz or so, the single balanced 
mixer can be built using transformers consisting of windings on a ' e r r 

toroidal core. At microwave frequencies the single balanced mixer can 
constructed using a 180° 3-dB hybrid junction such as the magic T or hybn 
ring described in Chap. 6. A single balanced mixer using a magic T is^sno 
in Fig. 12.27. A 90° hybrid junction can also be used, but the mixer will the = 

not be fully balanced with respect to LO and IF port interactions. In a 
hybrid junction reflected waves at the output port appear at both mP 
ports with a phase that makes the reflected waves add out of phase. 
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FIGURE 12.27 
Single balanced mixer using a wave
guide magic T. 

the LO and RF port input VSWRs tend to be small. For a 180° hybrid 
junction, the reflected waves add in phase at each input port so the 
resultant input VSWRs are higher for the same degree of output impedance 
matching. A VSWR of 1.5 using a 90° hybrid junction can be readily 
achieved, whereas the VSWR for a 180° hybrid junction is around 2. It is 
relatively difficult to provide a good impedance match between a diode and a 
transmission line over a wide band of frequencies. 

By using the four diodes in a bridge network, a double balanced mixer 
can be built. The basic circuit for a double balanced mixer is shown in Fig. 
12.28 and provides isolation between the RF and LO ports, as well as 
between the IF and the RF and LO ports. In addition, many more spurious 
signals cancel at the IF port. The double balanced mixer suppresses the 
even harmonics of both the RF and LO signals and hence has a lower level 
of intermodulation distortion than that of the single balanced mixer. At the 
lower frequencies double balanced mixers are readily constructed using 
transformer hybrids. At microwave frequencies transmission-line baluns are 
used and the overall mixer configuration can become quite complex. 

F I G U R E 12.28 
Basic circuit for a double balanced 
mixer. 
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O T H E R T Y P E S O F M I X E R S 

When the local-oscillator frequency is higher than the RF signal frequen 
cies, the IF spectrum contains those signal components in the frequencv 
band o>0 - <uIF. The undesired frequencies in the image band GJ0 + w o-
suppressed by means of a filter ahead of the mixer. It is possible to arranep 
two mixers in such a manner that IF signals corresponding to signals in the 
upper and lower sidebands are down-converted and appear at separate 
output ports. The unwanted sideband signals can be dissipated in a resistive 
termination. A mixer of this type is called an image-rejection mixer and is 
particularly useful in wideband signals where it is difficult to eliminate 
signals in the undesired sideband by filtering. 

The up-converted signal proportional to V0V, cos(&>0 + w,)( represents 
a transfer of RF power to an undesired frequency. By reactively terminating 
this frequency component, it can be reflected back to the mixer and mixed 
with the second harmonic of the LO signal to produce a desired IF signal. 
With a proper adjustment of the circuit parameters, the conversion loss can 
be reduced by 1 to 2 dB. This type of mixer is called an image-
recovery or image-enhanced mixer. 

At millimeter wavelengths it is not always possible to build a suitable 
oscillator at the very high required frequency. In such circumstances a 
lower-frequency oscillator can be used and the desired IF frequency signals 
can be obtained by mixing the RF signal with one of the harmonics of the 
oscillator. These mixers are referred to as subharmonic mixers. By using 
two well-matched diodes connected in antiparallel as shown in Fig. 12.29, a 
second harmonic mixer is obtained. This particular diode arrangement 
results in an absence of all mixing products that involve odd harmonics of 
the local-oscillator signal. 

FET mixers can also be configured to operate as balanced mixers, 
although current practice is to use an FET in an unbalanced circuit 
configuration. Discussions of FET mixers can be found in the references 
given at the end of this chapter. 

FIGURE 12.29 
Basic circuit of a subharmonic m 
where the RF signal is mixed with 
second harmonic of the oscillator sig" 
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j 2 . 1 1 M I X E R A N A L Y S I S U S I N G H A R M O N I C 
B A L A N C I N G 

A power-series expansion of the diode current, such as that given by (12.17), 
is valid only when the voltage across the diode is of the order of a few 
millivolts. In practice the local-oscillator-signal voltage across the diode is 
much larger in order to obtain a relatively low conversion loss. The har
monic-balance method of mixer analysis is based on first analyzing the 
nonlinear mixer circuit with only a local-oscillator signal applied. This leads 
to a description of the diode in terms of a time-varying conductance and 
capacitance. In this section we will develop the basic concepts associated 
with the harmonic-balancing method, which are similar to those used in 
describing the operation of parametric amplifiers in Chap. 11. 

The equivalent circuit for the diode is shown in Fig. 12.22. The 
junction capacitance Cj is a function of the voltage across the ideal diode 
junction. The other circuit elements, namely Rs, Ls, and Cp, can be 
considered to be part of the embedding network. We can replace the 
network as seen from the terminals of the ideal diode by a Thevenin 
equivalent circuit which includes an equivalent local-oscillator source as 
shown in Fig. 12.30a. The impedance Z(w) of this network has a different 

H 

Zlu.) 

LO 
(a) 

lb) 

FIGURE 12.30 
(a) Thevenin equivalent circuit of a diode mixer as seen 
from the terminals of the ideal diode; (6) Thevenin equiva
lent circuit of a diode mixer at m = 0. 
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value at each harmonic n ain of the local-oscillator signal. The total current 
iT flowing through the diode and junction capacitor is iT = id -+- j -pi 
current through the capacitor is given by 

, dQ(vj) dQ^dv^ 

dt ' dVj dt 

where Q(vj) is the charge stored at the junction. The incremental capaci
tance dQ/dvj = CjiVj) is a voltage-dependent capacitance since, in general 
Q is not a linear function of Vj. The current id through the ideal diode is 
given by 

id = Is(e^ - 1) 

When only the local-oscillator signal is applied to the circuit, the 
voltage Vj and the currents iT,id,ic will contain all harmonics naj0 of the 
fundamental frequency a>0. Hence we can write 

jj=» — x 

x 

«&- E v^"-"' 
n = — <x 

h- E ic„e>«»« 

Since id and vt are real, /_„ = 7 * and V_n = V*. The voltage i>, is periodic, 
so CjiVj) is a periodic function and has a Fourier series representation of 
the form 

oo 

C , = E C„e-"""°' 
n = —w 

where the C„ will be dependent on Vj. C, is a time-varying circuit element. 
The presence of a dc bias voltage simply changes the values of J0, V0 of the 
n = 0 terms. 

Consider now the presence of an additional small-signal voltage 
across the junction, with \v\ •« \vj\. The current through the diode is now 
given by 

This equation can be expanded in a Taylor series about Vj, the dyn3 1" 
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operating point; thus 

dQ(vj) 
ir + i-IAt*j-l) + dt 

d IdQ(Vj) ) 

dt dv, + 

d 

dt 

The current i is given by 
dC, \ dv 

i = \yl„e^ + -£\v + CJ(VJ)~ (12.28) 

This is a linear differential equation of first order with time-dependent 
coefficients. Under small RF signal conditions the diode behaves as a 
time-varying linear circuit element and superposition holds for the RF 
signal. 

If an RF signal at frequency w, is applied to the circuit, the time-vary
ing diode-operating characteristics will cause currents and voltages at all the 
frequencies co1 + nio0, n = 0, ± 1, + 2 , . . . , to be generated. Hence ix and 
y, will have the expansions 

;l " - * ,i = - X 

There are complex-conjugate terms at -w, . The term ylse
yv' = y(id + Is) 

= yid since ls is very small. Thus yIse
y"-> can be replaced by yid. Each 

term y/„ has the dimensions of a conductance and will be called g„, that is, 
yln °° Sn- From the basic equation describing the diode small-signal be
havior 

x 
I — Y i ei<«i+**»«M 

n " —« 

+ L Cs £ vJ(o}l + n<o0)e^W«'-"">' (12.29) 
s — - x n= — x 

The harmonic terms on each side of this equation must be equal (principle 
of harmonic balancing); so upon putting w, + (s + n)io0 = w, + mwp, where 
m = s + n, we can write 

q - - o r 

= £ [*«-„ +./(«i +™«o)C m _J y n (12.30) 
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In matrix form we get 

[»»] = [Yam][vm] (12.31) 

where Ynm = gn m +j(<o1 + nu0)Cn_,n. The [Ynm] matrix describes the 
mixing action of the diode. It relates the harmonic amplitudes of the Rp 
signal current through the diode to the harmonic amplitudes of the Rp 
signal voltage across the diode junction. Each harmonic current i ej( 

has a constraint imposed on it by the external circuit (embedding network) 
in that the voltage around any closed loop, including the diode, must sum to 
zero(Kirchho£f s law) at each frequency OJ1 + nw0 . These circuit constraints 
will be given later. 

In order to determine the elements in the mixer conversion matrix 
[Y„m], it is necessary to know the function that describes the junction 
capacitance CJ(VJ) in terms of the junction voltage. The solutions for iT, j 
ic, and Vj are constrained by circuit relations imposed by the embedding 
network. The Thevenin equivalent circuit of the mixer for dc currents is 
shown in Fig. 12.30b. At w = 0 we must have 

VB = I0(R(I + RS) + V0 (12.32a) 

At the local-oscillator frequency, we have 

•j =ITiZ(wu) + V, (12.326) 

^ = IT_XZ( - o , 0 ) + V.x = IfcZ*(«»o) + v* (12.32c) 

At all other harmonics of the local-oscillator frequency 

0 = ITnZ(nco0) + Vn (12.32d) 

These equations along with the known function C,(y,) and the ideal diode 
equation must be solved in order to find the current amplitudes /„ , the 
voltage amplitudes V„, and the capacitance elements C„. Numerical meth
ods are required because of the nonlinear- behavior of the diode. 

After the elements of the mixer conversion matrix have been found, we 
can solve the small RF signal problem by solving a linear network problem-
The embedding network can be replaced by a Norton equivalent network a 
each frequency wl + mcon as shown in Fig. 12.31. The RF signal source can 
be chosen as Ieoe

j"'>'. The circuit equation at the frequency w, is 

/ V" • ,- ^ + y v „ (12.33a) 
Z(ft»!) Z(t»x) m=_x 

At the frequency <D1 + mo0 the circuit equation is 

v„ L Ynmvm = 0 
Z(iov + nw0) 

At the frequency w, + nw0 the current through the impedance Z(o»i 

(12.336) 

,1 + no>o) 
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FIGURE 12.31 
Equivalent circuit for a mixer for linear 
RF signal response. 

is given by the first t e rm on t h e left-hand side in (12.336). The c u r r e n t in is 
given by the second t e r m in (12.336). T h e equat ion s t a tes t h a t t h e s u m of 
these two c u r r e n t s m u s t be zero. 

In principle, t he solution of t h e mixer problem using ha rmonic balanc
ing is s t ra ight forward. In practice, it is a complex problem t h a t r equ i res 
numerical evaluat ion us ing a compute r p rogram. Space l imitat ions do not 
allow us to develop t h e method in g rea t e r detail . However, some of t h e 
references given at t h e end of th i s chapte r provide more details . 

12.1. The three-port scattering-matrix parameters are given by (12.10). Verify that 
the sum of the elements in any row or column equals one. 

12.2. In a transistor a series impedance producing a reflection coefficient F is 
connected in the common lead. Show that the equivalent two-port network 
scattering-matrix parameters are given by (12.11) upon replacing S33 + 1 by 
•S33 - T . 

12.3. For the unstable bipolar transistor in Example 12.2, find the smallest series 
resistance to be added in the common emitter lead to obtain an absolutely 
stable two-port network. Use the computer program TRIPORT. 
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12.4. Design an oscillator following the procedure described in Example fj 
assume that [*, = 0.9/1225°. For this design it will be necessary to desienUt 

matching network that will transform a 50-il input termination into a sou a 

impedance at the base that corresponds to the chosen value of r . 

12.5. Redesign the oscillator in Example 12.3 using a resonator coupling with 
n2 = 2 / 7 . Specify the lengths of all transmission lines used in the oscillato 
circuit. 

12.6. Design a 10-GHz common gate oscillator using a GaAs MESFET having the 
following scattering-matrix parameters: 

Su = 1.1/1160= 

S2 , = 2.7/1 - 62° 

S , , = 0.16^130° 

S 2 2 = 1.4.1 - 57° 

Use a pure reactive termination for the input (source terminal) and a circuit 
topology similar to that in Fig. 12.17. The parameters of the stability circles 
can be found by using the MICROAMP program (arbitrary values for T and 
noise resistance can be entered. Arbitrary gain circles can also be chosen 
since this information is not used). The output impedance for the chosen 
value of r, can be found using the TWOPORT program but the scattering-
matrix parameters must be entered in rectangular coordinate form (real and 
imaginary parts). 

12.7. Design an 8-GHz MESFET oscillator similar to that in Example 12.3 using a 
device with the following common source scattering-matrix parameters: 

S , , = 0.25^8° 

S«, = 3.5/11680 

S 1 2 = 0.11^145° 

S 2 2 = 0.43/1 - 60° 

This device is absolutely stable so a series reactance must be connected into 
the common source lead. Choose this reactance to obtain a value for the 
stability parameter K that is less than 0.6. 

12.8. For the oscillator in Fig. 12.19 the dc gate voltage is applied through a 
high-impedance line A/4 long. The feed line is connected at a point where 
Zm = Rm. Find the distance from the load end at which the feed line should 
be connected. 

12.9. Show that a term such as V^cos3 w,/ has signal components at the two 
frequencies o>, and 3o>lt while V4 cos4 u,t has components at the frequencies 
0, 2<t>,, and 4<u,. 

12.10. Show that a term such as V,2V2
2 cos2 w^ cos2 ui.J has signal components at 

oi = 0, 2a),, 2<o2,
 a n d 2(<o, ± a>2). 

12.11. Find all of the frequencies generated from the term multiplied by aA H> 
(12.18). 

12.12. When a3 |V,F |3 « a2|V1F|, show that, by using (12.20) to evaluate the term 
- fa3 |V,F |2 in the expression for the diode current, in place of (12.20) the 
input voltage is given by (12.22). 2 

12.13. When (12.19) with terms up to a2 is used to evaluate ily and v\fl and Vffv 
show that the term -3a.,((;?, I F l t I F 2 i- v2

W2v, 
bution to the intermodulation component of the diode current in 

) results hVthe following contra 
the If 
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APPENDIX 

I 
USEFUL RELATIONS 
FROM VECTOR ANALYSIS 

1.1 V E C T O R A L G E B R A 

Let vectors A and B be expressed as components along unit vectors a,, a2, a3 

in a right-hand orthogonal coordinate system. Then 

A ± B = (A1±Bl)a1 + ( A 2 ± B 2 ) a 2 + ( A 3 ± B 3 ) a 3 

A • B = |A| IBicos e = A1B1 + A.2B2 + A3B3 

where 0 is the angle between A and B. 

A X B = a,( A.,B3 - A3B2) + a2( A3Bt - AtB3) 

+ a 3 ( A 1 B 2 -A2BX) 

| A x B i = |A| |B|sinfl 

A - B X C = A X B - C = C X A - B 

A x B = - B X A 

A X (B X C) = (A • C)B - (A • B)C 

(1.1) 

(1.2) 

(I.3o) 

(1.36) 

(1.4) 

(1.5) 

(1.6) 

876 
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FIGURE 1.1 
Rectangular coordinates. 

1.2 VECTOR OPERATIONS IN COMMON 
COORDINATE SYSTEMS 

Rectangular Coordinates 
d<$> d<& < ? * 

V<t> = ax-— + a . ,— + a,-r— 
dx - dy z dz 

M , 3A¥ AA. 
divA = V • A = —- + —- •+-

dx dy dz 

curl A = V X A == a, + a, 
<?2 fa7 

<?2<t> < ? 2 * a 2 * 
v2* = — s + —^ + 

dx- Sy2 dz' 

V2A = a,V2A, + avV2Av + a,V2Az 

C y l i n d r i c a l C o o r d i n a t e s 
d(t> 

V<l> = a r — 
rdr 

d$ 

l a 
V - A = - — ( r A r ) + 

r c'r 

1 a* 

r d(t> 
l M . aA. 

*••»"£ 

MY 

+ 

7*A-^7« 

1 a 
V** = —— r — 

a* 

(1.7) 

(1.8) 

3y ) 

(1-9) 

(1.10) 

( M l ) 

(1.12) 

(1.13) 

l d ( r A . ) 1 M r 

r â > e>z 

" * 7 J + M V " *r/+**[r" 0T ' r d,b 
(1.14) 

1 «92* a2<P 

V2A = r r - A - vx rx A (i.i6) 
Note that V2A # a,.V2Ar + a,,, V2Arf, + a zV2A e since V 2 a r Ar * a r V

2 A r , 
etc., because the orientation of the unit vectors a r , a,,, varies with the 
coordinates r,(}>. 
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.•v.* 

FIGURE 1.2 
Cylindrical coordinates. 

S p h e r i c a l C o o r d i n a t e s 

dQ> 1 d<P 
V* = a , — + a f l -

5<t> 

Sr " r dO r s in 6 d<t> 

1 d „ 

r* dr 

1 d 
— (sin 9 A„) 

9A.< 

V X A 
r sin 0 

a 

r s in 0 dd 

dA 

r s in 0 d<f> 

+ 
** 

— ( A , s in0) -

5 M . 
— (rA 9) 
dr( e> dB 

(1.17) 

(1.18) 

1 dAr d 
1 (rA \ 

s i n 0 d({> drK *' 

1 ('J / a * \ 
V2<1> = rl— + — 

r2 dr\ dr r 2 sin 0 38 

V2A = VV • A - V X V X A 

1 3 ( d<t> \ 1 
— s i n © — I + 

do r2sin20 dtf 

(1.19) 

(1.20) 

(1.21) 

FIGURE 1.3 
Spherical coordinates. 
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3 VECTOR IDENTITIES 

V($(A) =<AV4> + <t>V</' (1.22) 

V-(^A) = A « V^ + tfrV-A (1.23) 

V - ( A x B ) = (VX A) -B - (V XB) • A (1.24) 

V X (e/<A) = (Vtfi) X A + (AV X A (1.25) 

V x (A x B) = AV • B - BV • A + (B • V)A - (A • V)B (1.26) 

V(A • B) = (A • V)B + (B • V)A 

+ A x (V x B) + B x (V x A) (1.27) 

V • Y<S> = V2* (1.28) 

V - V x A = 0 (1.29) 

V X V* = 0 (1.30) 

V X V X A = VV • A - V2A (1.31) 

If A and 4> are continuous functions with at least piecewise continuous 
first derivatives in V and on S (or on S and the contour C bounding S), 

( V<P dV = 6<t> dS (1.32) Jv Ts 

(V • AdV = (f)A- dS (divergence theorem) (1.33) Jv Ts 

[VxAdV = (f>nXAdS dS = ndS (1.34) Jv Ts 

jnxVQdS = <f)Q>d\ (1.35) 

fVxA-dS = (f)A-d\ (Stokes' theorem) (1.36) 

F I G U R E 1.4 
Surface S bounded by contour C. 
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G R E E N ' S I D E N T I T I E S 

If A, B, <P, and i/> are continuous with piecewise continuous first derivatives 

J(V<D • V0 + <AV2<D)cfV = c£ l//VcD-dS 
Jv Js 

which is Green's first identity. Green's second identity is 

J ( ^ V 2 < i > - cDV2</<)dV = (J>(iAV<D - <J>V./0 • dS 

In two dimensions (1.37) becomes 

/' (V,* • V,i/» + >/, V,24>) dS = 6il>Vt<t>-Tdl 
Js rc 

(1.37) 

(1-38) 

(1.39) 

where V, is the del operator in two dimensions and T is a unit vector normal 
to C and in the plane of S. The two-dimensional form of (1.38) is similar. 

The vector forms of Green's identities are 

fv - ( A x V x B ) d V = f [ ( V X A ) -(V X B ) - A- Vx V X B] dV 
•V Jv 

= $ A X (V X B ) - d S (1.40) 

/ " ( B - V x V x A - A - V x V x B ) d V 
Jv 

= (£[AX (VXB) - B x ( V x A ) ] -dS (1.41) 



APPENDIX 

IT 
BESSEL FUNCTIONS 

1 ORDINARY BESSEL FUNCTIONS 

The wave equation and Helmholtz's and Laplace's equations are separable 
in cylindrical coordinates. The differential equation describing the radial 
dependence of the solution is BesseVs differential equation. BesseVs equa
tion is 

1 d df / , n •2 

r dr dr \ r~ J 

When k2 is real and positive, the two independent solutions of Bessel's 
equation are called Bessei functions of the first and second kind, denoted by 
J„(kr) and Yjkr), respectively. These solutions may be expressed as power 
series as follows: 

JAkr). f '-""<^>;;-
„~ 0 m\(n+m)\ 

Yn(kr) = 
2 kr\ 1 * - * (n-m-ni! 2 \» 

+ In — \Jn(kr) - - E : T" 
2 } ^„fTn m\ \kr) -

_\_ £ (-l)m(kr/2)"'2m 

TT„, = 0 m\(n + m)\ 

1 1 1 1 1 
xi + - + - + - - - + — + i + - + -r + --- + 2 3 m 2 3 n + m I 

(II 3) 

881 
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where y = 0.5772 is Euler's constant. The subscript n denotes the order of 
the function and is usually an integer in physical problems. The Yn fum. 
tions become infinite at r = 0. For large values of kr, the Bessei functions 
approach damped sinusoids: 

lim«/„(Ar) = 

lim Yn{kr) = 

z -rr nrr 
—— cos kr — 
irkr 4 2 

I IT nn 
—— sin kr — 
irkr , 4 2 

(II -4a) 

(11.46) 

A few of the lowest-order Bessei functions are plotted in Fig. II. 1. 
To represent radially propagating waves, linear combinations of the J 

and T„ are formed, called Hankel functions of the first and second kind. 
Thus the Hankel function of the first kind is 

Wn(kr)=Jn(kr)+jYn(kr) 

and the Hankel function of the second kind is given by 

H^kr)=Jn(kr)-jYn(kr) 

(11.5a) 

(11.56) 

1.0 
'Vo 

0.5 

0 

Y-\ 

& f, ~2x * ^ > 

0.5 

0 
z \ V & y* v»y -

0.5 -
^ / ~ 

0.5 

0 

r° Ys 0.5 

0 

/ / 
\ \ 6 A 8 / /WV 

-0.5 

/ 
-1.0 I / / F I G U R E H.1 

Ordinary Bessei functions. 
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For large values of kr, the Hankel functions are given by the following 
expressions: 

- j (Ar -7 r /4 -mr /2 ) 

(11.6a) 

(11.66) 

Some useful relations that hold for any of the Bessel functions Jn, Yn, 
or Hn are given below, where Z„ denotes J „ , Y„, or Hn. 

xZ;,(x) =nZn(x) -xZntl(x) = -nZn(x) + xZ„_,(x) (II.7) 

where the prime denotes differentiation with respect to x. 

f Zn(kx)Zn(lx)xdx = ^—^[kZa(lx)Zn+1(kx) - lZn(kx)Z„.1(lx)} 

(II.8) 

fzl(kx)xdx 
*-2 

Z'n<(kx) + \1- 2 V 2 k2X 
\ZZ(kx) (II.9) 

2 MODIFIED BESSEL FUNCTIONS 

When A2 is negative, k is pure imaginary. If we let k = jh, the solutions are 
given by JJjhr) and Yn(jhr). However, for convenience, new modified 
Bessel functions are introduced and denoted by I„(hr) and K„(hr). The 
modified Bessel function of the first kind is I„(hr), and is given by 

In(hr) =j'"Jn(jhr) =j"Jn( -jhr) (11.10) 

and the modified Bessel function of the second kind is given by 

Kj.hr) = \jnil[Jn(jhr) +jYn(jhr)\ = ^J^B&kr) (H.11) 

For large values of hr we have 

Uhr)~ 

Kn(hr) ~ 

•J2irhr 

77 

2hr 
,-hr 

(II .12a) 

(11.126) 

The first few modified Bessel functions are plotted in Fig. II.2. 

Kj.hr
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FIGURE II.2 
Modified Bessel functions. 

5 x 

A number of useful relations that hold for the modified Bessel func
tions are given: 

xl'n(x) = nl„(x) + xln+l(x) = -nln(x) + * /„_, (*) (II.13a) 

Io(x)=I1(x) (11.136) 

fx-"In + 1(x)dx=x-"In(x) 

fx"In_1(x)dx = x"In(x) 

(II.14o) 

(11.146) 

When n > - 1, we have 

f\(kx)In(lx)xdx = —^[kln(lx)ln^(kx) - lln{kx)ln + l(lx)} 

(11.15) 

ffZ(kx)xdx= -X- rn\kx)-\\ + 2 „ 2 k2X 
n(kx) (II.16) 

xK'n(x) = nRn(x) -xKm+l(x) = -nK„(x) - xKn.x(*) 
(II. 17a) 

K'0(x) = -K^x) 

fx-"Kr^l(x)dx= -x-"Kn(x) 

fx"Kn_l(x)dx= -x"Kn(x) 

(11.176) 

(II.18a) 

(11.186) 
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When Re(k + 1) > 0, we have 

iy,Akx)K,,(,lx)xdx = -^-j-2[kKn(lx)Kn^kx) - lK„(kx)Kn^(lx)} 

(11.19) 

For Re k > 0 

x2 

j^xK?,(kx)dx--
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K'n<{x)-\1 + 
kh 

K*(kx) (11.20) 



APPENDIX 

in 
CONFORMAL MAPPING 
TECHNIQUES 

The determination of the distributed capacitance and inductance of a trans
mission line requires a solution of Laplace's equation in two dimensions. 
For transmission-line structures like those used in many planar transmis
sion lines, it is difficult to construct solutions for Laplace's equation if one 
used the system of coordinates that is the natural one for describing the 
transmission-line configuration. A powerful method for solving two-dimen
sional potential problems is to use conformal mapping to map the bound
aries into a simpler configuration for which solutions to Laplace's equation 
are easily found. This conformal mapping technique is equivalent to a 
coordinate transformation and its application to planar transmission fines is 
described in this appendix. 

n i . l C O N F O R M A L M A P P I N G 

Let £ = cr + jri be a complex variable and consider the function 

sin I = sm( a + jr\) = sin cr cosh rj + / cos cr sinh r\ 

This function is periodic along the real a axis with a period of 2ir. T» e 

function takes on all its possible values in a strip extending from - i r /2 ™ 
i r /2 along cr as shown in Fig. III . l . Along the contour labeled A-B-C-" 
shown in the figure, the sin £ function goes from - °° to — 1 and then to 
and finally to + °=. If we let a new complex variable W be defined by 

W= u+jv = sin r (Ifl.l) 

886 



CONFORMAL MAPPING TECHNIQUES 8 8 7 

FIGURE m . l 
The sin f function. 

then the chosen contour in the £ plane maps into the real axis in the W 
plane as shown in Fig. III.2. All values of £ in the cross-hatched region 
shown in Fig. III. 1 map into the upper half of the W plane. 

In the W plane, which we will regard as our real physical space, let a 
total charge Q per meter be placed on each side of the strip extending from 
u = - 1 to u = 1. Furthermore, let us regard the strip as a conducting strip 
at constant potential. By symmetry the two boundaries -» < u < -1 and 
1 < u < o= are magnetic walls on which dfy/dv = 0. We can find the solution 
for Laplace's equation 

o + K = 0 
du2 dv2 

/v 

- 1 

FIGURE III.2 
The mapping W = sin f. 

-u 
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in the W plane by solving the potential problem in the £ plane. In the W 
plane the potential gradient is given by 

d<t> 
V<t> = — a , 

du 

If we regard u and v as rectangular coordinates, then a and 
represent new curvilinear coordinates. In the o-, 17 coordinate system 
Laplace's equation has the form 

2 (I h „ <9<I> d h„ 3* 

da ha da d-q h d-q 
= 0 

where kv and hIT are the metric coefficients. For a coordinate transforma
tion that is obtained through a conformal mapping, the metric coefficients 
are equal and given byt 

K = hn = 
dW 

dC 

Consequently, Laplace's equation reduces to the same form as it has in a 
rectangular coordinate system. Thus a and 77 can be treated as rectangular 
coordinates when solving for the potential field. However, the gradient of 4> 
must be evaluated using 

1 d<t> 
V * = a 

h„da " 

l d<i> 
+ — — a „ = V<1> 

hn dr, 

dC 

dW 
= Vd> 

w 
(HI.2) 

where V<t>|̂  represents the gradient in the £ plane obtained by treating a 
and 77 as rectangular coordinates. The conformal mapping of the boundary 
of a polygon in the { plane into the real axis in the W plane is called a 
Schwarz-Christoffel transformation. 

For a differential element dW along a contour in the W plane, the 
corresponding differential element along the mapped contour in the £ plane 
is d£ = (dt/dW)dW. The angle that d( makes with the real axis is the 
sum of the angles of d£/dW and dW. When the contour in the W plane is 
the real axis, the_angle of dW is zero When d£/dW has the form 
i/W - W1 / JW^'Wz, then the angle of jW - Wx is TT/2 for W < W, and 
zero for W > Wv while that for 1/ JW - W2 is -TT/2 for W < W2 and zero 
for W > W2. Hence, as W moves along the real axis, there will be a change 
of - T T / 2 in the angle of df as W moves past the point W, and a change of 
TT/2 when W moves past the point W2. This causes the contour in the I 
plane to change direction in a step-like fashion by + 90°. This property & 

m. E. Collin, "Field Theory of Guided Waves," 2nd ed., Chap. 4. IEEE Press, Pisacataway. 
N.J.. 1991. 
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used to pick the appropriate mapping functions that are used in this 
appendix. 

We will use the above results to find the charge distribution along the 
conducting strip in the W plane. In the £ plane the presence of magnetic 
walls along a = ±TT/2, 17 > 0 requires that the electric field be uniform and 
in the r\ direction. Hence the charge is uniformly distributed on the lower 
boundary -IT/2 < a < i r /2 with density Q/~. Thus the potential gradient 
is given by 

<9* Q 
~£°J~ = — 

nri TT 

so V4>|, = -Q/Tre0. From (III.2) we find that in the W plane 

dt, 

Upon using dW/d£ = cos ( = (1 - sin2 Ol/2 = (1 - W 2 ) 1 / 2 for W = u, we 
obtain 

Q 
ps = , 2 ( in-3) 

TTVI - u2 

for the charge density on one side of an isolated conducting strip two units 
wide and located in air or completely surrounded by dielectric. This example 
clearly shows the power of the conformal mapping method of solving 
potential problems. However, it does depend on our ability to find a map
ping function that will transform the boundaries of the physical problem 
into a configuration for which the solution to Laplace's equation is easily 
obtained. In the transformed plane the new coordinates may be treated as 
rectangular coordinates provided we relate the gradients in the two planes 
by the relation (III.2). Furthermore, the capacitance between conductors 
remains invariant under a conformal mapping, so that it may be found for 
the transformed configuration. 

2 E L L I P T I C S I N E F U N C T I O N 

For the function W = sin <T, we have dW/d£ = cos [ = (1 - W2)W2, so 

dt 1 
—- = . (III.4) 

dw /T^w^ 
which gives the inverse function 

rw dW 
Z = sm-'W=\ , (III.5) 

The period along the a axis is obtained from the integral from 0 to 1 which 
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gives one quarter of the period, i.e., 

2 
= L /I 

dW 

W 
(III.6) 

A function that is much more useful in the solution of a number of 
planar-transmission-line problems is a function that is periodic along both 
the <r and -q axis in the complex C plane because it would take on all of its 
possible values inside a rectangle. A doubly periodic function is the elliptic 
sine function, which is expressed as 

W=sn(i,k) (IH.7) 

The parameter k is called the modulus and determines the two periods. The 
elliptic sine function has a period of 4K along u and 2K' along 77. The 
inverse function is given by 

fw dW 
{ = sn-1(W,k) = [ 

'0 7 ( 1 - W z ) ( l -k2W2) 
( in .8 ) 

The two quantities K and K' are given by 

*-C-r " 
Jo V U 

K + 

or * " L 

yj(l-W2)(l-k2W2) 

i/k dW 

0 / ( l - W 2 ) ( l - k2W2) 

i/k dW 

(III .9a) 

(111.96) 

(111.9c) 
'1 y/(W2-l)(l-k2W2) 

By using the substitution W = sin 8, the expression for K becomes 

K = K(k)= P' ao 1 IT 

. =F\k,-
l/l -k2sin20 \ 2 

which is the complete elliptic integral of the first kind. In the expression for 
K' we can let k\W2 - 1) = (1 - &2)cos2 0, which reduces the expression to 
the form 

K> - K>(k) = f / 2 , ^ 2 = Flk>, J) = K(k') (ffl.ll) 
•'o V l - f c ' 2 s i n 2 0 * 2 / 

where the complementary modulus k' = Vl - k2. From (III.8) and (III.9) 
we also see that 

s n ( 0 , * ) = 0 (111.120) 

sn(K,k) = l (ffl.126) 

sn(K+jK',k) = ^ (ffl.12^) 

ffl.ll
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A further useful value is 

sn(jK',k) = ±00 (III .12d) 

The elliptic sine function is a generalization of the sine function and reduces 
to the latter when k = 0. 

Two useful approximations for the K and K' parameters for the cases 
k •« 1 and k' <K 1 are 

t f ( A ) = * ' ( * ' ) = - | l + T + - * < k < 0.4 (III .13a) 

/ k'2 9 , \ 4 
/T(*') = * ( * ) = 1 + - + - H l n -

kl2 21 
k* 

4 168 
k > 0.65 (III.136) 

Note that k and &' can be interchanged. The ratio of K(k)/K'(k) = 
K(k)/K(k') can be evaluated to an accuracy of one part in 105 using the 
following expression:! 

K 1 ( 1 + Jk\ 
— = - I n 2-
K1

 IT l-ilk 

— I l l -S- 7= 

- i - VF 

- i 

0.7 < k s 1 

0 < A < 0 . 7 (III.13c) 

For intermediate values of k and k\ the following formula can be used: 

(III. 13d) 
2 [1 - k 

K1 = K(k') = - i f 

where k and k' can be interchanged. When k' is less than 0.707, then 
(1 - /e)/(l + k) is always less than 0.172 and (III.13a) can be applied. 
When k' is greater than 0.707, we can use (III.136). 

Consider now the rectangle shown in the t plane in Fig. III.3. Also 
shown are the values of sn(<T, k) at the points labeled A, B, C, D, E, F. The 
mapping W = sn(£, k) maps the rectangle into the real W axis and all 
interior values into the upper half of the W plane. If the segments AB, 
CDE, and FG are conducting metal boundaries, then the configuration in 
the W plane is a coplanar transmission line in air. Its distributed capaci
tance is twice that between the plates CDE and BAF for the ideal parallel-

t T . S. Gradshteyn and T. M. Ryzhik, "Table of Integrals, Series, and Products," Academic 
Press, Inc.. New York, 1965, p. 925. formula 8.198 and using q = expf -trK'/K). 
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IV 

- i X 

1 )K 1 
k B A G F k 

- 1 C D E 1 

— < K 
FIGURE m.3 
The sn(f, k> function. 

plate capacitor in the f plane and hence is given by 

C 
2K K 

2e0— = 4 c 0 - (111.14) 

The relevant parameter for the coplanar line is the ratio of the width of the 
center strip to the spacing between the two ground planes which is given by 
2/2ui = k, the modulus of the elliptic sine function. Note that in the f 
plane the boundaries BC and EF are magnetic walls so there is no fringing 
capacitance. 

If we choose the segments BC and EF to be conducting strips, we 
obtain a coplanar strip transmission line. Its distributed capacitance is that 
associated with the ideal parallel-plate capacitor with the boundary BC at 
potential V and EF at potential - V; thus 

K' 
C - 2 e „ — = Or 2K 

K' 
(111.15) 

When we let k tend toward zero, the points ± u, move out to infinity 
and we obtain a slot line. However, we cannot let k = 0 because the 
capacitance between two semiinfinite planes separated by a slot becomes 
infinite. 

m . 3 C A P A C I T A N C E B E T W E E N TWO P A R A L L E L 
S T R I P S 

We will now consider the problem of two parallel strips in air as shown in 
Fig. III.5. The plate separation is 1H and the plates have a width 2w. The 
following mapping will map the boundary shown by the dashed fine in f 'g-
III.5 into the real axis in the W plane shown in Fig. III.4: 

= / 
(1 - k*W*) 

Jo / ( l - W 2 ) ( l -k2W2) 

where k0 = l / « 0 and k = l / u , . When Z = H on the interior side of the 
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/" 

—- U 

- 1 

FIGURE m . 4 
The mapping W = sn(f,ft). 

right-hand strip, W = 1; so 

u0 y - O , 

i-klw2 

vTi -w2)(i -kzw2) 

At the outer edge of this plate, Z = H + jw, and we make this correspond 
the unknown point u „ lying between 1 and u,; thus 

(III . 17a) 

to 

H 
1 -k2W2 

= dW (III.176) 
(1 - W z ) ( l -k2W2) 

At the point Z <= H on the outer side of the strip, we set W = «, ; thus 

H 
1 - k2W2 

= / _ dW (III.17c) 
Jo / ( l -W2)(l - k2W2) 

The distributed capacitance between the parallel strips is equal to that for 

iy 

_ "J 

/w-

Lc  

n 

- H 

F IGURE III.5 
Two parallel strips and the boundary to be mapped. 
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the coplanar strip line that results from the mapping and is given hv 
(111,15). y 

For the parallel strips the capacitance depends only on the ratio w/H 
When we compare (III.176) and (III. 17c), we see that we require 

1 -k2W2 

y/{l - W z ) ( l -k2W2) 
jw = - f ' , = dW 

A similar comparison of (IV.17a) and ("IV. 176) shows that 

, « . 1 - k2W2 

jw = f • dW 
h / ( i - W 2 ) ( l -k2W2) 

By combining these two expressions, we obtain 

. 8 , ' l~k2W2 

I * ̂  W2)(l -k2W2) 
dW = 0 (III.18) 

which is the equation that will determine k0 and hence « 0 . The integral in 
(III.18) can be separated into two integi'als, and by using (111.9c) to replace 
the integral that goes from 0 to 1, we find that (111.18) can be expressed in 
the form 

l / ( W 2 - l)(l-k2W2) 
K ' = k2fL/K , ^ d W 

We can express this integral in terms of complete elliptic integrals. How
ever, in practice it is more expedient to evaluate the integral numerically. 
By using the substitution kHW2 - 1) = (1 - fc2)cos2 0 as before we obtain 

T - fejf*/Vl-*W*# = fMk', j) (IH.19) 

where E is the complete elliptic integral of the second kind. 
From the above we get 

k2K' 20) 

0 E(k',?r/2) 

The expression for H given by (III. 17a) can be reduced to the form (we use 
W= sinfl) 

/ 2 sin2 6 
H = K-k%r-l L2 . 2 de 

% V l - 6 2 s i n 2 0 
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which gives 

k2rv"2i ' v" 2 H = K + ^ \ E \ k , - \ - F \ k , -

K'[E(k,TT/2) - K] +KE(k',Tr/2) 

E(k',ir/2) 

For convenience, the complete elliptic integrals of the second kind will be 
written in the compact form 

EJ*,^) =E(k) =E E ( * ' . ? ) -*(**) =E\k) = £' 

We now use E(k', TT/2) = E'(k, TT/2) and the following identity: 

KE' + K'E - J 3 T = Z 

which allows us to express H in the simpler form 

* = 2 E ( * W 2 ) - 2 ^ ( H I - 2 1 ) 

The last reduction is the expression for u; to the form 

1 r„kl(l ~ k'2siD?6) - k2 

l / l - fc'2 sin2 0 
w = TT / / cifl 

kl 
k 

where k'Q = y 1 - k\ and 

= ~E{k',8) -F(k',6) (111.22) 

ffc/c ft 

0 = cos > - - (111.23) 
k k0 

This equation gives w in terms of incomplete elliptic integrals. Values for 
the complete and incomplete elliptic integrals are available in the book by 
Jahnke and Emde.t 

The easiest way to use the above formulas is to choose a value for k, 
solve (111.20) for k0, (111.21) for H, and (111.22) for w. The integrals are 
readily evaluated numerically. By this means values of w/H and the 
capacitance C given by (III.15) can be compiled as a function of k. The 
capacitance between a strip of width 2w and spaced a distance H above a 
ground plane is twice as large as that given by (III.15). Table III.l gives 

*E. Jahnke and F. Emde, "Tables of Functions," Dover Publications. Inc. New York, 1945. 
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TABLE I I I . ] 
C a p a c i t a n c e b e t w e e n a s t r i p of w id th 2u> 
at a h e i g h t H above a g round p l a n e 

2 i c C 2w C 

H «o H «o 

0.05 1.238 1 2.981 
0.1 1.436 1.5 3.621 
0.2 1.703 2 4.232 
0.3 1.912 2.5 4.822 
0.4 2.094 3 5.399 
0.5 2.26 4 6.529 
0.6 2.415 6 7.63 
0.7 2.563 6 8.72 
0.8 2.706 8 10.86 
0.9 2.845 10 12.98 

computed values of C/eQ as a function of 2w/H. The integrals were 
evaluated numerically using Simpson's quadrature formula. 

HI.4 S T R I P T R A N S M I S S I O N L I N E 

The strip transmission line is shown in Fig. III.6. The boundary A-B-C-D-E 
is mapped into the real axis in the W plane by means of the mapping 
function 

W = sin Z = sin x cosh y + j cos x sinh y (111.24) 

In the Z plane H is IT units, so we make the point B be jirw/H - ir/2 so 
as to maintain the same width-to-spacing ratio w/H as in the physical strip 
line. The real axis in the W plane is mapped into a rectangle in the L, plane, 
shown in Fig. III.6d, by the mapping function 

W= 1 + 2sn ( f ,A) 

The point B corresponds to W = -cosh IT w/H and to sn(£, k) = 
sn(-K +jK', k) = —1/k. Consequently, we must have 

2 

J'1 cosh 
7TIV 

H 
rcw 

which gives 

k = 
cosh TTW ,/2H 

(111.25) 

In the C plane the capacitance is given by eQK'/K and represents one-
quarter of the capacitance of the strip-line configuration. Hence for the strip 
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FIGURE III.6 
The strip transmission line and its mapping 
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line 

C = 4t 
K'(k) 

The corresponding characteristic impedance is 

* = ^ = mr-K(k) 

K'(k) 

(III .26) 

(HI .27) 

m . 5 C O N D U C T O R L O S S 

Since the current density and charge density are related by the continuity 
equation [see (3.1386)], the current density has the same functional form as 
the charge density. If we know the current density J , , then the power loss is 
given by 

where Rm is the skin-effect surface resistance and the integral is taken 
around all the contours along the conductor surfaces. If we have infinitely 
thin conductors with edges, then the current density becomes infinite at the 
edge inversely proportional to the square root of the distance from the edge. 
For example, for an isolated strip of width 2w the current density, accord
ing to (III.3), would be 

2-rrwy/l - x2/w2 

on each side of the strip. This current density is too singular to allow a finite 
value for the power loss to be evaluated. Consequently, it will be necessary 
to take into account the finite thickness of the conductors. 

The simplest case to consider is that of an isolated strip of width 2w 
and thickness 2t as shown in Fig. III.7. The labeled boundary in the Z 
plane can be mapped into the real u axis in the W plane using 

dZ 

d~W 
= A 

W2 

1 -k2W2 

which upon integration gives 

Z = A(W 
l - W-

dW+jt 

(111.28) 

(III.29) 
1 - k2W2 

The constant jt is added since W = 0 is made to correspond to Z = jt. When 
W = 1 we require Z = w + jt and when W = 1/k we want Z =* u>- These 
two conditions provide a solution for A and the modulus k. By following a 



CONFORMAL MAPPING TECHNIQUES 8 9 9 

iy 

c E 
2.1 F 

C 
L-

- 1 

iv 

t 
_l 

1 1 

G 

FIGURE III.7 
An isolated conducting strip with finite thickness and the mapping of one-half of the strip 
boundary into the W plane. 

procedure similar to that for the parallel strips, we find that 

wk2 

A = 
E(k) -k,2K(k) 

t E(k') - kzK(k') 

w 

(III .30a) 

(III.306) 
E(k) - k,2K(k) 

In the W plane the conducting strip extends from - 1/k to 1/k along 
u. Since it is an isolated infinitely thin strip, the current density in the W 
plane is of the form 

A 
J" = A - k2u2 

where the factor A has been inserted arbitrarily. In the Z plane the current 
density is proportional to 

dW 
V4>lz = V * | w dZ 
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In order to find Jt{x), we need to express u as a function of x, which 
is not easily accomplished. Fortunately, we will not need this functional 
relationship. 

Let us consider the integration of (.111.28) very close to the 90° corner 
where Z = w +jt, of the conducting strip. When x = w, u = 1; hence 

* v - ' i , 

1-u2 

1 - k2u2 du 

For u very close to one, we can use the approximations 1 — «2 = (1 + a) 
(1 - u) => 211 - u) and 1 - k2u2 = 1 - k2. We then obtain 

w - x = r^Al!^du = 2\T^A(l-u)3/2 

which gives 

J,= 
( 3 A ) V 3 2 " 2 / 3 

v^/T^T £l~**)l/V-*)1/a (III .31) 

This fundamental result shows that close to a 90° corner the current 
density has a weaker singularity, namely, it is inversely proportional to the 
cube root of the distance from the corner. This current density, when 
squared, can be integrated to give a finite result for the power loss. The edge 
behavior is a local field phenomenon, so that the result obtained is true near 
any 90° corner. 

At some distance away from the corner, the expression [(1 — u )/ 
(1 - k2u2)]1/2 can be approximated by unity since k is close to one for a 
thin strip, i.e., for t/w small. Thus we have 

/ dx ~ A du 
Jo -'o 

or x = Au. Hence away from the corner the current density is given by 

1 1 1 
J.= 

v'l -u2 yT- (x/A)2 \A ~ (x/wY 

since A ~ w then t/w is small. We can summarize the above result with 
the statement that for a thin conducting strip the current density over most 
of the strip is the same as for an infinitely thin strip, but as the corner is 
approached the one over the square root of the distance from the cornf^ 
behavior changes over to a less singular behavior going as one over the cu 
root of the distance from the corner. 
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For the isolated finite thickness strip, we can evaluate the power loss 
per meter by doing the integration in the W plane. Thus 

p< - 4 / „ wk 
A) II - u2\ 

dx 

du 
du 

du 
= 2R,„A . _ 

;« \f(l - u2)(l - k2u :) 

= 2RmA[K(k)+K'(k)] (111.32) 

The integral gives the loss for one quarter section, so we multiplied by a 
factor of 4 to get the total loss. The total current on the strip is given by 

\/k 
7 = 4 / 

2 IT A 

Jl-u2 

dx 

du 
du = 4Af 

i/k du 

fiT~k2u2 

(III .33) 

The integral was evaluated by using the substitution ku = sin 0. 
The series-distributed resistance R per meter for the conductor is 

defined by the relationship 

m* = p, 
From the derived expressions we obtain 

k2Rm 
R = ZA 

K + K') (111.34) 

In practice, the ratio t/w is small. For example, a board plated with 
1-oz copper has a metalization thickness of 0.036 mm; so a microstrip of 
width 1 mm will have t/w = 1/28. When t/w < 0.05 the following approxi
mations are valid since k ~ 1: 

E(k')~-\: 

TT 

* < * > - ¥ | 1 + 4 

4 
E(k) 

K(h)~ht-

By using these approximations in (III.30), we obtain 

it 
A = k2w and 

TTW 

We now find that the expression for H reduces to the simple form 

R = 
R. 

2TT2W 
In 

ATTW 
(111.35) 
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In this expression w is one-half of the strip width and t is one-half of the 
strip thickness. The part Rm/2vw is the contribution from the currents 
that flow on the two end faces of the strip. From the expression used for J 
we find that the current density at the center of the broad face where u = fj 
is unity. At the center of the end face where u = 1/k, the current density is 
k/k' = ^TTW/21 and hence is much larger. It is for this reason that there is 
a significant contribution to the power loss from the current on the end 
faces even though t is very small. 

If the conductor cross section was approximated by an ellipse with 
major axis equal to 2w and minor axis equal to 2t, it would be found that 
the series resistance is 

R = —y— In 
TT2W t 

when t/w is small. For very small values of t/w, this resistance is twice as 
large as that for a rectangular bar of width 2w and thickness 2t. The reason 
is that for the elliptical cross section the current density at the narrow ends 
is a factor w/t greater than that at the center of the broad face and thus 
exhibits a more singular behavior than that for the current at the center of 
the narrow face for a rectangular bar. 

A useful approximate way to find the series resistance of a thin 
conducting strip is to use the current density for an infinitely thin strip but 
to integrate the square of the current density up to a point a distance d 
from the edge. The distance d is chosen so that the same resistance as given 
by (III.35) is obtained. Thus for the isolated strip we use 

, u , -d dx w + x w~d 

P' = 2 f l 4T TZPOT-*«•»• l -xyw' m w-x 
2w 

* Rmw In — 

The total current on the strip is 2mv = /; so by equating I2R/2 to P, we 
obtain 

Rm 2w R = — J - In — 
217*10 d 

We now equate this expression to (III.35) and solve for d, which gives 

2t 2t 
d = 

Aire" 290.8 

In the derivation we expressed v as In e~. This method of finding the loss 
resistance was proposed by Lewin.t This method is based on the fact tha 

tL. Lewin, A Method of Avoiding the Edge Current Divergence in Perturbation Loss Calcu a-
tions, IEEE Trans., vol. MTT-32. pp. 717-719, July, 19B4. 
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the effect of finite thickness is to change the local behavior of the current 
near the edge but leaving the current density on the major portion of tht 
conducting strip relatively unchanged. 

n i . 6 C O N D U C T O R L O S S E S F O R A M I C R O S T R I P 
T R A N S M I S S I O N L I N E 

Consider a microstrip fine with a strip of width 2u>, thickness 2t, and spacec 
a distance H above a ground plane. In order to apply the rule establishec 
above, we need to know the division of the total current on the upper anc 
lower faces of the strip, which is affected by the presence of the grount 
plane. Apart from an unequal division of the total current, the density o 
current is very nearly the same as on an isolated strip. From the mappin; 
function (III.16), we find that the current density is proportional to 

dW 

dZ 
- V4»|f dW J* v*lvv dz ""* dw \i-klw2\ 

At the center of the upper face u = u, = 1 /k and at the center of the lowe 
face u = 1. Hence the ratio of the currents on the two faces is 

Jz2 II - k2/k2\ k2 - k* 

The fraction of the total current on the upper face is p, where p is given b; 

Jzi k2(l-k2) E'-k2K' 

JtX +J,2 ££(1 - k2) " (1 - k2)Kf [III.36 

where (III.20) has been used to eliminate fef. The power loss on the uppe 
face is proportional to (1 - p ) 2 . The total power loss is proportional b 
p2 + (1 - p)2 . For an isolated strip p = 1/2, so that the series resistanc 
fi, of the microstrip in the presence of the ground plane is given b, 
multiplying R by the ratio [p 2 + (1 - p ) 2 l /0 .5 ; thus 

i?, = 2 ( 2 p 2 - 2p + 1)R (111.37 

where p depends only on the ratio 2w/H and R is the same as in (III.35 
When p = 0.25 we find that Rx = 1.25 R which shows that an unequf 
division of the total current increases the resistance. 

The ground plane corresponds to the .y axis in Fig. III.5, which map 
into the u axis in the VV plane. Thus the current density will be proportion? 
to the gradient along the v axis in the W plane which is given by 

I 1 
J, a 2 , , 2 

l - ^ O ) 1+*0W 
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Let J, be chosen as 

J,= 
i + k'y 

where /0 is to be found so that the total current will equal I. The total 
current on the ground plane is given by 

= 2 / 0 / -
Jo 1 

= 2 / 0 / * 

+ k2v2 

dZ 

dW 

dv 

dv 

Jo J(l + k2v2)(l + v2) 

The integral is easily done in the g plane by using 

\dW\ 
dv = 

dC 
dv = y 'a + AV)( i + v2) d-q 

and the limits 0 to K'(k) for -q. Thus we find that / = 210K'(k). 
The power loss in the ground plane is given by 

P, = R 
2 

4K 

R„I2 

-r—— dZ 

dW 

dv 

dv 

i-f _ 
4A"2 Jo (1 + k2v2)y/{l + k2v2)(l + v2) 

The series resistance R2 of the ground plane is obtained by equating the 
power loss to 7 2 R 2 / 2 . The series resistance will depend on the absolute 
dimensions of the microstrip line. Thus we will multiply Pl by (2w/H) and 
divide by this same factor but use (111.21) for H. We thereby obtain 

R, 
Rm 

2w 

2w 1 \ f<* dv 

~H ElK'2jh (l + k2v2)J(l +k2v2)(l + v2) 

TV 2lV 

4 
(III.38) 

The normalized resistance 2wR2/Rm is a function only of the ratio 2w/H 
and thus only needs to be evaluated once. The relevant expressions for the 
loss ratio 

LR = 2(2p 2 - 2p + 1) (111.39) 

and the normalized resistance 2wR2/Rm have been evaluated numerically 
as a function of 2w/H. We have fitted simple polynomial functions to the 
resultant data, so that for application purposes the loss ratio and normal
ized resistance can be computed from the following expressions to an 
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accuracy of 2 percent or better: 

LR = 0.94 + 0.134 

2w 
" X t 2 — 

LR = 1 
2w 

< 0.5 

3 
2w 

'if- 0.0062 m 2 

2 JO/H 

2w/H + 5.8 + 0.03H/2LV 

(III . 40a] 

0.5 < — < 10 (III.406) 

0.1 < —- < 10 ( m . 4 1 ) 

2w 

~H 

2w 

This formula states that the resistance of the ground plane is that of a strip 
of width 2w + 5.8H and with a uniform current density. It is remarkable 
that this relationship holds for such a wide range of 2w/H ratios. In 
practice, surface roughness increases the resistance by 10 to 50 percent so 
an accuracy greater than a few percent in the theoretical formulas is not 
needed. 

I I I . 7 A T T E N U A T I O N F O R A C O P L A N A R L I N E 

We consider a coplanar line as shown in Fig. III.8a. The ground planes and 
center conductor have a thickness 2t. The strip width is 2a and the ground 
plane separation is 2b. The upper half of the Z plane will be mapped into 
the upper half of the W plane with the contour labeled 1-2—8 mapping into 

W 

u--\ 
V- 2a-

-U, - -r 

3 4 

- 1 - U n 

IV 

i b ) 

5 6 

* "• 

FIGURE m . 8 
Conformal mapping of the cross section of a coplanar transmission line with finite thickness 
conductors. 
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the real axis in the W plane as shown in Fig. III.86. The required mapping 
function is 

rw (l-k2W2)(l -k2W2) 
(HI .42) 

where k0 = l/u0 and kl = l / « , . The parameters A, k0, k, and kt are 
determined by requiring that the four points Z = a + jt, a, b, and b + jt 
map into the points W = « 0 , 1, 1/k, and uv These requirements lead to the 
following four equations: 

a =A(U°F{W)dW 

t=jApF(W)dW 

b = A("'F(W)dW 

t= -jA(U,F(W)dW 
h/k 

(III .43a) 

(III.436) 

(III.43c) 

(HI.43d) 

where F( W) is the integrand shown in (111.42). The real axis in the W plane 
can be mapped into the rectangle in the £ plane using (III.8). The 
boundary-value problem in the C plane is that of an ideal parallel-plate 
capacitor. Hence V<J>|{ is a constant which we set equal to one. 

The current density Jz is thus given by 

Consequently, 

J, = V<D|. 

J,dZ = 

d; 

dZ 
= dZ 

*= 
u 
dW 

dW 

dZ 

dC 

dW 

dW 

dZ 
dZ = 

dC 

dW 
dW 

The total current on the center conductor is 

d£ 7 = 4 / ; d w d w = 4 / ; 
dW 

/0 dW " 'J0 ^/(l - W 2 ) ( l -k2W*) 

The power loss on the center conductor is given by 

d( 2 dW2 dZ 
' - / \Jt\'dZ = 2RmJ-

2 

= 4K(k) 

dW 

du 

dW 
Z J0 

-R f1 

a mJo | ^ ( 1 - u 2 ) ( l - k2u2)(l - k2u2)(l - k\u2) 

(III.44o) 
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while that on the two ground planes is given by 

2 ru, du 
-R„l • , = = T (111.44 
a Ji/k |^/(1 - «* ) ( ! - k2u2)(l - k2u2)(l - k2u2) I 

/2 

The integrals in (111.43) and (III.44) can be evaluated numerically but 
iterative technique is necessary in order to find the required values of k0, 
and kx. We will only consider the case when the thickness t is very sm; 
say t < 0.05a. For this important special case, a number of approximate 
can be made that will lead to relatively simple expressions for the pov 
loss. 

When t/a is small kn is approximately equal to one and kx 

approximately equal to k. Thus the intervals u0 to 1 and l/k to u, i 
small. We also note that if t =* 0, then k0 = 1, kx = k and (111.42) gi\ 
Z = AW from which we obtain a = A and b = A/k or k = a/b. We will i 
these values for A and k for the case of small but finite values of I. 
(III.436) we can set u equal to 1 in all but the critical factors 1 — u a 
1 - k0u, since the interval of integration is very small. Thus we find tr. 

t = aJ 1/ -
2(l-**Xl-«) 

-1 /&{,« - 1 

1 - u 
du 

This integral can be evaluated in terms of elementary functions and give; 

TT k0 - ira 

'-riir--»-<*•-^ 
Hence we obtain 

2' k0 = 1 + — (in.4.' 

which verifies that k0 is close to one. 
In (III.43rf) we put u = l/k in all factors except the critical om 

1 - ku and 1 — Ajtt, since the interval of integration in this equation is ah 
small. An integral of the same type as found above is obtained and readi 
leads to the result 

which shows that k x is close to k = a/b. 
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The power-loss terms involve the following four integrals: 

7, = f""G(u)du /., = f1G(u)du 
Jo ~ Ju„ 

I3= f G{u)du 74 = f"'G{u)du 
'i/k 

where G(u) - l[(l - u 2Xl - k2uHl - k2u2)(l - k2u2)V1/2\. The integrals 
72 and 7., will give us the power loss on the conductor edges and will be 
considered first. For the evaluation of I.2 we use the approximation 
[(1 - k2uHl - k'fu-)]'l/2 = (1 - k2) ' and'make the substitution k0u = 
A, ka = l/k0 to obtain 

72 = 
d\ *"(*«) 

M 1 - **} h fitf - 1)(1 - k2A2) *0(1 ~ k2) 

Since ka is close to one, we can use K'(fea) « T7/2 and fe0 = 1 to get 

h = 2(1 - a 2 / 6 2 ) 

The same approach is used to evaluate 74 to obtain 

rh d\ k 

(III.47a) 

h~ —r 
\-k2K 

V(A2-l){l-felA2) 1 - * 2 ^ ' ( * 6 ) 

—a 
26(1 -a*/b2) 

(III.476) 

since kh = kx/k is close to one. 
In order to evaluate 7, we first make the substitution knu = cos 8 to 

obtain 

i - f 7, = 
7T/2 ^2rffl 

y/{k% - cos2 0 ) ( £ 2 - k2 cos2 0 ) (£ 2 - *f cos2 0) 

We now split the integral into one over a small interval 0 to 0, plus aa 

integral from 0, to v/2. Over the first interval the expression under the 
square-root sign is approximated by 

( K + l ) (*o - **)(*o - *i)( *o - cos B) 

= ( l - * 2 ) 2 [ ( f c o - l ) 2 + 02] 
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The resultant integral is an elementary one and easily integrated to give 

kl dO k2 

/ l o = = r»\ ^o 
4 i - 1 k'1 y/2(kQ -l)+62 

1 -k2 
A: 

^ — ^ ln[0 + j2(k0-l)+0* 

' 4t/ira 1 20! 

y/4t/va 
In 

1 - k2 ij4t/TTO 

Even if 4t/ira is of the same order as 02, the error in the last approxima
tion is small. For At/-a = ft2 it is In(1.207) = 0.207. which is small relative 
to other terms that occur for Pn. 

In the integral from 0t to 7r/2, we can assume that t = 0 so k{) = 1, 
kx = k, and we then obtain 

j _ pr/8 d0_ 
16 lh s i n 0 ( l - / e 2 c o s 2 0 ) 

By using A = cos 0 this integral becomes 

' » - ! 
rcos0, dK 

( 1 - A 2 ) ( 1 - A 2 A 2 ) 

and is readily evaluated. We obtain 

' , 6 = 
2 ( 1 - A 2 ) 

In 
4 -

8? 
)2 2(1 + A) - Atf 

A In 
2(1 - k) + /efljf 

upon using cos0, = 1 - 0 2 /2 . If we choose 0, = 0.25, then a number of 
terms involving 02 can be dropped. When we combine Ila and Iih, we get 

1 
/ . = 

2 ( 1 - A 2 ) 

Arra 1 + k 
In A In 

t \ - k 

(111.48a; 

which has the nice feature that it does not depend on 0,. 
For the final integral /3, we make the substitution kxu = cosh 0 and 

again split the integral into one over the interval 0 to 0, plus one over the 
interval 0, to ^. In the first interval cosh 0 is replaced by unity in the 
noncritical terms and by 1 + 0 2 / 2 in the 1 - k2u2 = 1 - i.k2/k2)cosh2 0 
term. In the second integral we use k0= 1, k, = k. We then find that 

k 
(III.486) 

2 ( 1 - A 2 ) 

4TT6 1 1 + k 

In In 
t k 1 - k 

The series resistance of the center conductor is i?, and is defined by 
the relationship 

2 
U2R, =Pn = -Rm(lx +I2) 

The series resistance R2 of the ground planes is defined by a similar 
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relationship, namely, 

W 2 f l 2 = P , 2 = r i ? m ( / 3 + / 4 ) 
2 a 

The total current / equals 4K(k), so we find that 

R. 

8aK2(k)(l - k2) [ 

R„,k 

where k = a/b. The attenuation is given by 

/?, + R-2 

4ira 
7r + In k In 

t 

4-n-b 1 
- + In —In 

1 + k 

1 -k 

l +k' 

l-k 

(III .49a) 

(HI.496) 

(111.50) 

where Zr is the characteristic impedance of the coplanar line. 
When t is very small and the ground planes are widely separated, the 

expression for Rx reduces to that for an isolated strip, as one would expect. 
Apart from the factor 1/(1 - k2) the ground-plane losses are approximately 
what one would find for an isolated conductor of width 2b. The formulas 
derived above are estimated to be accurate to within 10 percent for t < 0.05a 
and k < 0.8 More accurate approximations can be made but the resultant 
formulas would be more complex. The expressions obtained above can also 
be derived with fewer steps by using Lewin's method. The alternative 
derivation was chosen so as to provide an example of a more complete 
derivation and to more fully show the approximations involved. 



APPENDDi 

IV 
PHYSICAL CONSTANTS 

AND OTHER DATA 

IV. 1 P H Y S I C A L C O N S T A N T S 

Permittivity of vacuum = ea = 8.854 x 10~12 = ( 1 / 3 6 T T ) X 10~9 F / m 
Permeability of vacuum = fi0 = 4v x 1 0 - ' H / m 
Impedance of free space = Z0 = 376.7 = 120TT $1 
Velocity of light = c = 2.998 X 108 m / s 
Charge of electron = e = 1.602 x 10" 1 9 C 
Mass of electron = m = 9.107 x ! 0 - 3 1 kg 
,, =e/m = 1.76 x 1 0 " C/kg 
Mass of proton = M = 1.67 x 10 -7 kg 
Boltzmann's constant =• k = 1.380 x 10 ~23 J / K 
Planck's constant - ft *= 6.547 x 10 '3'f J • s 
107 ergs = 1 J 
1 J = 0.6285 x 1019 eV 
1 eV = energy gained by an electron in accelerating through a potential 

of I V 
Energy of 1 eV = equivalent electron temperature of 1.15 X 10*4 K 

e / N \ ' 2 

Electron plasma frequency f. = — = 8.97N1 " Hz. where iV is 
2TT \ me0 J 

the number of electrons per cubic meter 
Electron cyclotron frequency fc = eB/2vm = 28,000 B MHz for B in 

webers per square meter; fc = 2.8 B MHz for B in gauss 
10" G = 1 W b / m 2 

91 
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IV.2 CONDUCTIVITEES OF MATERIALS 

Material 
Conductivity, 

S / m Material 
Conductivity, 

S/m 

Copper (annealed) 
Aluminum 
Silver 
Nickel 

5.8 x 107 

3.54 x 107 

6.14 x 107 

1.28 x 107 

Steel 
Water (distilled) 
Sea water 
Quartz (fused) 

0.5-1.0 x 107 

2 X 1 0 " 4 

3-5 
< 2 X10~ 1 7 

IV.3 DEELECTRIC CONSTANTS OF MATERIALS 

Material Frequency, MHz *'Ao Loss tangent e"/e' 

Polystyrene 3,000 
Polystyrene (foam) 3,000 
Lucite 10,000 
Teflon 10.000 
Fused quartz 10,000 
Ruby mica 3,000 
Titanium dioxide 10.000 
Mahogany wood 10,000 

2.54 0.00025-0.0016 
1.05 0.00003 
2.56 0.005 
2.08 0.00037 
3.78 0.0001 
5.4 0.0003 

90 0.002 
1.7 0.021 

IV.4 SKIN DEPTH IN COPPER 
Frequency, Hz in 60 toa 10a 104 

Skin d e p t h s , , cm 2.08 0.85 0.66 0.208 6 . 6 x 1 0 " 
10 s 

6.6 x K T 4 

S, = ft/io/ur " 6.6 f- 1 / 2 cm for copper (a - 5.8 X 107 S/m). 
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SUBJECT 
INDEX 

Admittance 
characteristic, of transmission line, 76 
electronic, in klystron, 688 
input, for transmission line, 93 
inverters, in niters, 603-614 

Amplification 
of klystron, 685 
of parametric amplifier, 813, 815-820 
of traveling-wave tube, 698 

Amplifier, 
design of. 755-759, 780-795 
double stage, 788-793 
low noise. 773-776, 787 
single stage, 781-788 

gain of. 274, 728-735 
stability of, 736-744 

Angular momentum. 451 
Anisotropic media, 26-28 
Antenna, pi-obe in waveguide, 276-281 
Aperture 

coupling by, in waveguide, 284-294 
polarizabifity of circular, 285 
in rectangular cavity, 517-523 

Attenuation 
for circular waveguide, 196-197 
for coaxial transmission line, 111, 117 
for coplanar line. 178-180 
for microistrip line, 153-157, 163-164 

for rectangular waveguide, 188-189 
for strip line, 171-173 
for transmission line, 108-111 

Attenuator 
electronic, 400-404 
rotary. 397-400 

Babinet's principle, 580 
Backward-wave oscillator, 709 
Bandwidth 

of matching network. 325-330 
of resonant circuit, 483 

Beam, electron (see Electron beam) 
Beam coupling parameter. 672 
Bessei functions, 195, 581-583. 881-885 

spherical, 510-511 
Bethe directional coupler, 416-419 
Bilinear transformation, 716, 725-726 
Binomial quarter-wave transformer, 350-352 
Bloch wave, 556 

impedance of, 556-557 
(see also Periodic structures) 

Boundary conditions 
at conducting edge, 43-44 
at conducting surface. 41-43 
for electromagnetic field. 39-44 
at infinity, 44 

917 
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Branch line directional coupler, 432-434 
Brillouin flow, for electron beam, 653, 701 

Capacitance 
distributed 

of coaxial line, 115 
of coplanar line, 176 
of microstrip line, 147-151 
of strip line, 896-898 
of transmission line, 72-73 

of microstrip gap, 493 
of microstrip open end, 492 
of microstrip step, 368 

Capacitors, for microstrip circuits, 322 
Carcinotrons, 709 
Cavity 

coupling parameter for. 496, 521-523 
cylindrical, 504-508 

mode chart for, 507 
Q of, 507 
resonant frequency of, 506 

degenerate modes in, 536-538 
excitation of, 538-541, 683-686 
field expansion in, 525-533 
fi l ter, 635-641 
loop-coupled, 523-525 
oscillations in, 533-536 
perturbation of, 541-545 
rectangular, 500-504 

aperture coupled, 517-523 
Q of, 503-504 

resonant frequency of, 501-502 
Chebyshev filters, 593-598 
Chebyshev polynomials, 353, 355 
Chebyshev quarter-wave transformer, 

352-360 
Chebyshev tapered transmission line. 

380-383 
Choke joint, 397 

in variable short circuits, 395-397 
Circles, constant 

gain, 744-755 
mismatch, 776-780 
noise figure, 772-776 
stability, 736-744 

load, 736 
source, 739 

Circular polarized field, 405-407, 452 
Circulator, four-port, 468-471 

for parametric amplifier, 816-817 
scattering matrix for, 471-472 
three-port, 471-476 

Coaxial transmission line 
attenuation in, 111, 117 

characteristic impedance of, 115 
distributed parameters for, 115-116 
fields in. 106-108 

ConformaJ mapping, 886-889 
and conductor loss, 898-910 

for coplanar line, 905-910 
for microstrip line, 903-905 

for coplanar line, 892 
for microstrip line, 892-896 
for slot line, 892 
for strip line, 896-898 

Constitutive relations, 23-28 
Continuity equation for current, 20 
Coplanar transmission line, 126-127, 

175-180 

attenuation in, 178-180 
impedance of, 176-178 

Corrugated plane as periodic structure, 
571-577 

Coupled microstrip line, 126-127 
for directional coupler, 427-432 

Coupled strip line, 173-174 
Coupling 

in directional coupler, 414 
of modes in lossy cavity, 536-538 

Coupling coefficient, for coupled microstrip 
line, 166 

Coupling parameter, for cavity, 496, 521-523 
Current, equivalent, in waveguide, 221-223 

linear, excitation of waveguide by, 281-283 
loop, in waveguide, 283-284 
normalized. 223 
on transmission line, 106 

Cutoff frequency (see Waveguide, circular; 
Waveguide, rectangular) 

Cyclotron frequency, 701, 704 

Damping of cavity, 484 
Delta function, 59-60 
Diaphragm 

capacitive, in rectangular guide, 341-342 
inductive, in rectangular guide, 340-341 

Dielectric constant, 25 
Dielectric resonator, 508-517 

cylindrical, 515-516 
hemispherical, 509-515 

Q of, 513 
Directional coupler 

Bethe type, 416-419 
branch line, 432-434 
Chebyshev. 422-427 
coupled line, 427-432 
coupling in, 414 
directivity of, 414 
Lange, 434-435 
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multielement, 422-427 
scattering matrix for, 414-416 
Schwinger reverse phase, 420 
two-hole, 419-420 

Moreno crossed guide, 421 
Riblet T-slot, 421 

Disk resonator, 496-500 
Dispersion 

in microstrip line, 158-163 
of signal in waveguide, 198-204 

Double-stream amplifier. 708 
Double-stub tuner, 312-317 

for waveguide, 342-343 

E mode. 102-104 
in circular guide, 194-196 
in rectangular guide. 193 

E-H tuner, 342-343 
Electron beam 

ac power relations for. 667-670 
with axially confined flow, 651 
beam coupling parameter for, 672 
Brillouin flow for. 653, 701 
dc conditions for, 650 
ion-neutralized, 650-651 
kinetic-power theorem for, 670 
perveance of, 650 
space-charge waves on. 654-667 
velocity modulation of, 670-678 
(see also Space-charge waves) 

Electron precession in ferrite, 451-460 
Electronic admittance of reflex klystron, 688 
Elliptic sine function, 889-891 
Energy 

electric, 34-36 
magnetic, 34-36 
velocity of, in free space, 48 

in periodic structures, 566-571 
in waveguides, 204-205 

Excitation 

of cavity, 538-541. 683-686 
of waveguides, 281-294 

Exponential taper for transmission line, 372 

Faraday rotation in ferrites, 460-464 
Faraday's law, 18 
Ferrite 

electron precession in, 451-460 
Faraday rotation in, 460-464 
magnetic permeability of, 455, 457-459 
in microwave devices, 464-476 
plane-wave propagation in, 459-460 

Filling factor, 155 

Filters 
cavity 

direct-coupled, 639-642 
quarter-wave-coupled, 635-639 

frequency transformations in, expansion, 
599 

low-pass to bandpass. 600-602 
low-pass to high-pass, 599-600 
periodic, 602-603 

half-wave. 360-370, 617-626 
image-parameter design of. 587-590 
impedance inverters in, 603-615 
insertion-loss design of, 591-592 
low-pass designs for, 595-598 
parallel coupled, 626-635 
power loss ratio in, 592-594 

for Chebyshev, 593 
for maximally flat, 593 

Fin line, 208-210 
Floquet's theorem, 569-571 
Foster's reactance theorem, 230-232 
Frequency bands, 2 -3 
Fresnel reflection coefficient, 51-52 
Fresnel transmission coefficient, 51-52 

Gain 
definitions of 

available, 274, 728 
maximum, 274, 728 
power, 274, 728-735 
transducer, 273-274, 728 

of klystron, 685 

of parametric amplifier. 813, 815-820 
of traveling-wave tube. 698 

Gauss' law. 19 
Group velocity 

in periodic structures, 566-571 
in waveguide. 204-205 

Gunn oscillator, 832-837 
Gyrator. 464-465 
Gyrotron, 701-708 

H modes, 98, 100-102 
in circular guide, 196-198 
in rectangular guide, 182-192 

Half-wave filter. 360-370, 617-626 
Half-wave plate, 405 
Hankel functions. 881-885 

spherical. 510-511 
Helix 

general properties of, 583-585 
sheath. 580-583 

dispersion equation for, 583 
in traveling-wave tube, 693 
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Helmholtz's equation, 32, 97 
Helmholtz's theorem, 19, 525 
HEMT transistor, 722 
Hybrid junction 

as balanced mixer, 865-866 
branch line coupler as, 432-434 
magic T as, 435-437 
ring circuit as, 437-442 
scattering matrix for, 436-437, 441 

Image parameters of filters, 587-590 
IMPATT oscillator, 837-840 
Impedance 

characteristic 
of capacitively loaded transmission line, 

556 
of coaxial line, 115 
of coplanar line, 176-178 
of microstrip line. 150-153 
of strip line, 171 
of transmission line, 76 

general definition of, 38 
input, even and odd properties of, 232-233 
input, on transmission line, 93 
matching, with lumped elements, 319-330 

with stubs, 309-319 
(see also Quarter-wave transformers; 

Transmission line, tapered) 
matrbc 

imaginary property of, 236-237 
symmetry of, 235-236 

normalized, 90, 237-238 
surface. 56 
wave 

for circular guide, 196-197 
for TE waves in rectangular guide. 185. 

190 
for TM waves in rectangular guide, 189 

of waveguide elements, 339-342 
Impedance inverters in filters, 603-615 
Impedance mismatch factor, 334 

invariance of, 334-339 
Impedance termination, design of, 330-334 
Inductance, distributed, for transmission line, 

72-73 
Inductor, for microstrip circuits, 320-322 
Insertion loss in filters, 591-592 
Interdigital line, 577-579 
Isolator, 466-468 

Johnson noise, 762 

k0-p diagram, 564-566 
Kinetic power theorem for electron beam, 670 

Kinetic voltage, 670 
Klystron 

reflex 
electronic admittance in, 688 
oscillation conditions for, 688 
tuning curves for, 688-689 
two-cavity. 678-686 

equivalent circuit for, 684-685 
excitation of fields in, 683-686 
gain of, 685 

Laplace's equation, 29 
Larmor frequency, 452 
Lorentz condition, 57. 133 
Lorentz force, 17-18 
Lorentz reciprocity theorem, 62-64 
Loss tangent, 26 

Magic T, 435-437, 865-868 
Magnetic permeability, 18, 27 

for ferrite, 455. 457-459 
Magnetic susceptibility, 27 
Magnetron. 690-692 
Manley-Rowe relations, 804-807 
Matching network 

design of 
for amplifier, 330-334, 338-339 

lumped element, 319-330 
Q of, 325-330 

with transmission line stubs, 309-319 
Maxwell's equations, 21 
Meander line, 577-579 
MESFET, 721 
MIC circuit, 714 
Microstrip line, 125-128, 130-169 

attenuation of, 153-157, 163-164 
coupled, 164-170 
dispersion in, 158-163 
effective dielectric constant for, 149-152 
impedance of, 150-153 
inverted-suspended, 126-127 

Microstrip resonator, 490-496 
disk, 496-500 

Q of, 499 
Mixer, 856-868 

balanced, 865-868 
compression in, 862-863 
harmonic balance method for, 869-873 
image-enhanced, 868 
image-rejection, 868 
intermodulation in, 863-864 
noise figure. 864-865 
subharmonic, 868 
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MMIC circuits, 714 
Mode chart for cylindrical cavity, 507 

Negative-resistance amplifier, 814-821 
Noise, conductance 

equivalent. 767 
equivalent temperature of, 762 
figure, 768-773 

circles for, 772-776 
of cascaded stages, 770-772 
of mixer, 864-865 
optimum source impedance for minimum. 

769-770 
of parametric amplifier, 821-829 

Johnson or Nyquist, 762 
temperature 

of amplifier, 771 
of system, 771-772 

resistance, equivalent, 767 
theory of, 760-765 
in two-ports, 766-767 

Normalized current, 223 
Normalized load impedance. 90 
Normalized voltage, 223 
TV-port circuits, 233-235 

Oscillators, design of, 851-856 
Gunn, 832-837 
IMPATT diode, 837-840 
three-port scattering matrix for. 843-849 
transistor. 840-856 

O-type traveling-wave tube, 692-699 

Parallel plate transmission line, 117-125 
Parametric amplifier 

linearized equations for, 807-809 
Manley-Rowe relations for. 804-807 
negative resistance, 814-821 

gain of. 815-820 
gain-bandwidth product for. 821 
noise in, 823-825 

noise figure, of degenerate negative 
resistance, 825-829 

of negative resistance, 823-825 
of up-converter, 821-823 

p-n junction diodes for, 800-802 
up-converter, 809-814 

gain of, 813 
Periodic structures 

Bloch-wave impedance for, 555-556 
Bloch waves in, 556 

energy flow velocity in, 566-571 
and filters, 587-590 
Floquet's theorem for, 569-571 
group velocity in, 566-571 
k0-p diagram for. 564-566 
matching of, 563-564 
spatial harmonics in, 569-571 
terminated, 560-563 
for traveling-wave tube, corrugated plane, 

571-577 
helix, general properties of, 583-585 
interdigital line, 577-579 
meander line, 577-579 
sheath helix, 580-583 
tape ladder line, 577-578 

unsymmetrical two-ports in. 559-560 
Permeability, 18, 27 

for ferrite. 455. 457-459 
Perveance of electron beam. 650 
Phase shifter, electronic, 409-413 

rotary, 404-409 
Phase velocity, 47. 198-199 

in waveguides. 182 
Physical constants, 911-912 
PIN diode, 401-403 
Plane waves, 44-48 
Plasma frequency, 653 

effective, 659 
Poisson's equation, 29 
Polarization 

circular. 405-407. 452 
of circular aperture, 285 
in dielectric, 23-27 

p-n junction diode, 800-802 
Post 

capacitive, in waveguide, 342 
inductive, in waveguide, 341 

Potential 
scalar, dynamic, 57 

static, 28 
vector, dynamic, 57 

static, 30 
Power, in circular guide, 197 

for TE waves in rectangular guide, 186-187 
Power added efficiency. 842 
Power divider, 442-450 

Wilkinson, 443-450 
Power gain, 274, 728-735 
Power loss ratio 

in filter, 591-594 
in quarter-wave transformer, 356-357 

Power orthogonality, in waveguides, 186 
Power waves, scattering matrix for, 268-276 
Poynting vector, 38-39 

complex, 37 
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Probe, radiation resistance of. in waveguide, 
281 

Pulse propagation, on transmission line, 
78-85 

Quality factor or Q, 325. 503-504 
of cylindrical cavity, 507 
of dielectric resonator, 513 
of disk resonator, 499 
external, 483 
loaded, 483 

of matching network, 325-330 
of rectangular cavity. 503-504 
unloaded, 483 

Quarter-wave plate, 405 
Quarter-wave transformers 

Chebyshev, exact results. 356-360 
three-section, 359-360 
two-section, 356-358 

N-section, approximate theory for. 348-350 
binomial. 350-352 
Chebyshev, 352-356 

prototype circuit for filter, 360-370 
single-section, 343-346 

Reactive elements in waveguide. 339-343 
shunt capacitive, 341 -342 
shunt inductive, 340-341 
stubs as, 342-343 

Reciprocity theorem, 62-64 
Reflection 

from conducting plane. 53-56 
from dielectric surface 

parallel polarization, 49-52 
perpendicular polarization, 52-53 

small, theory of. 348-350 
Reflection coefficient, current, 91 

for tapered transmission line, 371 
and Riccati equation. 383-386 

for terminated transmission line. 90-91 
voltage, 90 

Reflex klystron. 686-689 
Resistance, radiation 

of probe in waveguide, 281 
of transmission line. 114 

Resistance-wall amplifier, 708 
Resonant circuits 

bandwidth of. 482-483 
damping of, 484 
Q of. 482-484 
transmission line 

antiresonant. 488-490 
open circuited, 487-488 
short-circuited. 485-487 

Return loss, 329 
Riccati equation for tapered transmission line 

383-386 
Ridge waveguide, 205-207 
Ring circuit, 437-442 

Scalar potential 
dynamic, 56-59 
static, 28 

Scattering matrix 
of circulator, 471-476 
of directional coupler, 414-416 
of hybrid junction, 436-437, 441 
for lossless junction, 251-253 
for power waves, 268-276 
symmetry of, 250-251 
and transformation of terminal planes, 

249-250 
for transistor, 843-849 
for two-port junction, 254-257 
unitary property of, 253 

Schwinger directional coupler, 420 
Separation constant, 45 
Separation of variables method, 44, 183 
Sheath helix, 580-583 

in traveling-wave tube, 693 
Short circuit 

choke-type, 397 
variable, in waveguide, 395-397 

Signal flow graphs, 260-268 
Signal velocity, 200-204 
Skin depth, 54 
Slot line, 127 
Smith chart. 304-308 
Snell's law. 50 

Space-charge reduction factor, 659-660 
Space-charge waves 

ac power relations for, 667-670 
and kinetic-power theorem, 670 
and kinetic voltage. 670 

on axially confined beam, 654-661 
dc propagation constant for. 656 
effective plasma frequency for, 659-660 
fast and slow, 658 
reduction factor for. 659-660 
on unfocused beam, 661-667 

Spatial harmonics in periodic structures, 
569-571 

Stability, of amplifier, 735-744 
Stability circles. 736-744 

load. 736 
source, 739 

Standing wave ratio, 92 
Standing waves, on transmission line, 91-92 



SUBJECT INDEX 9 2 3 

Static fields, 28-30 
Strip line, i TO-174 

attenuation on. 171-173 
coupled, 173-174 
impedance of, 171 

Stub 
matching with, 309-319 

double. 312-317 
single, 309-312 
triple, 317-319 

in waveguide, 342-343 
Substrate, properties of, 130 
Surface impedance. 56 
Surface wave, 124 
Susceptibility 

electric, 25 
magnetic, 27 

TE waves, 98. 100-102 
TEM waves. 98-100 
Termination, waveguide, 394-397 
TM waves, 98, 102-104 
Transducer gain, 273-274. 728 
Transmission coefficient, 51 
Transmission line 

capacitively loaded. 551-557 
Bloch waves in. 556 
characteristic impedance of, 556 
circuit analysis of, 551-557 
eigenvalue equation lor, 554 
kn-p diagram for. 564-566 
wave analysis of, 557-559 

distributed circuit analysis of. 86-89 
field theory of. coaxial line. 106-108, 111 

lossless iine, 106-108 
lossy coaxial line. I l l 
with small loss, 111 

parallel-plate, with dielectric, 117-125 
parameters of capacitance, 112, 117 

characteristic impedance. 113, 117 
coaxial line, 115, 117 
conductance, 115. 117 
inductance, 115, 117 
resistance, 116. 117 

resonant circuit, 485-490 
antiresonant. 488-490 
open-circuited, 487-488 
short-circuited, 485-487 

tapered, Chebyshev, 380-383 
exponential, 372 
reflection coefficient on, approximate 

equation, 371 
reflection coefficient on, Riccati equation 

for, 385 

synthesis of, 373-380 
triangular, 372-373 

terminated, 89-96 
Transmission matrix, for cascade network 

voltage-current, 257-259 
wave-amplitude, 259-260 

Transverse resonance method, 206-208 
Traveling-wave tube 

M-type- 699-701 
O-type, 692-699 

gain of, 698 
periodic structures for. 571-585 

Two-port junctions. 238-248 
equivalent circuits for. 245-248 

Vector formulas. 876-880 
Vector potential 

dynamic, 56-59 
solution for. 59-62 

static, 30 
Velocity 

energy flow 

in periodic structures. 566-571 
for plane waves, 48 
in waveguides, 204-205 

group 
in periodic structures. 566-571 
in waveguides, 200-204 

phase 
for plane waves, 47-48 
in waveguides, 182 

signal, in waveguides, 199-204 
wavefront, in waveguides. 199 

Velocity-jump amplifier. 708 
Velocity modulation, of electron beam, 

670-678 
beam coupling parameter in. 672 

Voltage, equivalent, in waveguides, 221-224 

normalized, 223 
Voltage standing wave ratio, 91-93 

Wave 
classification of, 96-99 
impedance 

of TE mode, 185, 190 
of TM mode. 189 

plane. 44-48 
reflection of, from conducting plane, 

53-56 
reflection of, from dielectric surface. 

49-53 
TE. 98-102 
TEM, 98-100 
TM, 98. 102-104 



9 2 4 SUBJECT INDEX 

Wave (Cont'd) 
transmission matrix, 259-260 
(see also Periodic structures; Space-charge 

waves; Transmission line; Waveguide I 
Wave equation, 31 
Wave number. 32 
Waveguide 

capacitive diaphragm in, 341-342 
capacitive post in, 342 
capacitive rod in, 342 
circular, attenuation in, 196-197 

solutions for, 194-197 
TE waves in, 196-197 
TM waves in, 194-196 

equivalent current and voltage for, 221-224 
excitation of, by aperture, 284-294 

by current loop, 283-284 
by linear current element. 281-283 

inductive diaphragm in, 340-341 
inductive post in, 341 
properties of, 180-182 
rectangular, attenuation in, 188 

cutoff frequency of, 184 
dominant TE mode in, 190-194 
power in, 186-187 
solutions for, 189 
TE waves in. 182-190 
TM waves in, 193 
wave impedance for, 185, 189, 197 

ridge. 205-207 
termination, 394-397 
velocity in. energy, 204-205 

group, 200-204 
phase, 182 
signal, 199-204 
wavefront, 199 


